Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichable Heyting algebras

Enriched elements

Theorem revisited

Embedding

E-completion Simple completions

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Outline

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov's Theorem

Embedding

 \mathcal{E} -completion Simple completions

1 Logic KM

- Kuznetsov's Theorem
- KM-algebras

2 Enrichable Heyting algebras

- Enriched elements
- Kuznetsov's Theorem revisited

Outline

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.<mark>edu</mark>

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov'

Theorem revisited

Embedding

 \mathcal{E} -completion Simple completions

1 Logic KM

- Kuznetsov's Theorem
- KM-algebras

2 Enrichable Heyting algebras

- Enriched elements
- Kuznetsov's Theorem revisited

3 Embedding

- *E*-completion
- Simple completions

Outline

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.<mark>edu</mark>

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov' Theorem

Theorem revisited

Embedding

 \mathcal{E} -completion Simple completions

1 Logic KM

- Kuznetsov's Theorem
- KM-algebras

2 Enrichable Heyting algebras

- Enriched elements
- Kuznetsov's Theorem revisited

3 Embedding

- *E*-completion
- Simple completions

Logic KM

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.e<mark>du</mark>

Logic KM

Kuznetsov's Theorem KM-algebras

Enrichable Heyting algebras

Enriched elements Kuznetsov's Theorem

Embedding *E*-completion Simple completions

Propositional languages \mathcal{L} and \mathcal{L}^- :

- an infinite set of propositional variables p, q, \ldots ;
- connectives: ∧, ∨, →, ¬ (assertoric connectives) and □ (a unary modality);

 \mathcal{L} is the full language above, \mathcal{L}^- is the assertoric part of \mathcal{L} . Formulas in \mathcal{L}^- are denoted by letters A, B, \ldots

Logic KM

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM

Kuznetsov's Theorem KM-algebras

Enrichable Heyting algebras

Enriched elements Kuznetsov

Theorem revisited

Embedding *E*-completion Simple **KM** is **Int** understood in language \mathcal{L} plus the following formulas as axioms:

•
$$p \rightarrow \Box p$$

• $(\Box p \rightarrow p) \rightarrow p$

• $\Box p \rightarrow (q \lor (q \rightarrow p))$

closed under substitution and detachment (modus ponens).

Kuznetsov's Theorem

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.<mark>edu</mark>

Logic KM

Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov's Theorem

Embedding *E*-completion Simple completions

Theorem (Kuznetsov's Theorem)

For any formulas A and B of \mathcal{L}^- ,

$$\mathsf{Int} + A \vdash B \Leftrightarrow \mathsf{KM} + A \vdash B.$$

- Why is KM interesting?
- Why is Kuznetsov's Theorem interesting?

KM nowadays is mentioned in connection with **Lax** (Fairtlough-Mendler) or **mHC** (Esakia). However, having been defined in the end of the 1970s, it stemmed from a different source.

Kuznetsov's Theorem

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.<mark>edu</mark>

Logic KM

Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

elements Kuznetsov's Theorem

Embedding *E*-completion Simple completions The following diagram is commutative:

Here κ is a lattice isomorphism (Muravitsky), λ is a meet epimorphism (Kuznetsov's Theorem) and μ is also a meet epimorphism (Keznetsov-Muravitsky).

This in particular implies that any intermediate logic is the superintuitionistic fragment of some **GL**-logic.

KM-algebras

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.e<mark>du</mark>

Logic KM Kuznetsov's Theorem KM-algebras

Enrichable Heyting algebras Enriched elements Kuznetsov's Theorem revisited

Embedding *E*-completion Simple completions $\mathfrak{A} = (\mathcal{A}, \wedge, \vee, \neg, \mathbf{0}, \mathbf{1}, \Box)$, where $(\mathcal{A}, \wedge, \vee, \neg, \mathbf{0}, \mathbf{1})$ is a Heyting algebra (the Heyting reduct of \mathfrak{A}) and \Box is subject to the following conditions (identities):

•
$$\Box x \leq x$$

•
$$\Box x \rightarrow x = x$$

•
$$\Box x \leq y \lor (y \rightarrow x)$$

Theorem (algebraic version of Kuznetsov's Theorem)

Any Heyting algebra can be embedded into a KM-algebra such that the Heyting reduct of the latter generates the same variety as the initial algebra.

Enrichable Heyting Algebras

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.<mark>edu</mark>

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements

Theorem revisited

Embedding *E*-completion Simple completions In the remaining part of the this presentation, ${\mathfrak A}$ will denote a Heyting algebra.

Question: In how many ways can one make a Heyting algebra a **KM**-algebra?

Enriched Elements

Enrichable Elements in Hevting Algebras

Alexei Muravitsky alexeim@nsula.edu

Enriched elements

Definition

Given algebra \mathfrak{A} and its elements a and a^* , the pair (a, a^*) is called an \mathcal{E} -pair if the following (in)equalities hold:

•
$$a \leq a^*$$

•
$$a^* \rightarrow a = a$$

• $a^* \rightarrow a = a$ • $a^* \le b \lor (b \rightarrow a)$, for any $b \in \mathfrak{A}$.

If (a, a^*) is an \mathcal{E} -pair, we say that a is enriched by a^* in \mathfrak{A} , or a* enriches a

Enrichable Heyting Algebras

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements

Kuznetsov's Theorem revisited

Embedding *E*-completion Simple completions

Observation

If (a, a') and (a, a'') are \mathcal{E} -pairs of \mathfrak{A} then a' = a''.

Corollary

There may be only one way to make a Heyting algebra a **KM**-algebra, if each element of the former is enrichable.

Definition

An algebra is called enrichable if each element of it is enrichable.

Theorem (Kuznetsov's Theorem revisited)

Every Heyting algebra is embedded into an enrichable algebra such that the latter and the former generate the same variety. **Question:** How can such an embedding be done?

\mathcal{E} -completion

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.e<mark>du</mark>

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov

Embedding *E*-completion Simple Let us fix this notation:

- an (initial) algebra 𝔃,
- $(\mu_{\mathfrak{A}},\subseteq)$, the poset of the prime filters of \mathfrak{A} ,
- $\mathcal{H}(\mathfrak{A})$, the Heyting algebra of the upward cones over $(\mu_{\mathfrak{A}}, \subseteq)$,
- $h: \mathfrak{A} \rightarrow \mathcal{H}(\mathfrak{A})$, Stone embedding,
- $\mathcal{B}_{\triangle}(\mathfrak{A})$ is the subalgebra of $\mathcal{H}(\mathfrak{A})$ generated by $\{h(a) \mid a \in \mathfrak{A}\} \cup \{\Delta h(a) \mid a \in \mathfrak{A}\}.$

$\mathcal{E} ext{-completion}$

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov

Theorem revisited

Embedding *E*-completion Simple completions

Definition (*E*-completion)

We first define the following sequence of algebras:

• $\mathfrak{A}_0 = \mathfrak{A}_{,}$

Next we observe that $\{\mathfrak{A}_i\}_{i < \omega}$ is a direct family of algebras and define \mathfrak{A} to be the direct limit of $\{\mathfrak{A}_i\}_{i < \omega}$.

Observation

We observe the following:

- \mathfrak{A} belongs to the variety generated by all \mathfrak{A}_i .
- If A is subdirectly irreducible, then all A_i and A are subdirectly irreducible as well.

Simple completion

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements

Theorem revisited

Embedding

Simple completions

Notation:

- $\mathfrak{A} \preccurlyeq \mathfrak{B}$ means that \mathfrak{A} is a subalgebra of \mathfrak{B} (up to isomorphism).
- If A ∠ B means that A is a relative subalgebra (up to isomorphism) of B, in which case A, considered by itself, can be regarded a partial algebra.

Definition (simple completion, a-completion)

Let $\mathfrak{A} \preccurlyeq \mathfrak{B}$, $a \in \mathfrak{A}$ and (a, a^*) be an \mathcal{E} -pair in \mathfrak{B} . Then \mathfrak{B} is called a simple completion of \mathfrak{A} if \mathfrak{B} is generated by $\mathfrak{A} \cup \{a^*\}$. A simple completion which depends on a is called an a-completion.

Two Questions:

- Why is a simple completion interesting to investigate?
- Given \mathfrak{A} and $a \in \mathfrak{A}$, do all *a*-completions form any
 - structure?

\sim -negation

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov

Theorem revisited

Embedding

 \mathcal{E} -completion

Simple completions

Definition (\sim -negation)

A unary operation on a Heyting algebra is called a \sim -negation if it satisfies the following conditions (identities):

(1)
$$\sim x \land \sim \sim x = \sim \mathbf{1};$$

(2) $x \land \sim x \leq \sim \mathbf{1};$
(3) $\sim x \lor \sim \sim x = \sim \mathbf{0};$
(4) $x \lor \sim x \geq \sim \mathbf{0};$
(5) $\sim x \leftrightarrow \sim \sim x = \sim \mathbf{1};$
(6) $x \rightarrow y \leq \sim y \rightarrow \sim x;$
(7) $\sim \sim \mathbf{0} = \sim \mathbf{1};$
(8) $\sim \sim \mathbf{1} = \sim \mathbf{0}.$

A Heyting algebra ${\mathfrak A}$ with \sim -negation will be denoted by $({\mathfrak A},\sim)$ and called an expansion.

\sim -negation

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov

Theorem revisited

Embedding *E*-completion Simple

completions

Observation

In an expansion (\mathfrak{A},\sim) , $[\sim 1,\sim 0], \lor, \land, \sim)$ is a Boolean algebra.

Proposition

If (a, a^*) is an \mathcal{E} -pair in \mathfrak{A} , then the operation

$$\sim x = (x \rightarrow a) \wedge a^*$$

is a \sim -negation in \mathfrak{A} . Conversely, if (\mathfrak{A}, \sim) is an expansion then $(\sim 1, \sim 0)$ is an \mathcal{E} -pair of \mathfrak{A} .

Corollary

Given $a \in \mathfrak{A}$, let \mathfrak{B} be an a-completion of \mathfrak{A} . Then a \sim -negation can be defined in \mathfrak{B} such that $a = \sim 1$, in which case a unique a^* that enriches a equals ~ 0 .

a-expansion, $\triangle a$ -expansion

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.e<mark>du</mark>

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov

Theorem revisited

Embedding *E*-completion Simple

completions

Definition (*a*-expansion)

Given $a \in \mathfrak{A}$, an expansion (\mathfrak{A}, \sim) is called an a-expansion of \mathfrak{A} if $\sim \mathbf{1} = a$.

Observation

Let $a \in \mathfrak{A}$. Then the algebra $\mathfrak{A}_a^{\triangle}$ which is defined as the subalgebra of $\mathcal{H}(\mathfrak{A})$ generated by $\{h(x) \mid x \in \mathfrak{A}\} \cup \{\triangle h(a)\}$ is (up to isomorphism) an a-expansion of \mathfrak{A} .

Definition ($\triangle a$ -expansion)

Given an algebra \mathfrak{A} and $a \in \mathfrak{A}$, let us consider the h(a)-expansion $(\mathfrak{A}_a^{\wedge}, \sim)$ of \mathfrak{A}_a^{\wedge} that corresponds to the \mathcal{E} -pair $(h(a), \Delta h(a))$ of \mathfrak{A}_a^{\wedge} . Restricting the operation \sim to \mathfrak{A} , we define $(\mathfrak{A}, \sim) \precsim (\mathfrak{A}_a^{\wedge}, \sim)$ and call the former (possibly) partial algebra $a \ \Delta a$ -expansion of \mathfrak{A} . One can observed that, given $a \in \mathfrak{A}$, $a \ \Delta a$ -expansion is unique (up to isomorphism).

packing, relation \lhd

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov's Theorem

Embedding *E*-completion

Simple completions

If (\mathfrak{A}, \sim) is a $\triangle a$ -expansion, for some $a \in \mathfrak{A}$, then $a = \sim 1$. This observation gives rise to the following.

Definition (packing, relation \lhd)

Let $\mathfrak{A} \preccurlyeq \mathfrak{B}$. If a \sim -negation can be defined in \mathfrak{B} so that $\sim \mathbf{1} \in \mathfrak{A}$ and the expansion (\mathfrak{B}, \sim) is generated by \mathfrak{A} , we say that \mathfrak{A} is packed in \mathfrak{B} w.r.t. this \sim -negation. Accordingly, we write $(\mathfrak{A}, \sim) \lhd (\mathfrak{B}, \sim)$ if the following conditions are fulfilled:

\$\mathbb{A}\$ ≤ \$\mathbb{B}\$;
 (\$\mathbb{B}\$, ~) is an expansion;
 (\$\mathbb{A}\$, ~) \sets (\$\mathbb{B}\$, ~);
 (\$\mathbb{A}\$, ~) \$\sets\$ (\$\mathbb{B}\$, ~) is generated by \$\mathbb{A}\$.

Theorem 1

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements

Theorem revisited

Embedding *E*-completion

Simple completions

Remark:

Thus $(\mathfrak{A}, \sim) \triangleleft (\mathfrak{B}, \sim)$, for some \sim , iff \mathfrak{A} is packed in \mathfrak{B} .

Observation

If an algebra \mathfrak{A} is packed in an algebra \mathfrak{B} w.r.t \sim , then \mathfrak{B} is generated as a Heyting algebra by $\mathfrak{A} \cup \{\sim \mathbf{0}\}$.

Theorem

Given a $\triangle a$ -expansion (\mathfrak{A}, \sim) , there is an expansion (\mathfrak{A}^*, \sim) such that $(\mathfrak{A}, \sim) \lhd (\mathfrak{A}^*, \sim)$. Moreover, for any expansion (\mathfrak{B}, \sim) , if $(\mathfrak{A}, \sim) \lhd (\mathfrak{B}, \sim)$ then there is a homomorphism of (\mathfrak{A}^*, \sim) onto (\mathfrak{B}, \sim) , which is an isomorphism on \mathfrak{A} .

poset $(\mathcal{A}, <)$

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.<mark>edu</mark>

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov

Theorem revisited

Embedding

Simple completions

Definition

Given a $\triangle a$ -expansion (\mathfrak{A}, \sim) , we define

$$\mathcal{A} = \{(\mathfrak{A}_i, \sim) \mid (\mathfrak{A}, \sim) \lhd (\mathfrak{A}_i, \sim), i \in I\}.$$

Also, we define

$$(\mathfrak{A}_i,\sim)\leq (\mathfrak{A}_j,\sim)$$

if there is a homomorphism of the latter onto the former, which is an isomorphism on \mathfrak{A} .

Theorem

 (\mathcal{A},\leq) is a poset which is a join semilattice with the top element (\mathfrak{A}^*,\sim) and minimal elements.

minimal elements of (\mathcal{A},\leq)

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements Kuznetsov's Theorem revisited

Embedding *E*-completion Simple

completions

Definition (relation ◀)

We write $(\mathfrak{A}, \sim) \blacktriangleleft (\mathfrak{B}, \sim)$ if the following conditions are satisfied:

- $(\mathfrak{A},\sim) \lhd (\mathfrak{B},\sim);$
- \mathfrak{A} and \mathfrak{B} are subdirectly irreducible;
- \mathfrak{A} and \mathfrak{B} share their pre-top element.

Theorem

If an initial algebra \mathfrak{A} is s.i. then, an expansion (\mathfrak{A}_i, \sim) is minimal in (\mathcal{A}, \leq) iff $(\mathfrak{A}, \sim) \blacktriangleleft (\mathfrak{A}_i, \sim)$.

Corollary

If \mathfrak{A} is s.i. then any its expansion $(\mathfrak{A}_a^{\vartriangle}, \sim)$ is minimal in (\mathcal{A}, \leq) .

Enrichable Elements in Heyting Algebras

Alexei Muravitsky alexeim@nsula.edu

Logic KM Kuznetsov's Theorem KM-algebras

Enrichabl Heyting algebras

Enriched elements

Theorem revisited

Embedding

 \mathcal{E} -completion

Simple completions

Thank you