# Canonical extension of coherent categories 

Dion Coumans<br>Radboud University Nijmegen

TACL, July 2011

## Outline

1 Canonical extension of distributive lattices $(\wedge, \vee, \top, \perp)$
2 'Algebraic' semantics for coherent logic $(\wedge, \vee, \top, \perp, \exists)$ :

- Polyadic distributive lattices (pDL's)
- Coherent categories

3 Canonical extension of pDL's and coherent categories
4 Relation to other constructions (Makkai's topos of types)
5 Future work

## Canonical extension of distributive lattices


$\mathbf{D L}^{+} \quad=$ completely distributive algebraic lattices
Priestley spaces $=$ totally order-disconnected compact Hausdorff spaces

## Canonical extension of distributive lattices


$\mathbf{D L}^{+} \quad=$ completely distributive algebraic lattices
Priestley spaces $=$ totally order-disconnected compact Hausdorff spaces

## Canonical extension of distributive lattices

$\mathrm{DL}^{+}=$completely distributive algebraic lattices.
Canonical extension is left adjoint to $\mathbf{D L}^{+} \hookrightarrow \mathbf{D L}$.

Universal characterization of canonical extension:

where $\mathbf{L} \in \mathbf{D L}$ and $\mathbf{K}, \mathbf{L}^{\delta} \in \mathbf{D L}^{+}$.

## Algebraic semantics for coherent logic

We start from
Signature: $\quad \Sigma=\left(f_{0}, \ldots, f_{k-1}, R_{0}, \ldots, R_{l-1}, c_{0}, \ldots, c_{m-1}\right)$
Set of var's / sorts: $\quad X=\left\{x_{0}, x_{1}, \ldots\right\} /\{A, B, \ldots\}$
Equality:
$=$
Connectives: $\quad \wedge, \vee, \top, \perp, \exists$
Derivability notion: $\vdash$ (given by axioms and rules)

## Question:

What properties does the logic over $\Sigma$ have?

## Algebraic semantics for coherent logic

We start from
Signature: $\quad \Sigma=\left(f_{0}, \ldots, f_{k-1}, R_{0}, \ldots, R_{l-1}, c_{0}, \ldots, c_{m-1}\right)$
Set of var's / sorts: $\quad X=\left\{x_{0}, x_{1}, \ldots\right\} /\{A, B, \ldots\}$
Equality:
$=$
Connectives: $\quad \wedge, \vee, \top, \perp, \exists$
Derivability notion: $\vdash$ (given by axioms and rules)

## Question:

What properties does the logic over $\Sigma$ have?

## First observation:

For each $n \in \mathbb{N}$,

$$
\left(F m\left(x_{0}, \ldots, x_{n-1}\right) / \vdash \cap \dashv, \vdash\right) \text { is a distributive lattice. }
$$

## Algebraic semantics for coherent logic


[]

[ $x_{0}$ ]

$\left[x_{0}, x_{1}\right]$
...

## Algebraic semantics for coherent logic



Substitutions:

$$
\begin{array}{ccc}
x_{0} & \mapsto & c \\
\phi\left(x_{0}\right) & \mapsto & \phi(c)
\end{array}
$$

## Algebraic semantics for coherent logic



Substitutions:

$$
\begin{array}{ccc}
x_{0} & \mapsto & c \\
\phi\left(x_{0}\right) & \mapsto & \phi(c)
\end{array}
$$

## Algebraic semantics for coherent logic

Contexts and substitutions form a category $\mathbf{B}$ :
Objects:
natural numbers (contexts) / sorts
Morphism $n \rightarrow m$ : $\quad m$-tuple $\left\langle t_{0}, \ldots, t_{m-1}\right\rangle$

$$
\text { s.t. } F V\left(t_{i}\right) \subseteq\left\{x_{0}, \ldots, x_{n-1}\right\}
$$



## Algebraic semantics for coherent logic

Contexts and substitutions form a category B:
Objects:
Morphism $n \rightarrow m$ : $\quad m$-tuple $\left\langle t_{0}, \ldots, t_{m-1}\right\rangle$

$$
\text { s.t. } F V\left(t_{i}\right) \subseteq\left\{x_{0}, \ldots, x_{n-1}\right\}
$$

This category has finite products:


## Algebraic semantics for coherent logic

Formulas and substitutions: functor $\mathbf{B}^{o p} \rightarrow \mathbf{D L}$

$$
\begin{array}{rlrl}
n & \mapsto & F m\left(x_{0}, \ldots, x_{n-1}\right) & \\
n \stackrel{\left\langle t_{0}, \ldots, t_{m-1}\right\rangle}{ } m & \mapsto & F m\left(x_{0}, \ldots, x_{m-1}\right) & \rightarrow F m\left(x_{0}, \ldots, x_{n-1}\right) \\
\phi\left(x_{0}, \ldots, x_{m-1}\right) & \mapsto \quad \phi\left(t_{0}, \ldots, t_{m-1}\right)
\end{array}
$$



## Algebraic semantics for coherent logic

Existential quantification: related to the inclusion map


$$
\exists_{x_{1}}\left(\psi\left(x_{0}, x_{1}\right)\right) \quad \vdash \quad \phi\left(x_{0}\right)
$$

$$
\psi\left(x_{0}, x_{1}\right) \quad \vdash \quad \phi\left(x_{0}\right)
$$

## Algebraic semantics for coherent logic

Existential quantification: related to the inclusion map


$$
\exists_{x_{1}}\left(\psi\left(x_{0}, x_{1}\right)\right) \quad \vdash_{x_{0}} \quad \phi\left(x_{0}\right)
$$

$$
\psi\left(x_{0}, x_{1}\right) \quad \vdash_{x_{0}, x_{1}} \quad i\left(\phi\left(x_{0}\right)\right)
$$

## Algebraic semantics for coherent logic

## Existential quantification: interaction with substitutions



$$
\left[x_{0}\right] \quad\left[x_{0}, x_{1}\right]
$$

$\exists_{x_{1}}\left(\psi\left(x_{0}, x_{1}\right)\right)\left[f\left(x_{0}\right) / x_{0}\right]=\exists_{x_{1}}\left(\psi\left(f\left(x_{0}\right), x_{1}\right)\right)$
(Beck-Chevalley)

## Algebraic semantics for coherent logic

## Existential quantification: interaction with substitutions


$\exists_{x_{1}}\left[i\left(\phi\left(x_{0}\right) \wedge \psi\left(x_{0}, x_{1}\right)\right]=\phi\left(x_{0}\right) \wedge \exists_{x_{1}}\left[\psi\left(x_{0}, x_{1}\right)\right]\right.$
(Frobenius)

## Algebraic semantics for coherent logic

A polyadic distributive lattice is a functor $P: \mathbf{B}^{\mathbf{o p}} \rightarrow \mathbf{D L}$ s.t.

1 (Contexts \& substitutions)
$\mathbf{B}$ is a category with finite products;
2 (Existential quantification)
for all $I, J \in \mathbf{B}, P(\pi): P(I) \rightarrow P(I \times J)$ has a left adjoint $\exists_{\pi}$ satisfying Beck-Chevalley and Frobenius;

3 (Equality)
for all $I, J \in \mathbf{B}, P(\delta): P(I \times I \times J) \rightarrow P(I \times J)$ has a left adjoint $\exists_{\delta}$ satisfying Beck-Chevalley and Frobenius,
(where $\delta=\left\langle\pi_{1}, \pi_{1}, \pi_{2}\right\rangle: I \times J \rightarrow I \times I \times J$ ).

## Algebraic semantics for coherent logic

Examples of polyadic distributive lattices (pDL's):

- Syntactic pDL
$\mathbf{B}=$ contexts and substitutions

$$
\begin{aligned}
\mathcal{F}: \quad \mathbf{B}^{o p} & \rightarrow \mathbf{D L} \\
n & \mapsto F m\left(x_{0}, \ldots, x_{n-1}\right) / \vdash \cap-1
\end{aligned}
$$

- Powerset pDL

B = Set

$$
\begin{aligned}
\mathcal{P}: \quad \mathbf{B}^{o p} & \rightarrow \mathbf{B A} \\
A & \mapsto \mathcal{P}(A) \\
A \xrightarrow{f} B & \mapsto \mathcal{P}(B) \xrightarrow{f^{-1}} \mathcal{P}(A) .
\end{aligned}
$$

## Polyadic distr. lattices and coherent categories

Polyadic distr. lattices
Functor $P: \mathbf{B}^{o p} \rightarrow \mathbf{D L}$ s.t.

- B has finite products;
- $P(\pi)$ and $P(\delta)$ have left adjoints satisfying $B C$ and Frobenius.


## Coherent categories

Category C s.t.

- C has finite limits;

■ C has stable finite unions;
■ C has stable images.

## Polyadic distr. lattices and coherent categories

Polyadic distr. lattices
Coherent categories

Category C s.t.

- C has finite limits;

■ C has stable finite unions;

- C has stable images. Frobenius.


## Proposition

There is an adjunction $\mathcal{A}: \mathbf{p D L} \leftrightarrows \mathbf{C o h}: \mathcal{S}, \mathcal{A} \dashv \mathcal{S}$.
For $\mathbf{C} \in \mathbf{C o h}, \quad \mathcal{S}(\mathbf{C})=\mathcal{S}_{\mathbf{C}}: \mathbf{C}^{o p} \quad \rightarrow \quad \mathbf{D L}$
$A \mapsto \operatorname{Sub}_{\mathbf{C}}(A)$
and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

## Canonical extension of pDL's

Recall: canonical extension for DL's is a functor $\mathbf{D L} \xrightarrow{(-)^{\delta}} \mathbf{D L}^{+}$.

## Definition

For a pDL $P: \mathbf{B} \rightarrow \mathbf{D L}$ we define:

$$
P^{\delta}: \mathbf{B} \xrightarrow{P} \mathbf{D L} \xrightarrow{(-)^{\delta}} \mathbf{D L} .
$$

## Proposition

For a pDL $P, P^{\delta}$ is again a pDL.
Proof: check that $P^{\delta}(\pi)$ and $P^{\delta}(\delta)$ have left adjoints satisfying BC and Frobenius.

## Canonical extension of coherent categories

We have:

- adjunction $\mathcal{A}: \mathbf{p D L} \leftrightarrows \mathbf{C o h}: \mathcal{S}, \mathbf{C} \simeq \mathcal{A}\left(\mathcal{S}_{\mathbf{C}}\right)$
- for a pDL P, $P^{\delta}: \mathbf{B} \xrightarrow{P} \mathbf{D L} \xrightarrow{(-)^{\delta}} \mathbf{D L}$


## Definition

For a coherent category $\mathbf{C}$ we define:

$$
\mathbf{C}^{\delta}=\mathcal{A}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right)
$$

## Proposition

For a distributive lattice $\mathbf{L}, \mathcal{A}\left(\mathcal{S}_{\mathbf{L}}^{\delta}\right) \simeq \mathbf{L}^{\delta}$.

## Canonical extension of coherent categories

Properties of $\mathbf{C}^{\boldsymbol{\delta}}=\mathcal{A}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$ :
1 subobject lattices are in $\mathbf{D L}^{+}$
2 pullback morphisms are complete lattice homomorphisms
Coh $^{+}=$coherent categories satisfying (1) and (2).

## Canonical extension of coherent categories

Properties of $\mathbf{C}^{\delta}=\mathcal{A}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right)$ :
1 subobject lattices are in $\mathbf{D L}^{+}$
2 pullback morphisms are complete lattice homomorphisms
$\mathbf{C o h}^{+}=$coherent categories satisfying (1) and (2).
Universal characterization: $\quad \mathbf{C} \xrightarrow{M_{0}} \mathbf{C}^{\delta}$
where $\mathbf{C} \in \mathbf{C o h}, \mathbf{E}, \mathbf{C}^{\delta} \in \mathbf{C o h}^{+}, M$ a coherent functor satisfying:

## Canonical extension of coherent categories

Properties of $\mathbf{C}^{\delta}=\mathcal{A}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right)$ :
1 subobject lattices are in $\mathrm{DL}^{+}$
2 pullback morphisms are complete lattice homomorphisms
$\mathbf{C o h}^{+}=$coherent categories satisfying (1) and (2).

where $\mathbf{C} \in \mathbf{C o h}, \mathbf{E}, \mathbf{C}^{\delta} \in \mathbf{C o h}^{+}, M$ a coherent functor satisfying:
for all $A \xrightarrow{\alpha} B$ in $\mathbf{C}, \rho$ (prime) filter in $\mathcal{S}_{C}(A)$,

$$
\exists_{M(\alpha)}(\bigwedge\{M(U) \mid U \in \rho\})=\bigwedge\left\{\exists_{M(\alpha)}(M(U)) \mid U \in \rho\right\}
$$

## Topos of types

Note: $\mathcal{S}_{\mathbf{C}}^{\delta}: \mathbf{C}^{o p} \rightarrow \mathbf{D L}^{+}$is an internal frame in $\mathbf{S e t}^{\mathbf{C}^{o p}}=\widehat{\mathbf{C}}$.
Then $S h_{\widehat{C}}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right) \simeq T(\mathbf{C})=$ topos of types of $\mathbf{C}$.

## Topos of types

Note: $\mathcal{S}_{\mathbf{C}}^{\delta}: \mathbf{C}^{o p} \rightarrow \mathbf{D L}^{+}$is an internal frame in $\mathbf{S e t}^{\mathbf{C}^{o p}}=\widehat{\mathbf{C}}$.
Then $S h_{\widehat{C}}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right) \simeq T(\mathbf{C})=$ topos of types of $\mathbf{C}$.

Topos of types was introduced by Makkai in 1979 as:

- 'a reasonable codification of the 'discrete' (non topological) syntactical structure of types of the theory'
- a tool to prove representation theorems

■ 'conceptual tool meant to enable us to formulate precisely certain natural intuitive questions'

Some later work by: Magnan \& Reyes and Butz.

## Topos of types and the class of models

For a distributive lattice $\mathbf{L}$,
prime filters of $\mathbf{L}=$ lattice homomorphisms $\mathbf{L} \rightarrow \mathbf{2}$
$=\quad$ 'models of $\mathbf{L}$ '.
$\mathbf{L}^{\delta}=\mathcal{D}(\operatorname{Mod}(\mathbf{L}))$
Categorical analogue:
$\operatorname{Mod}(\mathbf{C})=$ coherent functors $M: \mathbf{C} \rightarrow$ Set.
Study: $\boldsymbol{S e t}^{\operatorname{Mod}(\mathbf{C})}$.
We have to restrict to an appropriate subcategory $\mathcal{K}$ of $\operatorname{Mod}(\mathbf{C})$.
Question: How does Set $^{\mathcal{K}}$ relate to $T(\mathbf{C})=S h_{\hat{\mathbf{C}}}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$ ?

## Topos of types and the class of models

$\mathcal{K}$ appropriate subcategory of $\operatorname{Mod}(\mathbf{C})$.
Question: How does Set ${ }^{\mathcal{K}}$ relate to $T(\mathbf{C})=S h_{\hat{\mathbf{C}}}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$ ?
Evaluation functor $\mathrm{ev}: \mathbf{C} \rightarrow \mathbf{S e t}^{\mathcal{K}}$

$$
\begin{aligned}
A \mapsto \operatorname{ev}(A): \mathcal{K} & \rightarrow \operatorname{Set} \\
M & \mapsto M(A)
\end{aligned}
$$

Gives a geometric morphism $\phi_{e v}: \operatorname{Set}^{\mathcal{K}} \rightarrow \operatorname{Set}^{C^{o p}}$


## Topos of types and the class of models

$\mathcal{K}$ appropriate subcategory of $\operatorname{Mod}(\mathbf{C})$.
Question: How does Set ${ }^{\mathcal{K}}$ relate to $T(\mathbf{C})=S h_{\hat{\mathbf{C}}}\left(\mathcal{S}_{\mathbf{C}}^{\boldsymbol{\delta}}\right)$ ?
Evaluation functor $\mathrm{ev}: \mathbf{C} \rightarrow \mathbf{S e t}^{\mathcal{K}}$

$$
\begin{aligned}
A \mapsto \operatorname{ev}(A): \mathcal{K} & \rightarrow \operatorname{Set} \\
M & \mapsto M(A)
\end{aligned}
$$

Gives a geometric morphism $\phi_{e v}: \operatorname{Set}^{\mathcal{K}} \rightarrow \mathbf{S h}\left(\mathbf{C}, \mathbf{J}_{\text {coh }}\right)$


## Topos of types and the class of models

$\mathcal{K}$ appropriate subcategory of $\operatorname{Mod}(\mathbf{C})$.
Question: How does Set ${ }^{\mathcal{K}}$ relate to $T(\mathbf{C})=S h_{\hat{\mathbf{C}}}\left(\mathcal{S}_{\mathbf{C}}^{\delta}\right)$ ?
Evaluation functor $\mathrm{ev}: \mathbf{C} \rightarrow \mathbf{S e t}^{\mathcal{K}}$

$$
\begin{aligned}
A & \mapsto \quad e v(A): \mathcal{K}
\end{aligned} \rightarrow \text { Set } \quad \begin{aligned}
M & \mapsto M(A)
\end{aligned}
$$

Gives a geometric morphism $\phi_{e v}: \mathbf{S e t}^{\mathcal{K}} \rightarrow \mathbf{S h}\left(\mathbf{C}, \mathbf{J}_{\text {coh }}\right)$


Makkai: $T(\mathbf{C}) \simeq$ functors in Set $^{\mathcal{K}}$ with finite support property

## Future work

We have: notion of canonical extension for coherent categories
We would like to:

- Study the following diagram (where $\mathcal{K} \subseteq \operatorname{Mod}(\mathbf{C})$ ):


■ Generalize to Heyting categories and study addition of axioms

- Apply the developed theory in the study of first order logics
- In particular: study interpolation problems for first order logics, e.g. for IPL $+(\phi \rightarrow \psi) \vee(\psi \rightarrow \phi)$

