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Outline

Canonical extension of distributive lattices (A,V, T, 1)

‘Algebraic’ semantics for coherent logic (A, V, T, L, 3):

m Polyadic distributive lattices (pDL's)
m Coherent categories

Canonical extension of pDL's and coherent categories
Relation to other constructions (Makkai's topos of types)

Future work
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Canonical extension of distributive lattices
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DL™* = completely distributive algebraic lattices
Priestley spaces = totally order-disconnected compact

Hausdorff spaces
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Canonical extension of distributive lattices

DL™ = completely distributive algebraic lattices.

Canonical extension is left adjoint to DL < DL.

Universal characterization of canonical extension:

L_€>L5

K

where L € DL and K, L% € DL+,
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Algebraic semantics for coherent logic

We start from

Signature: Y=(fo, -, fx—1,Ros-- - Ri—1,¢0,- ., Cm—1)
Set of var's / sorts: X = {zg,x1,...} / {4,B,...}

Equality: =

Connectives: AV, T, L3

Derivability notion: +  (given by axioms and rules)

Question:
What properties does the logic over 3 have?
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Algebraic semantics for coherent logic

We start from

Signature: Y=(fo, -, fx—1,Ros-- - Ri—1,¢0,- ., Cm—1)
Set of var's / sorts: X = {zg,x1,...} / {4,B,...}

Equality: =

Connectives: AV, T, L3

Derivability notion: +  (given by axioms and rules)

Question:
What properties does the logic over 3 have?

First observation:
For each n € N,

(Fm(xg,...,Tn-1)/rn4, F) is a distributive lattice.
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Algebraic semantics for coherent logic

I [0 [0, 21]



Algebraic semantics for coherent logic

(o)
é(c) $(=0)

[ 0] [20, 1]
Substitutions:

xo — C

d(zo) = é(c)
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Algebraic semantics for coherent logic

b(c) — Plzo) | <
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Algebraic semantics for coherent logic

Contexts and substitutions form a category B:
Objects: natural numbers (contexts) / sorts

Morphism n — m: m-tuple (to,. .., tm—1)
s.t. FV(tl) - {:EQ, . ,In_l}

(o)
(c) () (o, f(z0))

1 [0, 1]

\‘TO]_/

(¢, f(e))
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Algebraic semantics for coherent logic

Contexts and substitutions form a category B:
Objects: natural numbers (contexts) / sorts

Morphism n — m: m-tuple (to,. .., tm—1)
s.t. FV(tl) - {:EQ, . ,In_l}

This category has finite products:

(wo, 1)

[an T, LL'Q]
A
i(to,t1,80>

L]

[0, 1]

<t07t1>

12/32



Algebraic semantics for coherent logic

Formulas and substitutions: functor B°? — DL

n — Fm(zo,...,Tn-1)
1050t
Sorotmat) Fm(zg,...,xm-1) — Fm(zo,...,Tn_1)

¢($07"'7'Tm—1) = ¢(t05"'7tm—1)

(e) (@0, f(z0))
P —
o) [zo, 71]

\/
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Algebraic semantics for coherent logic

Existential quantification: related to the inclusion map

TN
¢(z0) P(zo, 1)
A S
EM
(wo)
[zo] < [z, 7]

o (P(20,21)) F o(x0)

(o, 21) = ¢(xo)
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Algebraic semantics for coherent logic

Existential quantification: related to the inclusion map

N\
(z0) P(zo, 1)
A S
EM
(zo)
[xo] <~ [wo,21]

Elrl (’l,b(.’l)(],l)l)) }_:vo ¢(w0)

(w0, 1) Fagar  1(9(20))

15/32



Algebraic semantics for coherent logic

Existential quantification: interaction with substitutions

EP
V2SR

e (> w0 ) |27 (f(@o), @)

(o] (20, 1]

Fy (Y (0, 21))[f (20) /20] = T2y (¥(f(20), 1))

(Beck-Chevalley)
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Algebraic semantics for coherent logic

Existential quantification: interaction with substitutions

N\
(z0) P(zo, 1)
~——
EM
(zo)
[xo] <~ [wo,21]

Elxl [7’((125(:30) A ¢(~’Uo, 561)] = QS(‘TO) A Elm [w(wﬂv xl)]
(Frobenius)
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Algebraic semantics for coherent logic

A polyadic distributive lattice is a functor P: B°? — DL s.t.

(Contexts & substitutions)

B is a category with finite products;

(Existential quantification)
forall I,J € B, P(m): P(I) — P(I x J) has a left adjoint
3, satisfying Beck-Chevalley and Frobenius;

(Equality)

forall I,J € B, P(§): P(I x I xJ)— P(I xJ) has a left
adjoint ds satisfying Beck-Chevalley and Frobenius,

(where 6 = (w1, m,me): [ x J =1 x1IxJ).
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Algebraic semantics for coherent logic

Examples of polyadic distributive lattices (pDL's):

m Syntactic pDL
B = contexts and substitutions
F: B — DL
n — Fm(:co,...,a:n_l)/._n_|

m Powerset pDL
B = Set
P B? — BA
A — P(A)
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Polyadic distr. lattices and coherent categories

Polyadic distr. lattices Coherent categories
Functor P: B? — DL s.t. Category C s.t.
m B has finite products; m C has finite limits;
m P(m) and P(J) have left m C has stable finite unions;
adjoints satisfying BC and m C has stable images.

Frobenius.
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Polyadic distr. lattices and coherent categories

Polyadic distr. lattices Coherent categories
Functor P: B? — DL s.t. Category C s.t.
m B has finite products; m C has finite limits;
m P(m) and P(J) have left m C has stable finite unions;
adjoints satisfying BC and m C has stable images.
Frobenius.

Proposition
There is an adjunction A4: pDL = Coh: S, A4 S.

For C € Coh, S(C)=8¢: C? — DL
A — Subc(A)

and A(S(C)) ~C.
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Canonical extension of pDL's

5
Recall: canonical extension for DL's is a functor DL i> DL™T.

Definition
For a pDL P: B — DL we define:

s.p P )’
P°: B — DL —— DL.

Proposition
For a pDL P, P? is again a pDL.

Proof: check that P?(7) and P?(d) have left adjoints
satisfying BC and Frobenius.
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Canonical extension of coherent categories

We have:
m adjunction A: pDL < Coh: S, C ~ A(Sc)

5
= forapDL P, P*: B 5 DL 25 DL

Definition
For a coherent category C we define:
Co = A(SY)

Proposition
For a distributive lattice L, A(S{) ~ L.
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Canonical extension of coherent categories

Properties of C° = A(SY):

subobject lattices are in DL™

pullback morphisms are complete lattice homomorphisms

Coh™ = coherent categories satisfying (1) and (2).
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Canonical extension of coherent categories

Properties of C° = A(SY):

subobject lattices are in DL™

pullback morphisms are complete lattice homomorphisms
Coh™ = coherent categories satisfying (1) and (2).

. .. M,
Universal characterization: C—> 9

M
N

E

where C € Coh, E,C° € Coh™, M a coherent functor satisfying:
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Canonical extension of coherent categories

Properties of C° = A(SY):

subobject lattices are in DL™

pullback morphisms are complete lattice homomorphisms
Coh™ = coherent categories satisfying (1) and (2).

. .. M,
Universal characterization: C—> 9

M
N

E

where C € Coh, E,C° € Coh™, M a coherent functor satisfying:
for all A% B in C, p (prime) filter in Sc(A),
(@) (NMMU) U € p}) = ANBmo)(M(U)) | U € p}.
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Topos of types

Note: Sg: C° — DL" is an internal frame in Set€” = C.

Then Sha(S%) ~ T'(C) = topos of types of C.
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Topos of types

Note: Sé,: C° — DL" is an internal frame in Set€” = C.

Then Sha(Sé) ~ T'(C) = topos of types of C.

Topos of types was introduced by Makkai in 1979 as:

® ‘a reasonable codification of the ‘discrete’ (non topological)
syntactical structure of types of the theory’

® a tool to prove representation theorems
m ‘conceptual tool meant to enable us to formulate precisely
certain natural intuitive questions’

Some later work by: Magnan & Reyes and Butz.
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Topos of types and the class of models

For a distributive lattice L,

prime filters of L = lattice homomorphisms L — 2
= ‘models of Li".

L’ = D(Mod(L))

Categorical analogue:
Mod(C) = coherent functors M : C — Set.

Study: SetMo4(©),

We have to restrict to an appropriate subcategory K of Mod(C).

Question: How does Set" relate to T(C) = Sh(SL)?
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Topos of types and the class of models

K appropriate subcategory of Mod(C).
Question: How does Set” relate to T'(C) = She(SE)?

Evaluation functor ev: C — Set®

A — ev(d): K — Set
M — M(A)

Gives a geometric morphism ¢, : Set’ — Set¢”

7(C)

7

Set/ W Set¢”
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Topos of types and the class of models

K appropriate subcategory of Mod(C).
Question: How does Set” relate to T'(C) = She(SE)?

Evaluation functor ev: C — Set®

A — ev(d): K — Set
M — M(A)

Gives a geometric morphism ¢, : Set® — Sh(C, J.on)

7(C)

.

SetlC E» Sh(07 Jcoh)

31/32



Topos of types and the class of models

K appropriate subcategory of Mod(C).
Question: How does Set” relate to T'(C) = She(SE)?

Evaluation functor ev: C — Set®

A — ev(d): K — Set
M — M(A)

Gives a geometric morphism ¢, : Set® — Sh(C, J.on)

7(C)

.

SetlC E» Sh(07 Jcoh)

Makkai: T'(C) ~ functors in Set™ with finite support property
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Future work

We have: notion of canonical extension for coherent categories

We would like to:
m Study the following diagram (where K C Mod(C)):

r(C)

o

Set’C ? Sh(C, Jcoh)

m Generalize to Heyting categories and study addition of axioms
m Apply the developed theory in the study of first order logics

m In particular: study interpolation problems for first order
logics, e.g. for IPL 4+ (¢ — ¢) V (¢ — ¢)
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