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Motivation for the notion of a Generalised Type Setup
Logic-riched dependent type theories

The Problem The idea of a logic-enrichment of a dependent type theory is
to build a logic on top of the type theory by treating its
types and typed terms as the sorts and sorted terms of a
dependently sorted logic. The idea was first introduced in
[Aczel and Gambino (2002)]. In order to make the general
idea of logic-enrichment rigorous we need a precise notion to
replace the idea of a dependent type theory.

A Solution The notion of a Generalised Type Setup (GTS) is a
precise notion that has abstracted away from the details
concerning the inductive generation of the types, terms and
contexts of a dependent type theory while keeping an explicit
treatment of variable declarations, x : A.

Background There are a variety of abstract notions of category for
dependent type theories that are more concerned with the
algebraic semantics of type dependency than the idea of a
type theory; e.g. CwFs [Dybjer, 1996].
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Generalised Algebraic (GA) Theories, 1
Example: the GA theory of categories:

Sorts: For x , y : Obj ,
Obj
Hom(x , y)

Terms: For x , y , z : Obj , f : Hom(x , y), g : Hom(y , z),
id(x) : Hom(x , x)
comp(x , y , z , f , g) : Hom(x , z)

Abbreviations:
x → y := Hom(x , y)
f • g := comp(x , y , z , f , g)

Axioms: For x , y , z ,w : Obj , f : x → y , g : y → z , h : z → w
id(x) • f =x→y f and f • id(y) =x→y f
f • (g • h) =x→w (f • g) • h

In a GA theory only equations between terms are allowed as formulae.
In this GA theory of categories there is no equality between objects, only
between arrows.
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Generalised Algebraic (GA) Theories, 2
Pre-signatures and signatures

A pre-signature for a GA theory has sort constructors and term
constructors, each of some arity. Certain sort constructors are labelled
as equality-forming.

Given a pre-signature, the contexts, Γ, the Γ-sorts, the Γ-terms, and
the Γ-substitutions are simultaneously inductively generated and
substitution action on sorts and terms is recursively defined at the
same time.

A pre-signature is a signature if the arity of each sort constructor has
the form (∆)sort and the arity of each term constructor has the form
(∆)A where ∆ is a context and A is a ∆-sort.
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Generalised Algebraic (GA) Theories, 3

Each context Γ will have the form of a list

(x1 : A1, . . . , xn : An)

of n ≥ 0 variable declarations of the distinct variables x1, . . . , xn and
Ai will be a Γ-sort for i = 1, . . . , n.

A variable x is Γ-free if x 6∈ {x1, . . . , xn}.

Each Γ-substitution σ : ∆→ Γ will have the form of a list

[x1 := a1, . . . , xn := an]∆

of variable assignments where ai is a ∆-term of sort Aiσ,
for i = 1, . . . , n.

σ : ∆→ Γ acts on sorts and terms so that

Γ-sort A 7→ ∆-sort Aσ
Γ-term a 7→ ∆-term aσ
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Generalised Algebraic (GA) Theories, 4
Contexts and substitutions

Contexts:

() is a context.

Let Γ ≡ (x1 : A1, . . . , xn : An) be a context.

If x is Γ-free and A is a Γ-sort then
(Γ, x : A) := (x1 : A1, . . . , xn : An, x : A) is a context.

Substitutions: Let ∆ ≡ (y1 : B1, . . . , ym : Bm) also be a context.

[]∆ is a substitution ∆→ ().

Let σ ≡ [x1 := a1, . . . , xn := an]∆ be a substitution ∆→ Γ.

If a is a Γ-term of sort A then
[σ, x := a]∆ ≡ [x1 := a1, . . . , xn := an, x := a]∆ is a substitution
∆→ (Γ, x : A).
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Generalised Algebraic (GA) Theories, 5
Sorts, terms and substitution action

Let σ ≡ [x1 := a1, . . . , xn := an]∆ be a substitution ∆→ Γ.

Sorts: Let F be a sort constructor of arity (Γ)sort where Γ is a context.

F (a1, . . . , an) is a ∆-sort.

Terms:

yj is a ∆-term for j = 1, . . .m.

Let f be a term constructor of arity (Γ)A where Γ is a context and A is a
Γ-sort.

f (a1, . . . , an) is a ∆-term of sort Aσ.

Substitution Action: Let τ ≡ [y1 := b1, . . . , ym := bm]Λ be a substitution
Λ→ ∆. By structural recursion on sorts and terms define

yjτ := bj for i = 1, . . . , n
f (a1, . . . , an)τ := f (a1τ, . . . , anτ)
F (a1, . . . , an)τ := F (a1τ, . . . , anτ)
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Generalised Algebraic (GA) Theories, 6
The category of contexts: Given a GA theory the contexts form a category
where the arrows are the substitutions ∆→ Γ and, if
Γ ≡ (x1 : A1, . . . , xn : An) then idΓ := [x1 := x1, . . . , xn := xn]Γ and, if
σ ≡ [x1 := a1, . . . , xn := an]∆ : ∆→ Γ and τ : Λ→ ∆ then

σ ◦ τ := [x1 := a1τ, . . . , xn := anτ ]Λ : Λ→ Γ.

Equations: Let F be an equality-forming sort constructor of arity (Γ)sort.
If B ≡ F (a1, . . . , an) is a ∆-sort and b, b′ are ∆-terms of sort B then

(∆) b =B b′

is an equation of the GAT.

A GA theory consists of a GA signature and a set of equations of the
signature.
Inference Rules: Standard rules for equational reasoning are used to
generate the theorems of the GA theory.
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First Order Logic with Dependent Sorts (FOLDS)
[Makkai, 1995]

• A GA− signature is a GA signature that only has sort constructors. So
there are no individual constants or function symbols and the only possible
Γ-terms are the variables declared in the context Γ.

• A FOLDS (FOLDS+) signature consists of a GA−(GA) signature
together with relation symbols, each of arity some context.

• As we will see, for the more general notion of a Generalised Type Setup
(GTS) with relation symbols, we can define predicate logic over a
FOLDS+ signature and the notion of a FOLDS+ theory.

• A GTS is an abstract notion of dependent type theory which has types,
terms and contexts of variable declarations, but has abstracted away from
the rules for inductively generating these.
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Generalised Type Setups (GTSs), 1

A Category with Types and Terms (CTT) consists of the following.

A category, C, of contexts Γ and substitution maps σ : ∆→ Γ.

An assignment of a set Type(Γ) of Γ-types to each context Γ and a
set Term(Γ,A) of Γ-terms of type A to each Γ-type.

Each substitution σ : ∆→ Γ acts contravariantly on types and terms
so that if σ : ∆→ Γ then

A ∈ Type(Γ) 7→ Aσ ∈ Type(∆),
a ∈ Term(Γ,A) 7→ aσ ∈ Term(Γ,A).

such that, for A ∈ Type(Γ) and a ∈ Term(Γ,A),

A idΓ = A and a idΓ = a and
for σ : ∆→ Γ, τ : Λ→ ∆,

A(σ ◦ τ) = (Aσ)τ and a(σ ◦ τ) = (aσ)τ.

P. Aczel ( The University of Manchester ) Generalised Type Setups July 26 13 / 20



Generalised Type Setups (GTSs), 1

A Category with Types and Terms (CTT) consists of the following.

A category, C, of contexts Γ and substitution maps σ : ∆→ Γ.

An assignment of a set Type(Γ) of Γ-types to each context Γ and a
set Term(Γ,A) of Γ-terms of type A to each Γ-type.

Each substitution σ : ∆→ Γ acts contravariantly on types and terms
so that if σ : ∆→ Γ then

A ∈ Type(Γ) 7→ Aσ ∈ Type(∆),
a ∈ Term(Γ,A) 7→ aσ ∈ Term(Γ,A).

such that, for A ∈ Type(Γ) and a ∈ Term(Γ,A),

A idΓ = A and a idΓ = a and
for σ : ∆→ Γ, τ : Λ→ ∆,

A(σ ◦ τ) = (Aσ)τ and a(σ ◦ τ) = (aσ)τ.

P. Aczel ( The University of Manchester ) Generalised Type Setups July 26 13 / 20



Generalised Type Setups (GTSs), 2

A Generalised Type Setup (GTS) consists of a CTT with variables and
comprehension extensions.

The variables form an infinite set of terms such that every context Γ has a
Γ-free variable; i.e. a variable that is not a Γ-term of any Γ-type.
Associated with each triple (Γ, x ,A) consisting of a context Γ, a Γ-free
variable x and a Γ-type A is a comprehension extension; i.e. a substitution
π : Γ′ → Γ, satisfying the following.

The variable x is a Γ′-term of type A,

For each Γ-type A, Aπ = A ∈ Type(Γ′) and aπ = a ∈ Term(Γ′,A) for
each Γ-term a of type A.

For each substitution σ : ∆→ Γ and each a ∈ Term(∆,Aσ) there is a
unique substitution σ′ : ∆→ Γ′ such that π ◦ σ′ = σ and xσ′ = a.

We write (Γ, x : A) for Γ′ and [σ, x := a] for σ′.
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Type Setups

A Type Setup is a generalised type setup such that the following.

For each context Γ, the set var(Γ) of variables that are Γ-terms is a
finite set such that var((Γ, x : A)) = var(Γ) ∪ {x}.
There is a terminal context () and, for each other context Γ′ there is
a unique triple (Γ, x ,A) such that Γ′ is (Γ, x : A).

It follows that in a type setup every context has uniquely the form

((· · · ( (), x1 : A1), . . .), xn : An) for some n ≥ 0,

naturally abbreviated (x1 : A1, . . . , xn : An), and every substitution ∆→ Γ
has uniquely the form

[[· · · [ []∆, x1 := a1], . . .], xn := an] for some n ≥ 0,

naturally abbreviated [x1 := a1, . . . , xn := an], where []∆ : ∆→ ().
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Formulae over a GTS with relation symbols

Assume given a GTS with relations symbols, each of arity some context.

The judgments (Γ) φ, for contexts Γ, expressing that φ is a Γ-formula, are
inductively generated using the following rules.

If R is a relation symbol of arity Λ and τ : Γ→ Λ then (Γ) R<τ >.

If A is an equality Γ-sort and a, a′ are Γ-terms of type A then
(Γ) a =A a′.

If � := >,⊥ then (Γ) �.
If � := ∧,∨,→ then (Γ) φi , for i = 1, 2, implies (Γ) (φ1 � φ2).

If ∇ := ∀,∃ and A is a Γ-sort then (Γ, x : A) φ0 implies
(Γ) (∇x : A) φ0.

If τ ≡ [z1 := c1, . . . , zr := cr ] it is natural to write R(c1, . . . , cr ) rather
than R<τ >.
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Action of substitutions on GTS formulae

The action of substitutions σ : ∆→ Γ on each Γ-formula φ to give a
∆-formula φσ is defined by structural recursion using the following table.

φ φσ

R<τ > R<τ ◦ σ>
(a =A a′) (aσ =Aσ a′σ)
� �

(φ1 � φ2) (φ1σ � φ2σ)
(∇x : A) φ0 (∇x ′ : A) φ0[σ, x := x ′]

where x ′ is x if x is ∆-fresh, but is the first ∆-fresh variable otherwise.
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The predicate logic rules of inference for a GTS
• A sequent has the form (Γ) Φ⇒ φ where Φ is a list φ1, . . . , φm of
Γ-formulae and φ is a Γ-formula.

• The predicate logic rules of inference for deriving such sequents are
essentially as expected. We just give those for the quantifiers and equality.

(Γ, x : A) Φ⇒ θ

(Γ) Φ⇒ (∀x : A)θ

(Γ) Φ⇒ (∀x : A)θ

(Γ) Φ⇒ θ[a/x ]

(Γ) Φ⇒ θ[a/x ]

(Γ) Φ⇒ (∃x : A)θ

{
(Γ) Φ⇒ (∃x : A)θ
(Γ, x : A) Φ, θ ⇒ φ

(Γ) Φ⇒ φ

(Γ) Φ⇒ (a =A a)

(Γ) Φ⇒ (a =A a′)

(Γ) Φ, θ[a/x ]⇒ θ[a′/x ]

where Φ is a list of Γ-formulae, φ is a Γ-formula, θ is a (Γ, x : A)-formula,
a, a′ are Γ-terms of type A and [a/x ] is the substitution
[idΓ, x := a] : Γ→ (Γ, x : A).
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