
Generalised Type Setups
for

Dependently Sorted Logic

TACL 2011

Peter Aczel

The University of Manchester

July 26, 2011

Motivation for the notion of a Generalised Type Setup
Logic-riched dependent type theories

The Problem The idea of a logic-enrichment of a dependent type theory is
to build a logic on top of the type theory by treating its
types and typed terms as the sorts and sorted terms of a
dependently sorted logic. The idea was first introduced in
[Aczel and Gambino (2002)]. In order to make the general
idea of logic-enrichment rigorous we need a precise notion to
replace the idea of a dependent type theory.

A Solution The notion of a Generalised Type Setup (GTS) is a
precise notion that has abstracted away from the details
concerning the inductive generation of the types, terms and
contexts of a dependent type theory while keeping an explicit
treatment of variable declarations, x : A.

Background There are a variety of abstract notions of category for
dependent type theories that are more concerned with the
algebraic semantics of type dependency than the idea of a
type theory; e.g. CwFs [Dybjer, 1996].

P. Aczel (The University of Manchester) Generalised Type Setups July 26 2 / 20

Motivation for the notion of a Generalised Type Setup
Logic-riched dependent type theories

The Problem The idea of a logic-enrichment of a dependent type theory is
to build a logic on top of the type theory by treating its
types and typed terms as the sorts and sorted terms of a
dependently sorted logic. The idea was first introduced in
[Aczel and Gambino (2002)]. In order to make the general
idea of logic-enrichment rigorous we need a precise notion to
replace the idea of a dependent type theory.

A Solution The notion of a Generalised Type Setup (GTS) is a
precise notion that has abstracted away from the details
concerning the inductive generation of the types, terms and
contexts of a dependent type theory while keeping an explicit
treatment of variable declarations, x : A.

Background There are a variety of abstract notions of category for
dependent type theories that are more concerned with the
algebraic semantics of type dependency than the idea of a
type theory; e.g. CwFs [Dybjer, 1996].

P. Aczel (The University of Manchester) Generalised Type Setups July 26 2 / 20

Motivation for the notion of a Generalised Type Setup
Logic-riched dependent type theories

The Problem The idea of a logic-enrichment of a dependent type theory is
to build a logic on top of the type theory by treating its
types and typed terms as the sorts and sorted terms of a
dependently sorted logic. The idea was first introduced in
[Aczel and Gambino (2002)]. In order to make the general
idea of logic-enrichment rigorous we need a precise notion to
replace the idea of a dependent type theory.

A Solution The notion of a Generalised Type Setup (GTS) is a
precise notion that has abstracted away from the details
concerning the inductive generation of the types, terms and
contexts of a dependent type theory while keeping an explicit
treatment of variable declarations, x : A.

Background There are a variety of abstract notions of category for
dependent type theories that are more concerned with the
algebraic semantics of type dependency than the idea of a
type theory; e.g. CwFs [Dybjer, 1996].

P. Aczel (The University of Manchester) Generalised Type Setups July 26 2 / 20

Some References, 1

J. Cartmell, D. Phil. thesis, Oxford University, 1978.

J. Cartmell, Generalised Algebraic theories and Contextual Categories,
APAL 32:209-243, 1986.

P. Taylor, Ph.D. thesis, Cambridge University, 1986.

M. Makkai, First Order Logic with Dependent Sorts, with Applications
to Category Theory, preprint, McGill University, 1995.

P. Dybjer, Internal Type Theory, Types for Proofs and Programs,
(S. Berardi and M. Coppo, editors), LNCS 1158, Springer, (120-134)
1996.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 3 / 20

Some References, 2

P. Aczel and N. Gambino, Collection Principles in Dependent Type
Theory, Types for Proofs and Programs (P. Callaghan et al.,
editors), LNCS 2277, Springer, (1-23), 2002.

N. Gambino and P. Aczel, The Generalised Type-Theoretic
Interpretation of Constructive Set Theory, JSL 71:67-103, 2006.

J. Belo, Dependently Sorted Logic, TYPES’07, (M. Miculan et al.,
editors) LNCS 4941, Springer, (33-50), 2008.

J. Belo, Ph.D. thesis, Manchester University, 2009.

R. Adams and Z. Luo, Classical predicative logic-enriched type
theories, APAL 161:1315-1345, 2010.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 4 / 20

PLAN of TALK

Generalised Algebraic (GA) Theories (6)

First Order Logic with Dependent Sorts (FOLDS) (1)

Generalised Type Setups (GTSs) (3)

First Order Logic over a GTS (3)

The references again (2)

P. Aczel (The University of Manchester) Generalised Type Setups July 26 5 / 20

Generalised Algebraic (GA) Theories, 1
Example: the GA theory of categories:

Sorts: For x , y : Obj ,
Obj
Hom(x , y)

Terms: For x , y , z : Obj , f : Hom(x , y), g : Hom(y , z),
id(x) : Hom(x , x)
comp(x , y , z , f , g) : Hom(x , z)

Abbreviations:
x → y := Hom(x , y)
f • g := comp(x , y , z , f , g)

Axioms: For x , y , z ,w : Obj , f : x → y , g : y → z , h : z → w
id(x) • f =x→y f and f • id(y) =x→y f
f • (g • h) =x→w (f • g) • h

In a GA theory only equations between terms are allowed as formulae.
In this GA theory of categories there is no equality between objects, only
between arrows.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 6 / 20

Generalised Algebraic (GA) Theories, 1
Example: the GA theory of categories:

Sorts: For x , y : Obj ,
Obj
Hom(x , y)

Terms: For x , y , z : Obj , f : Hom(x , y), g : Hom(y , z),
id(x) : Hom(x , x)
comp(x , y , z , f , g) : Hom(x , z)

Abbreviations:
x → y := Hom(x , y)
f • g := comp(x , y , z , f , g)

Axioms: For x , y , z ,w : Obj , f : x → y , g : y → z , h : z → w
id(x) • f =x→y f and f • id(y) =x→y f
f • (g • h) =x→w (f • g) • h

In a GA theory only equations between terms are allowed as formulae.
In this GA theory of categories there is no equality between objects, only
between arrows.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 6 / 20

Generalised Algebraic (GA) Theories, 1
Example: the GA theory of categories:

Sorts: For x , y : Obj ,
Obj
Hom(x , y)

Terms: For x , y , z : Obj , f : Hom(x , y), g : Hom(y , z),
id(x) : Hom(x , x)
comp(x , y , z , f , g) : Hom(x , z)

Abbreviations:
x → y := Hom(x , y)
f • g := comp(x , y , z , f , g)

Axioms: For x , y , z ,w : Obj , f : x → y , g : y → z , h : z → w
id(x) • f =x→y f and f • id(y) =x→y f
f • (g • h) =x→w (f • g) • h

In a GA theory only equations between terms are allowed as formulae.
In this GA theory of categories there is no equality between objects, only
between arrows.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 6 / 20

Generalised Algebraic (GA) Theories, 2
Pre-signatures and signatures

A pre-signature for a GA theory has sort constructors and term
constructors, each of some arity. Certain sort constructors are labelled
as equality-forming.

Given a pre-signature, the contexts, Γ, the Γ-sorts, the Γ-terms, and
the Γ-substitutions are simultaneously inductively generated and
substitution action on sorts and terms is recursively defined at the
same time.

A pre-signature is a signature if the arity of each sort constructor has
the form (∆)sort and the arity of each term constructor has the form
(∆)A where ∆ is a context and A is a ∆-sort.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 7 / 20

Generalised Algebraic (GA) Theories, 2
Pre-signatures and signatures

A pre-signature for a GA theory has sort constructors and term
constructors, each of some arity. Certain sort constructors are labelled
as equality-forming.

Given a pre-signature, the contexts, Γ, the Γ-sorts, the Γ-terms, and
the Γ-substitutions are simultaneously inductively generated and
substitution action on sorts and terms is recursively defined at the
same time.

A pre-signature is a signature if the arity of each sort constructor has
the form (∆)sort and the arity of each term constructor has the form
(∆)A where ∆ is a context and A is a ∆-sort.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 7 / 20

Generalised Algebraic (GA) Theories, 2
Pre-signatures and signatures

A pre-signature for a GA theory has sort constructors and term
constructors, each of some arity. Certain sort constructors are labelled
as equality-forming.

Given a pre-signature, the contexts, Γ, the Γ-sorts, the Γ-terms, and
the Γ-substitutions are simultaneously inductively generated and
substitution action on sorts and terms is recursively defined at the
same time.

A pre-signature is a signature if the arity of each sort constructor has
the form (∆)sort and the arity of each term constructor has the form
(∆)A where ∆ is a context and A is a ∆-sort.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 7 / 20

Generalised Algebraic (GA) Theories, 3

Each context Γ will have the form of a list

(x1 : A1, . . . , xn : An)

of n ≥ 0 variable declarations of the distinct variables x1, . . . , xn and
Ai will be a Γ-sort for i = 1, . . . , n.

A variable x is Γ-free if x 6∈ {x1, . . . , xn}.

Each Γ-substitution σ : ∆→ Γ will have the form of a list

[x1 := a1, . . . , xn := an]∆

of variable assignments where ai is a ∆-term of sort Aiσ,
for i = 1, . . . , n.

σ : ∆→ Γ acts on sorts and terms so that

Γ-sort A 7→ ∆-sort Aσ
Γ-term a 7→ ∆-term aσ

P. Aczel (The University of Manchester) Generalised Type Setups July 26 8 / 20

Generalised Algebraic (GA) Theories, 3

Each context Γ will have the form of a list

(x1 : A1, . . . , xn : An)

of n ≥ 0 variable declarations of the distinct variables x1, . . . , xn and
Ai will be a Γ-sort for i = 1, . . . , n.

A variable x is Γ-free if x 6∈ {x1, . . . , xn}.

Each Γ-substitution σ : ∆→ Γ will have the form of a list

[x1 := a1, . . . , xn := an]∆

of variable assignments where ai is a ∆-term of sort Aiσ,
for i = 1, . . . , n.

σ : ∆→ Γ acts on sorts and terms so that

Γ-sort A 7→ ∆-sort Aσ
Γ-term a 7→ ∆-term aσ

P. Aczel (The University of Manchester) Generalised Type Setups July 26 8 / 20

Generalised Algebraic (GA) Theories, 3

Each context Γ will have the form of a list

(x1 : A1, . . . , xn : An)

of n ≥ 0 variable declarations of the distinct variables x1, . . . , xn and
Ai will be a Γ-sort for i = 1, . . . , n.

A variable x is Γ-free if x 6∈ {x1, . . . , xn}.

Each Γ-substitution σ : ∆→ Γ will have the form of a list

[x1 := a1, . . . , xn := an]∆

of variable assignments where ai is a ∆-term of sort Aiσ,
for i = 1, . . . , n.

σ : ∆→ Γ acts on sorts and terms so that

Γ-sort A 7→ ∆-sort Aσ
Γ-term a 7→ ∆-term aσ

P. Aczel (The University of Manchester) Generalised Type Setups July 26 8 / 20

Generalised Algebraic (GA) Theories, 3

Each context Γ will have the form of a list

(x1 : A1, . . . , xn : An)

of n ≥ 0 variable declarations of the distinct variables x1, . . . , xn and
Ai will be a Γ-sort for i = 1, . . . , n.

A variable x is Γ-free if x 6∈ {x1, . . . , xn}.

Each Γ-substitution σ : ∆→ Γ will have the form of a list

[x1 := a1, . . . , xn := an]∆

of variable assignments where ai is a ∆-term of sort Aiσ,
for i = 1, . . . , n.

σ : ∆→ Γ acts on sorts and terms so that

Γ-sort A 7→ ∆-sort Aσ
Γ-term a 7→ ∆-term aσ

P. Aczel (The University of Manchester) Generalised Type Setups July 26 8 / 20

Generalised Algebraic (GA) Theories, 4
Contexts and substitutions

Contexts:

() is a context.

Let Γ ≡ (x1 : A1, . . . , xn : An) be a context.

If x is Γ-free and A is a Γ-sort then
(Γ, x : A) := (x1 : A1, . . . , xn : An, x : A) is a context.

Substitutions: Let ∆ ≡ (y1 : B1, . . . , ym : Bm) also be a context.

[]∆ is a substitution ∆→ ().

Let σ ≡ [x1 := a1, . . . , xn := an]∆ be a substitution ∆→ Γ.

If a is a Γ-term of sort A then
[σ, x := a]∆ ≡ [x1 := a1, . . . , xn := an, x := a]∆ is a substitution
∆→ (Γ, x : A).

P. Aczel (The University of Manchester) Generalised Type Setups July 26 9 / 20

Generalised Algebraic (GA) Theories, 4
Contexts and substitutions

Contexts:

() is a context.

Let Γ ≡ (x1 : A1, . . . , xn : An) be a context.

If x is Γ-free and A is a Γ-sort then
(Γ, x : A) := (x1 : A1, . . . , xn : An, x : A) is a context.

Substitutions: Let ∆ ≡ (y1 : B1, . . . , ym : Bm) also be a context.

[]∆ is a substitution ∆→ ().

Let σ ≡ [x1 := a1, . . . , xn := an]∆ be a substitution ∆→ Γ.

If a is a Γ-term of sort A then
[σ, x := a]∆ ≡ [x1 := a1, . . . , xn := an, x := a]∆ is a substitution
∆→ (Γ, x : A).

P. Aczel (The University of Manchester) Generalised Type Setups July 26 9 / 20

Generalised Algebraic (GA) Theories, 5
Sorts, terms and substitution action

Let σ ≡ [x1 := a1, . . . , xn := an]∆ be a substitution ∆→ Γ.

Sorts: Let F be a sort constructor of arity (Γ)sort where Γ is a context.

F (a1, . . . , an) is a ∆-sort.

Terms:

yj is a ∆-term for j = 1, . . .m.

Let f be a term constructor of arity (Γ)A where Γ is a context and A is a
Γ-sort.

f (a1, . . . , an) is a ∆-term of sort Aσ.

Substitution Action: Let τ ≡ [y1 := b1, . . . , ym := bm]Λ be a substitution
Λ→ ∆. By structural recursion on sorts and terms define

yjτ := bj for i = 1, . . . , n
f (a1, . . . , an)τ := f (a1τ, . . . , anτ)
F (a1, . . . , an)τ := F (a1τ, . . . , anτ)

P. Aczel (The University of Manchester) Generalised Type Setups July 26 10 / 20

Generalised Algebraic (GA) Theories, 5
Sorts, terms and substitution action

Let σ ≡ [x1 := a1, . . . , xn := an]∆ be a substitution ∆→ Γ.

Sorts: Let F be a sort constructor of arity (Γ)sort where Γ is a context.

F (a1, . . . , an) is a ∆-sort.

Terms:

yj is a ∆-term for j = 1, . . .m.

Let f be a term constructor of arity (Γ)A where Γ is a context and A is a
Γ-sort.

f (a1, . . . , an) is a ∆-term of sort Aσ.

Substitution Action: Let τ ≡ [y1 := b1, . . . , ym := bm]Λ be a substitution
Λ→ ∆. By structural recursion on sorts and terms define

yjτ := bj for i = 1, . . . , n
f (a1, . . . , an)τ := f (a1τ, . . . , anτ)
F (a1, . . . , an)τ := F (a1τ, . . . , anτ)

P. Aczel (The University of Manchester) Generalised Type Setups July 26 10 / 20

Generalised Algebraic (GA) Theories, 5
Sorts, terms and substitution action

Let σ ≡ [x1 := a1, . . . , xn := an]∆ be a substitution ∆→ Γ.

Sorts: Let F be a sort constructor of arity (Γ)sort where Γ is a context.

F (a1, . . . , an) is a ∆-sort.

Terms:

yj is a ∆-term for j = 1, . . .m.

Let f be a term constructor of arity (Γ)A where Γ is a context and A is a
Γ-sort.

f (a1, . . . , an) is a ∆-term of sort Aσ.

Substitution Action: Let τ ≡ [y1 := b1, . . . , ym := bm]Λ be a substitution
Λ→ ∆. By structural recursion on sorts and terms define

yjτ := bj for i = 1, . . . , n
f (a1, . . . , an)τ := f (a1τ, . . . , anτ)
F (a1, . . . , an)τ := F (a1τ, . . . , anτ)

P. Aczel (The University of Manchester) Generalised Type Setups July 26 10 / 20

Generalised Algebraic (GA) Theories, 6
The category of contexts: Given a GA theory the contexts form a category
where the arrows are the substitutions ∆→ Γ and, if
Γ ≡ (x1 : A1, . . . , xn : An) then idΓ := [x1 := x1, . . . , xn := xn]Γ and, if
σ ≡ [x1 := a1, . . . , xn := an]∆ : ∆→ Γ and τ : Λ→ ∆ then

σ ◦ τ := [x1 := a1τ, . . . , xn := anτ]Λ : Λ→ Γ.

Equations: Let F be an equality-forming sort constructor of arity (Γ)sort.
If B ≡ F (a1, . . . , an) is a ∆-sort and b, b′ are ∆-terms of sort B then

(∆) b =B b′

is an equation of the GAT.

A GA theory consists of a GA signature and a set of equations of the
signature.
Inference Rules: Standard rules for equational reasoning are used to
generate the theorems of the GA theory.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 11 / 20

Generalised Algebraic (GA) Theories, 6
The category of contexts: Given a GA theory the contexts form a category
where the arrows are the substitutions ∆→ Γ and, if
Γ ≡ (x1 : A1, . . . , xn : An) then idΓ := [x1 := x1, . . . , xn := xn]Γ and, if
σ ≡ [x1 := a1, . . . , xn := an]∆ : ∆→ Γ and τ : Λ→ ∆ then

σ ◦ τ := [x1 := a1τ, . . . , xn := anτ]Λ : Λ→ Γ.

Equations: Let F be an equality-forming sort constructor of arity (Γ)sort.
If B ≡ F (a1, . . . , an) is a ∆-sort and b, b′ are ∆-terms of sort B then

(∆) b =B b′

is an equation of the GAT.

A GA theory consists of a GA signature and a set of equations of the
signature.
Inference Rules: Standard rules for equational reasoning are used to
generate the theorems of the GA theory.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 11 / 20

Generalised Algebraic (GA) Theories, 6
The category of contexts: Given a GA theory the contexts form a category
where the arrows are the substitutions ∆→ Γ and, if
Γ ≡ (x1 : A1, . . . , xn : An) then idΓ := [x1 := x1, . . . , xn := xn]Γ and, if
σ ≡ [x1 := a1, . . . , xn := an]∆ : ∆→ Γ and τ : Λ→ ∆ then

σ ◦ τ := [x1 := a1τ, . . . , xn := anτ]Λ : Λ→ Γ.

Equations: Let F be an equality-forming sort constructor of arity (Γ)sort.
If B ≡ F (a1, . . . , an) is a ∆-sort and b, b′ are ∆-terms of sort B then

(∆) b =B b′

is an equation of the GAT.

A GA theory consists of a GA signature and a set of equations of the
signature.

Inference Rules: Standard rules for equational reasoning are used to
generate the theorems of the GA theory.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 11 / 20

Generalised Algebraic (GA) Theories, 6
The category of contexts: Given a GA theory the contexts form a category
where the arrows are the substitutions ∆→ Γ and, if
Γ ≡ (x1 : A1, . . . , xn : An) then idΓ := [x1 := x1, . . . , xn := xn]Γ and, if
σ ≡ [x1 := a1, . . . , xn := an]∆ : ∆→ Γ and τ : Λ→ ∆ then

σ ◦ τ := [x1 := a1τ, . . . , xn := anτ]Λ : Λ→ Γ.

Equations: Let F be an equality-forming sort constructor of arity (Γ)sort.
If B ≡ F (a1, . . . , an) is a ∆-sort and b, b′ are ∆-terms of sort B then

(∆) b =B b′

is an equation of the GAT.

A GA theory consists of a GA signature and a set of equations of the
signature.
Inference Rules: Standard rules for equational reasoning are used to
generate the theorems of the GA theory.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 11 / 20

First Order Logic with Dependent Sorts (FOLDS)
[Makkai, 1995]

• A GA− signature is a GA signature that only has sort constructors. So
there are no individual constants or function symbols and the only possible
Γ-terms are the variables declared in the context Γ.

• A FOLDS (FOLDS+) signature consists of a GA−(GA) signature
together with relation symbols, each of arity some context.

• As we will see, for the more general notion of a Generalised Type Setup
(GTS) with relation symbols, we can define predicate logic over a
FOLDS+ signature and the notion of a FOLDS+ theory.

• A GTS is an abstract notion of dependent type theory which has types,
terms and contexts of variable declarations, but has abstracted away from
the rules for inductively generating these.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 12 / 20

First Order Logic with Dependent Sorts (FOLDS)
[Makkai, 1995]

• A GA− signature is a GA signature that only has sort constructors. So
there are no individual constants or function symbols and the only possible
Γ-terms are the variables declared in the context Γ.

• A FOLDS (FOLDS+) signature consists of a GA−(GA) signature
together with relation symbols, each of arity some context.

• As we will see, for the more general notion of a Generalised Type Setup
(GTS) with relation symbols, we can define predicate logic over a
FOLDS+ signature and the notion of a FOLDS+ theory.

• A GTS is an abstract notion of dependent type theory which has types,
terms and contexts of variable declarations, but has abstracted away from
the rules for inductively generating these.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 12 / 20

First Order Logic with Dependent Sorts (FOLDS)
[Makkai, 1995]

• A GA− signature is a GA signature that only has sort constructors. So
there are no individual constants or function symbols and the only possible
Γ-terms are the variables declared in the context Γ.

• A FOLDS (FOLDS+) signature consists of a GA−(GA) signature
together with relation symbols, each of arity some context.

• As we will see, for the more general notion of a Generalised Type Setup
(GTS) with relation symbols, we can define predicate logic over a
FOLDS+ signature and the notion of a FOLDS+ theory.

• A GTS is an abstract notion of dependent type theory which has types,
terms and contexts of variable declarations, but has abstracted away from
the rules for inductively generating these.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 12 / 20

First Order Logic with Dependent Sorts (FOLDS)
[Makkai, 1995]

• A GA− signature is a GA signature that only has sort constructors. So
there are no individual constants or function symbols and the only possible
Γ-terms are the variables declared in the context Γ.

• A FOLDS (FOLDS+) signature consists of a GA−(GA) signature
together with relation symbols, each of arity some context.

• As we will see, for the more general notion of a Generalised Type Setup
(GTS) with relation symbols, we can define predicate logic over a
FOLDS+ signature and the notion of a FOLDS+ theory.

• A GTS is an abstract notion of dependent type theory which has types,
terms and contexts of variable declarations, but has abstracted away from
the rules for inductively generating these.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 12 / 20

Generalised Type Setups (GTSs), 1

A Category with Types and Terms (CTT) consists of the following.

A category, C, of contexts Γ and substitution maps σ : ∆→ Γ.

An assignment of a set Type(Γ) of Γ-types to each context Γ and a
set Term(Γ,A) of Γ-terms of type A to each Γ-type.

Each substitution σ : ∆→ Γ acts contravariantly on types and terms
so that if σ : ∆→ Γ then

A ∈ Type(Γ) 7→ Aσ ∈ Type(∆),
a ∈ Term(Γ,A) 7→ aσ ∈ Term(Γ,A).

such that, for A ∈ Type(Γ) and a ∈ Term(Γ,A),

A idΓ = A and a idΓ = a and
for σ : ∆→ Γ, τ : Λ→ ∆,

A(σ ◦ τ) = (Aσ)τ and a(σ ◦ τ) = (aσ)τ.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 13 / 20

Generalised Type Setups (GTSs), 1

A Category with Types and Terms (CTT) consists of the following.

A category, C, of contexts Γ and substitution maps σ : ∆→ Γ.

An assignment of a set Type(Γ) of Γ-types to each context Γ and a
set Term(Γ,A) of Γ-terms of type A to each Γ-type.

Each substitution σ : ∆→ Γ acts contravariantly on types and terms
so that if σ : ∆→ Γ then

A ∈ Type(Γ) 7→ Aσ ∈ Type(∆),
a ∈ Term(Γ,A) 7→ aσ ∈ Term(Γ,A).

such that, for A ∈ Type(Γ) and a ∈ Term(Γ,A),

A idΓ = A and a idΓ = a and
for σ : ∆→ Γ, τ : Λ→ ∆,

A(σ ◦ τ) = (Aσ)τ and a(σ ◦ τ) = (aσ)τ.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 13 / 20

Generalised Type Setups (GTSs), 2

A Generalised Type Setup (GTS) consists of a CTT with variables and
comprehension extensions.

The variables form an infinite set of terms such that every context Γ has a
Γ-free variable; i.e. a variable that is not a Γ-term of any Γ-type.
Associated with each triple (Γ, x ,A) consisting of a context Γ, a Γ-free
variable x and a Γ-type A is a comprehension extension; i.e. a substitution
π : Γ′ → Γ, satisfying the following.

The variable x is a Γ′-term of type A,

For each Γ-type A, Aπ = A ∈ Type(Γ′) and aπ = a ∈ Term(Γ′,A) for
each Γ-term a of type A.

For each substitution σ : ∆→ Γ and each a ∈ Term(∆,Aσ) there is a
unique substitution σ′ : ∆→ Γ′ such that π ◦ σ′ = σ and xσ′ = a.

We write (Γ, x : A) for Γ′ and [σ, x := a] for σ′.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 14 / 20

Generalised Type Setups (GTSs), 2

A Generalised Type Setup (GTS) consists of a CTT with variables and
comprehension extensions.
The variables form an infinite set of terms such that every context Γ has a
Γ-free variable; i.e. a variable that is not a Γ-term of any Γ-type.

Associated with each triple (Γ, x ,A) consisting of a context Γ, a Γ-free
variable x and a Γ-type A is a comprehension extension; i.e. a substitution
π : Γ′ → Γ, satisfying the following.

The variable x is a Γ′-term of type A,

For each Γ-type A, Aπ = A ∈ Type(Γ′) and aπ = a ∈ Term(Γ′,A) for
each Γ-term a of type A.

For each substitution σ : ∆→ Γ and each a ∈ Term(∆,Aσ) there is a
unique substitution σ′ : ∆→ Γ′ such that π ◦ σ′ = σ and xσ′ = a.

We write (Γ, x : A) for Γ′ and [σ, x := a] for σ′.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 14 / 20

Generalised Type Setups (GTSs), 2

A Generalised Type Setup (GTS) consists of a CTT with variables and
comprehension extensions.
The variables form an infinite set of terms such that every context Γ has a
Γ-free variable; i.e. a variable that is not a Γ-term of any Γ-type.
Associated with each triple (Γ, x ,A) consisting of a context Γ, a Γ-free
variable x and a Γ-type A is a comprehension extension; i.e. a substitution
π : Γ′ → Γ, satisfying the following.

The variable x is a Γ′-term of type A,

For each Γ-type A, Aπ = A ∈ Type(Γ′) and aπ = a ∈ Term(Γ′,A) for
each Γ-term a of type A.

For each substitution σ : ∆→ Γ and each a ∈ Term(∆,Aσ) there is a
unique substitution σ′ : ∆→ Γ′ such that π ◦ σ′ = σ and xσ′ = a.

We write (Γ, x : A) for Γ′ and [σ, x := a] for σ′.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 14 / 20

Generalised Type Setups (GTSs), 2

A Generalised Type Setup (GTS) consists of a CTT with variables and
comprehension extensions.
The variables form an infinite set of terms such that every context Γ has a
Γ-free variable; i.e. a variable that is not a Γ-term of any Γ-type.
Associated with each triple (Γ, x ,A) consisting of a context Γ, a Γ-free
variable x and a Γ-type A is a comprehension extension; i.e. a substitution
π : Γ′ → Γ, satisfying the following.

The variable x is a Γ′-term of type A,

For each Γ-type A, Aπ = A ∈ Type(Γ′) and aπ = a ∈ Term(Γ′,A) for
each Γ-term a of type A.

For each substitution σ : ∆→ Γ and each a ∈ Term(∆,Aσ) there is a
unique substitution σ′ : ∆→ Γ′ such that π ◦ σ′ = σ and xσ′ = a.

We write (Γ, x : A) for Γ′ and [σ, x := a] for σ′.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 14 / 20

Type Setups

A Type Setup is a generalised type setup such that the following.

For each context Γ, the set var(Γ) of variables that are Γ-terms is a
finite set such that var((Γ, x : A)) = var(Γ) ∪ {x}.
There is a terminal context () and, for each other context Γ′ there is
a unique triple (Γ, x ,A) such that Γ′ is (Γ, x : A).

It follows that in a type setup every context has uniquely the form

((· · · ((), x1 : A1), . . .), xn : An) for some n ≥ 0,

naturally abbreviated (x1 : A1, . . . , xn : An), and every substitution ∆→ Γ
has uniquely the form

[[· · · [[]∆, x1 := a1], . . .], xn := an] for some n ≥ 0,

naturally abbreviated [x1 := a1, . . . , xn := an], where []∆ : ∆→ ().

P. Aczel (The University of Manchester) Generalised Type Setups July 26 15 / 20

Type Setups

A Type Setup is a generalised type setup such that the following.

For each context Γ, the set var(Γ) of variables that are Γ-terms is a
finite set such that var((Γ, x : A)) = var(Γ) ∪ {x}.
There is a terminal context () and, for each other context Γ′ there is
a unique triple (Γ, x ,A) such that Γ′ is (Γ, x : A).

It follows that in a type setup every context has uniquely the form

((· · · ((), x1 : A1), . . .), xn : An) for some n ≥ 0,

naturally abbreviated (x1 : A1, . . . , xn : An), and every substitution ∆→ Γ
has uniquely the form

[[· · · [[]∆, x1 := a1], . . .], xn := an] for some n ≥ 0,

naturally abbreviated [x1 := a1, . . . , xn := an], where []∆ : ∆→ ().

P. Aczel (The University of Manchester) Generalised Type Setups July 26 15 / 20

Formulae over a GTS with relation symbols

Assume given a GTS with relations symbols, each of arity some context.

The judgments (Γ) φ, for contexts Γ, expressing that φ is a Γ-formula, are
inductively generated using the following rules.

If R is a relation symbol of arity Λ and τ : Γ→ Λ then (Γ) R<τ >.

If A is an equality Γ-sort and a, a′ are Γ-terms of type A then
(Γ) a =A a′.

If � := >,⊥ then (Γ) �.
If � := ∧,∨,→ then (Γ) φi , for i = 1, 2, implies (Γ) (φ1 � φ2).

If ∇ := ∀,∃ and A is a Γ-sort then (Γ, x : A) φ0 implies
(Γ) (∇x : A) φ0.

If τ ≡ [z1 := c1, . . . , zr := cr] it is natural to write R(c1, . . . , cr) rather
than R<τ >.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 16 / 20

Formulae over a GTS with relation symbols

Assume given a GTS with relations symbols, each of arity some context.

The judgments (Γ) φ, for contexts Γ, expressing that φ is a Γ-formula, are
inductively generated using the following rules.

If R is a relation symbol of arity Λ and τ : Γ→ Λ then (Γ) R<τ >.

If A is an equality Γ-sort and a, a′ are Γ-terms of type A then
(Γ) a =A a′.

If � := >,⊥ then (Γ) �.
If � := ∧,∨,→ then (Γ) φi , for i = 1, 2, implies (Γ) (φ1 � φ2).

If ∇ := ∀,∃ and A is a Γ-sort then (Γ, x : A) φ0 implies
(Γ) (∇x : A) φ0.

If τ ≡ [z1 := c1, . . . , zr := cr] it is natural to write R(c1, . . . , cr) rather
than R<τ >.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 16 / 20

Formulae over a GTS with relation symbols

Assume given a GTS with relations symbols, each of arity some context.

The judgments (Γ) φ, for contexts Γ, expressing that φ is a Γ-formula, are
inductively generated using the following rules.

If R is a relation symbol of arity Λ and τ : Γ→ Λ then (Γ) R<τ >.

If A is an equality Γ-sort and a, a′ are Γ-terms of type A then
(Γ) a =A a′.

If � := >,⊥ then (Γ) �.
If � := ∧,∨,→ then (Γ) φi , for i = 1, 2, implies (Γ) (φ1 � φ2).

If ∇ := ∀,∃ and A is a Γ-sort then (Γ, x : A) φ0 implies
(Γ) (∇x : A) φ0.

If τ ≡ [z1 := c1, . . . , zr := cr] it is natural to write R(c1, . . . , cr) rather
than R<τ >.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 16 / 20

Action of substitutions on GTS formulae

The action of substitutions σ : ∆→ Γ on each Γ-formula φ to give a
∆-formula φσ is defined by structural recursion using the following table.

φ φσ

R<τ > R<τ ◦ σ>
(a =A a′) (aσ =Aσ a′σ)
� �

(φ1 � φ2) (φ1σ � φ2σ)
(∇x : A) φ0 (∇x ′ : A) φ0[σ, x := x ′]

where x ′ is x if x is ∆-fresh, but is the first ∆-fresh variable otherwise.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 17 / 20

The predicate logic rules of inference for a GTS
• A sequent has the form (Γ) Φ⇒ φ where Φ is a list φ1, . . . , φm of
Γ-formulae and φ is a Γ-formula.

• The predicate logic rules of inference for deriving such sequents are
essentially as expected. We just give those for the quantifiers and equality.

(Γ, x : A) Φ⇒ θ

(Γ) Φ⇒ (∀x : A)θ

(Γ) Φ⇒ (∀x : A)θ

(Γ) Φ⇒ θ[a/x]

(Γ) Φ⇒ θ[a/x]

(Γ) Φ⇒ (∃x : A)θ

{
(Γ) Φ⇒ (∃x : A)θ
(Γ, x : A) Φ, θ ⇒ φ

(Γ) Φ⇒ φ

(Γ) Φ⇒ (a =A a)

(Γ) Φ⇒ (a =A a′)

(Γ) Φ, θ[a/x]⇒ θ[a′/x]

where Φ is a list of Γ-formulae, φ is a Γ-formula, θ is a (Γ, x : A)-formula,
a, a′ are Γ-terms of type A and [a/x] is the substitution
[idΓ, x := a] : Γ→ (Γ, x : A).

P. Aczel (The University of Manchester) Generalised Type Setups July 26 18 / 20

The predicate logic rules of inference for a GTS
• A sequent has the form (Γ) Φ⇒ φ where Φ is a list φ1, . . . , φm of
Γ-formulae and φ is a Γ-formula.
• The predicate logic rules of inference for deriving such sequents are
essentially as expected. We just give those for the quantifiers and equality.

(Γ, x : A) Φ⇒ θ

(Γ) Φ⇒ (∀x : A)θ

(Γ) Φ⇒ (∀x : A)θ

(Γ) Φ⇒ θ[a/x]

(Γ) Φ⇒ θ[a/x]

(Γ) Φ⇒ (∃x : A)θ

{
(Γ) Φ⇒ (∃x : A)θ
(Γ, x : A) Φ, θ ⇒ φ

(Γ) Φ⇒ φ

(Γ) Φ⇒ (a =A a)

(Γ) Φ⇒ (a =A a′)

(Γ) Φ, θ[a/x]⇒ θ[a′/x]

where Φ is a list of Γ-formulae, φ is a Γ-formula, θ is a (Γ, x : A)-formula,
a, a′ are Γ-terms of type A and [a/x] is the substitution
[idΓ, x := a] : Γ→ (Γ, x : A).

P. Aczel (The University of Manchester) Generalised Type Setups July 26 18 / 20

Some References, 1

J. Cartmell, D. Phil. thesis, Oxford University, 1978.

J. Cartmell, Generalised Algebraic theories and Contextual Categories,
APAL 32:209-243, 1986.

P. Taylor, Ph.D. thesis, Cambridge University, 1986.

M. Makkai, First Order Logic with Dependent Sorts, with Applications
to Category Theory, preprint, McGill University, 1995.

P. Dybjer, Internal Type Theory, Types for Proofs and Programs,
(S. Berardi and M. Coppo, editors), LNCS 1158, Springer, (120-134)
1996.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 19 / 20

Some References, 2

P. Aczel and N. Gambino, Collection Principles in Dependent Type
Theory, Types for Proofs and Programs (P. Callaghan et al.,
editors), LNCS 2277, Springer, (1-23), 2002.

N. Gambino and P. Aczel, The Generalised Type-Theoretic
Interpretation of Constructive Set Theory, JSL 71:67-103, 2006.

J. Belo, Dependently Sorted Logic, TYPES’07, (M. Miculan et al.,
editors) LNCS 4941, Springer, (33-50), 2008.

J. Belo, Ph.D. thesis, Manchester University, 2009.

R. Adams and Z. Luo, Classical predicative logic-enriched type
theories, APAL 161:1315-1345, 2010.

P. Aczel (The University of Manchester) Generalised Type Setups July 26 20 / 20

