Admissible Multiple-Conclusion Rules

George Metcalfe

Mathematics Institute University of Bern

Ongoing work with Leonardo Cabrer and Christoph Röthlisberger

TACL 2011

July 2011, Marseille

• Intuitionistic logic has the *disjunction property*, which may be expressed as the admissible multiple-conclusion rule:

 $p \lor q / p, q.$

• Similarly, the following multiple-conclusion rule is admissible in infinite-valued Łukasiewicz logic:

 $p \lor \neg p / p, \neg p.$

• *Whitman's condition* may be written as a universal formula that holds in all free lattices:

 $p \land q \leq r \lor s \Rightarrow p \leq r \lor s, q \leq r \lor s, p \land q \leq q, p \land q \leq s.$

A (10) A (10) A (10)

• Intuitionistic logic has the *disjunction property*, which may be expressed as the admissible multiple-conclusion rule:

 $p \lor q / p, q.$

• Similarly, the following multiple-conclusion rule is admissible in infinite-valued Łukasiewicz logic:

 $\boldsymbol{\rho} \vee \neg \boldsymbol{\rho} / \boldsymbol{\rho}, \neg \boldsymbol{\rho}.$

• *Whitman's condition* may be written as a universal formula that holds in all free lattices:

 $p \land q \leq r \lor s \Rightarrow p \leq r \lor s, q \leq r \lor s, p \land q \leq q, p \land q \leq s.$

• Intuitionistic logic has the *disjunction property*, which may be expressed as the admissible multiple-conclusion rule:

 $p \lor q / p, q.$

• Similarly, the following multiple-conclusion rule is admissible in infinite-valued Łukasiewicz logic:

 $p \lor \neg p / p, \neg p.$

• *Whitman's condition* may be written as a universal formula that holds in all free lattices:

 $p \land q \le r \lor s \Rightarrow p \le r \lor s, q \le r \lor s, p \land q \le q, p \land q \le s.$

We consider:

- (admissible) (multiple-conclusion) rules
- characterizations of these rules
- a case study (Kleene and De Morgan algebras).

To talk about logics and algebras, we need

- propositional languages *L* consisting of connectives such as ∧, ∨, →, ¬, ⊥, ⊤ with specified finite arities
- sets Γ ⊆ Fm_L of L-formulas ψ, φ, χ,... built from a countably infinite set of variables p, q, r,...
- endomorphisms on $\mathbf{Fm}_{\mathcal{L}}$ called \mathcal{L} -substitutions.

Definition

An \mathcal{L} -rule is an ordered pair (Γ, Δ) with $\Gamma \cup \Delta \subseteq \operatorname{Fm}_{\mathcal{L}}$ *finite*, written Γ / Δ (multiple-conclusion in general, single-conclusion if $|\Delta| = 1$).

A **logic** L on **Fm**_{\mathcal{L}} is a set of single-conclusion \mathcal{L} -rules satisfying (writing $\Gamma \vdash_{\mathsf{L}} \varphi$ for $(\Gamma, \{\varphi\}) \in \mathsf{L}$):

- $\{\varphi\} \vdash_{\mathsf{L}} \varphi$ (reflexivity)
- if $\Gamma \vdash_{\mathsf{L}} \varphi$, then $\Gamma \cup \Gamma' \vdash_{\mathsf{L}} \varphi$ (monotonicity)
- if $\Gamma \vdash_{\mathsf{L}} \varphi$ and $\Gamma \cup \{\varphi\} \vdash_{\mathsf{L}} \psi$, then $\Gamma \vdash_{\mathsf{L}} \psi$ (transitivity)
- if $\Gamma \vdash_{\mathsf{L}} \varphi$, then $\sigma \Gamma \vdash_{\mathsf{L}} \sigma \varphi$ for any \mathcal{L} -substitution σ (structurality).

An L-theorem is a formula φ such that $\emptyset \vdash_{\mathsf{L}} \varphi$ (abbreviated as $\vdash_{\mathsf{L}} \varphi$).

An **m-logic** L on **Fm**_L is a set of (multiple-conclusion) \mathcal{L} -rules (writing $\Gamma \vdash_L \Delta$ for $(\Gamma, \Delta) \in L$) satisfying:

- $\{\varphi\} \vdash_{\mathsf{L}} \varphi$ (reflexivity)
- if $\Gamma \vdash_{\mathsf{L}} \Delta$, then $\Gamma \cup \Gamma' \vdash_{\mathsf{L}} \Delta' \cup \Delta$ (monotonicity)
- if $\Gamma \vdash_{\mathsf{L}} \{\varphi\} \cup \Delta$ and $\Gamma \cup \{\varphi\} \vdash_{\mathsf{L}} \Delta$, then $\Gamma \vdash_{\mathsf{L}} \Delta$ (transitivity)
- if $\Gamma \vdash_{\mathsf{L}} \Delta$, then $\sigma \Gamma \vdash_{\mathsf{L}} \sigma \Delta$ for each \mathcal{L} -substitution σ (structurality).

< □ > < □ > < □ > < □ > < □ </pre>

For a logic L on $\textbf{Fm}_{\mathcal{L}},$ an $\mathcal{L}\text{-rule}\;\Gamma\;/\;\Delta$ is

- L-derivable, written $\Gamma \vdash_{\mathsf{L}} \Delta$, if $\Gamma \vdash_{\mathsf{L}} \varphi$ for some $\varphi \in \Delta$.
- L-admissible, written $\Gamma \vdash_L \Delta$, if for every \mathcal{L} -substitution σ :
 - $\vdash_{\mathsf{L}} \sigma \varphi \ \text{ for all } \varphi \in \mathsf{\Gamma} \qquad \Rightarrow \qquad \vdash_{\mathsf{L}} \sigma \psi \ \text{ for some } \psi \in \Delta.$

(Note: \vdash_{L} and \vdash_{L} are m-logics.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

For a logic L on $\textbf{Fm}_{\mathcal{L}},$ an $\mathcal{L}\text{-rule}\;\Gamma\;/\;\Delta$ is

- L-derivable, written $\Gamma \vdash_{\mathsf{L}} \Delta$, if $\Gamma \vdash_{\mathsf{L}} \varphi$ for some $\varphi \in \Delta$.
- L-admissible, written $\Gamma \vdash_L \Delta$, if for every \mathcal{L} -substitution σ :

 $\vdash_{\mathsf{L}} \sigma \varphi \ \text{ for all } \varphi \in \mathsf{\Gamma} \qquad \Rightarrow \qquad \vdash_{\mathsf{L}} \sigma \psi \ \text{ for some } \psi \in \Delta.$

(Note: \vdash_{L} and \vdash_{L} are m-logics.)

< A > < > >

A logic L on $\mathbf{Fm}_{\mathcal{L}}$ is

• structurally complete if for all single-conclusion \mathcal{L} -rules Γ / φ

 $\Gamma \vdash_{\mathsf{L}} \varphi \quad \Leftrightarrow \quad \Gamma \vdash_{\mathsf{L}} \varphi$

(or, any logic L' extending L has new theorems $\emptyset \vdash_{\mathsf{L}'} \varphi$)

• universally complete if for all \mathcal{L} -rules $\Gamma \ / \ \Delta$

$$\Gamma \vdash_{\mathsf{L}} \Delta \quad \Leftrightarrow \quad \Gamma \vdash_{\mathsf{L}} \Delta$$

(or, any m-logic L' extending \vdash_{L} has new consequences $\emptyset \vdash_{L'} \Delta$).

A logic L on $\mathbf{Fm}_{\mathcal{L}}$ is

• structurally complete if for all single-conclusion \mathcal{L} -rules $\Gamma \ / \ \varphi$

 $\Gamma \vdash_{\mathsf{L}} \varphi \quad \Leftrightarrow \quad \Gamma \vdash_{\mathsf{L}} \varphi$

(or, any logic L' extending L has new theorems $\emptyset \vdash_{\mathsf{L}'} \varphi$)

• universally complete if for all \mathcal{L} -rules Γ / Δ

 $\Gamma \vdash_{\mathsf{L}} \Delta \quad \Leftrightarrow \quad \Gamma \vdash_{\mathsf{L}} \Delta$

(or, any m-logic L' extending \vdash_{L} has new consequences $\emptyset \vdash_{L'} \Delta$).

A logic L on $\textbf{Fm}_{\mathcal{L}}$ is

• structurally complete if for all single-conclusion \mathcal{L} -rules $\Gamma \ / \ \varphi$

 $\Gamma \vdash_{\mathsf{L}} \varphi \quad \Leftrightarrow \quad \Gamma \vdash_{\mathsf{L}} \varphi$

(or, any logic L' extending L has new theorems $\emptyset \vdash_{\mathsf{L}'} \varphi$)

• universally complete if for all \mathcal{L} -rules Γ / Δ

$$\Gamma \vdash_{\mathsf{L}} \Delta \quad \Leftrightarrow \quad \Gamma \vdash_{\mathsf{L}} \Delta$$

(or, any m-logic L' extending \vdash_L has new consequences $\emptyset \vdash_{L'} \Delta$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\Gamma \subseteq \operatorname{Fm}_{\mathcal{L}}$ is L-exact if for some substitution σ , for all $\varphi \in \operatorname{Fm}_{\mathcal{L}}$:

 $\Gamma \vdash_{\mathsf{L}} \varphi \quad \text{iff} \quad \vdash_{\mathsf{L}} \sigma \varphi.$

Lemma

If Γ is L-exact, then $\Gamma \vdash_{\mathsf{L}} \Delta$ if and only if $\Gamma \vdash_{\mathsf{L}} \Delta$.

Proof.

(\Leftarrow) Easy. (\Rightarrow) Let σ be an "exact" substitution for Γ and suppose that $\Gamma \vdash_{L} \Delta$. Since $\vdash_{L} \sigma \varphi$ for all $\varphi \in \Gamma$, we have $\vdash_{L} \sigma \psi$ for some $\psi \in \Delta$. Hence $\Gamma \vdash_{L} \psi$ and $\Gamma \vdash_{L} \Delta$ as required.

(日)

9/19

 $\Gamma \subseteq \operatorname{Fm}_{\mathcal{L}}$ is L-exact if for some substitution σ , for all $\varphi \in \operatorname{Fm}_{\mathcal{L}}$:

 $\Gamma \vdash_{\mathsf{L}} \varphi \quad \text{iff} \quad \vdash_{\mathsf{L}} \sigma \varphi.$

Lemma

If Γ is L-exact, then $\Gamma \vdash_{\mathsf{L}} \Delta$ if and only if $\Gamma \vdash_{\mathsf{L}} \Delta$.

Proof

(\Leftarrow) Easy. (\Rightarrow) Let σ be an "exact" substitution for Γ and suppose that $\Gamma \vdash_{L} \Delta$. Since $\vdash_{L} \sigma \varphi$ for all $\varphi \in \Gamma$, we have $\vdash_{L} \sigma \psi$ for some $\psi \in \Delta$. Hence $\Gamma \vdash_{L} \psi$ and $\Gamma \vdash_{L} \Delta$ as required.

(日)

9/19

 $\Gamma \subseteq \operatorname{Fm}_{\mathcal{L}}$ is L-exact if for some substitution σ , for all $\varphi \in \operatorname{Fm}_{\mathcal{L}}$:

$$\Gamma \vdash_{\mathsf{L}} \varphi \quad \text{iff} \quad \vdash_{\mathsf{L}} \sigma \varphi.$$

Lemma

If Γ is L-exact, then $\Gamma \vdash_{\mathsf{L}} \Delta$ if and only if $\Gamma \vdash_{\mathsf{L}} \Delta$.

Proof.

(\Leftarrow) Easy. (\Rightarrow) Let σ be an "exact" substitution for Γ and suppose that $\Gamma \vdash_{\mathsf{L}} \Delta$. Since $\vdash_{\mathsf{L}} \sigma \varphi$ for all $\varphi \in \Gamma$, we have $\vdash_{\mathsf{L}} \sigma \psi$ for some $\psi \in \Delta$. Hence $\Gamma \vdash_{\mathsf{L}} \psi$ and $\Gamma \vdash_{\mathsf{L}} \Delta$ as required.

(日)

 $\Gamma \subseteq \operatorname{Fm}_{\mathcal{L}}$ is L-exact if for some substitution σ , for all $\varphi \in \operatorname{Fm}_{\mathcal{L}}$:

 $\Gamma \vdash_{\mathsf{L}} \varphi \quad \text{iff} \quad \vdash_{\mathsf{L}} \sigma \varphi.$

Lemma

If Γ is L-exact, then $\Gamma \vdash_{\mathsf{L}} \Delta$ if and only if $\Gamma \vdash_{\mathsf{L}} \Delta$.

Proof.

(\Leftarrow) Easy. (\Rightarrow) Let σ be an "exact" substitution for Γ and suppose that $\Gamma \vdash_{\mathsf{L}} \Delta$. Since $\vdash_{\mathsf{L}} \sigma \varphi$ for all $\varphi \in \Gamma$, we have $\vdash_{\mathsf{L}} \sigma \psi$ for some $\psi \in \Delta$. Hence $\Gamma \vdash_{\mathsf{L}} \psi$ and $\Gamma \vdash_{\mathsf{L}} \Delta$ as required.

(日)

 $\Gamma \subseteq \operatorname{Fm}_{\mathcal{L}}$ is L-exact if for some substitution σ , for all $\varphi \in \operatorname{Fm}_{\mathcal{L}}$:

$$\Gamma \vdash_{\mathsf{L}} \varphi \quad \text{iff} \quad \vdash_{\mathsf{L}} \sigma \varphi.$$

Lemma

If Γ is L-exact, then $\Gamma \vdash_{\mathsf{L}} \Delta$ if and only if $\Gamma \vdash_{\mathsf{L}} \Delta$.

Proof.

(\Leftarrow) Easy. (\Rightarrow) Let σ be an "exact" substitution for Γ and suppose that $\Gamma \vdash_{\mathsf{L}} \Delta$. Since $\vdash_{\mathsf{L}} \sigma \varphi$ for all $\varphi \in \Gamma$, we have $\vdash_{\mathsf{L}} \sigma \psi$ for some $\psi \in \Delta$. Hence $\Gamma \vdash_{\mathsf{L}} \psi$ and $\Gamma \vdash_{\mathsf{L}} \Delta$ as required.

Theorem (Prucnal, Minari and Wroński)

The $\{\rightarrow\}$, $\{\rightarrow, \wedge\}$, and $\{\rightarrow, \wedge, \neg\}$ fragments of intuitionistic logic (in fact, all intermediate logics) are universally complete.

Proof.

Show that each finite set of formulas in the fragment is exact. E.g., in the $\{\rightarrow, \wedge\}$ fragment, $\sigma(p) = \varphi \rightarrow p$ is an exact substitution for $\{\varphi\}$.

イロト イヨト イヨト

Theorem (Prucnal, Minari and Wroński)

The $\{\rightarrow\}$, $\{\rightarrow, \wedge\}$, and $\{\rightarrow, \wedge, \neg\}$ fragments of intuitionistic logic (in fact, all intermediate logics) are universally complete.

Proof.

Show that each finite set of formulas in the fragment is exact. E.g., in the $\{\rightarrow, \wedge\}$ fragment, $\sigma(p) = \varphi \rightarrow p$ is an exact substitution for $\{\varphi\}$.

(日) (同) (日) (日) (日)

Theorem (Cintula and Metcalfe)

The following "Wroński rules" ($n \in \mathbb{N}$):

$$(W_n) \quad (p_1 \to \ldots \to p_n \to \bot) / (\neg \neg p_1 \to p_1), \ldots, (\neg \neg p_n \to p_n).$$

axiomatize the admissible rules of the $\{\rightarrow, \neg\}$ fragment of intuitionistic logic (in fact, all intermediate logics).

P. Cintula and G. Metcalfe. Admissible rules in the implication-negation fragment of intuitionistic logic. *Annals of Pure and Applied Logic* 162(2): 162-171 (2010).

(日)

11/19

lemhoff and Rozière established independently that the "Visser rules"

$$\bigwedge_{i=1}^{n} (p_i \rightarrow q_i) \rightarrow (p_{n+1} \lor p_{n+2}) / \bigvee_{j=1}^{n+2} (\bigwedge_{i=1}^{n} (p_i \rightarrow q_i) \rightarrow p_j)$$

for n = 2, 3, ... together with the disjunction property axiomatize the admissible rules of **intuitionistic logic**.

lemhoff has also shown that the Visser rules axiomatize admissibility in certain **intermediate logics**, and Jeřàbek has given axiomatizations of admissible rules for a wide range of **transitive modal logics** and **Łukasiewicz logics**.

< 同 > < 三 > < 三 >

12/19

Note: Medvedev logic is structurally but not universally complete.

lemhoff and Rozière established independently that the "Visser rules"

$$\bigwedge_{i=1}^{n} (p_i \rightarrow q_i) \rightarrow (p_{n+1} \lor p_{n+2}) / \bigvee_{j=1}^{n+2} (\bigwedge_{i=1}^{n} (p_i \rightarrow q_i) \rightarrow p_j)$$

for n = 2, 3, ... together with the disjunction property axiomatize the admissible rules of **intuitionistic logic**.

lemhoff has also shown that the Visser rules axiomatize admissibility in certain **intermediate logics**, and Jeřàbek has given axiomatizations of admissible rules for a wide range of **transitive modal logics** and **Łukasiewicz logics**.

Note: Medvedev logic is structurally but not universally complete.

Definition

Q is **structurally complete** if $Q = Q(\mathbf{F}_Q)$. (Or, any proper subquasivariety of Q generates a proper subvariety of $\mathbb{V}(Q)$.)

Definition

Q is **universally complete** if $Q = \mathbb{U}(\mathbf{F}_Q)$. (Or, any proper sub universal class of Q generates a proper sub positive universal class of $\mathbb{U}^+(Q)$.)

An *algebraizable logic* L is structurally (universally) complete if and only if its equivalent quasivariety is structurally (universally) complete.

(日)

Definition

Q is **structurally complete** if $Q = \mathbb{Q}(\mathbf{F}_Q)$. (Or, any proper subquasivariety of Q generates a proper subvariety of $\mathbb{V}(Q)$.)

Definition

Q is **universally complete** if $Q = \mathbb{U}(\mathbf{F}_Q)$. (Or, any proper sub universal class of Q generates a proper sub positive universal class of $\mathbb{U}^+(Q)$.)

An *algebraizable logic* L is structurally (universally) complete if and only if its equivalent quasivariety is structurally (universally) complete.

Definition

Q is **structurally complete** if $Q = \mathbb{Q}(\mathbf{F}_Q)$. (Or, any proper subquasivariety of Q generates a proper subvariety of $\mathbb{V}(Q)$.)

Definition

Q is **universally complete** if $Q = \mathbb{U}(\mathbf{F}_Q)$. (Or, any proper sub universal class of Q generates a proper sub positive universal class of $\mathbb{U}^+(Q)$.)

An *algebraizable logic* L is structurally (universally) complete if and only if its equivalent quasivariety is structurally (universally) complete.

(日)

Definition

Q is **structurally complete** if $Q = Q(\mathbf{F}_Q)$. (Or, any proper subquasivariety of Q generates a proper subvariety of $\mathbb{V}(Q)$.)

Definition

Q is **universally complete** if $Q = \mathbb{U}(\mathbf{F}_Q)$. (Or, any proper sub universal class of Q generates a proper sub positive universal class of $\mathbb{U}^+(Q)$.)

An *algebraizable logic* L is structurally (universally) complete if and only if its equivalent quasivariety is structurally (universally) complete.

(日)

Let \mathcal{Q} be a quasivariety and call each algebra $\mathbf{A} \in \mathbb{IS}(\mathbf{F}_{\mathcal{Q}})$ exact.

Lemma

If $Q = Q(\mathcal{K})$ and each $\mathbf{A} \in \mathcal{K}$ is exact, then Q is structurally complete.

Lemma

If each non-trivial finitely presented $\mathbf{A} \in \mathcal{Q}$ is exact, then \mathcal{Q} is universally complete.

Theorem

For any finite algebra A:

(a) $\mathbb{Q}(\mathbf{A})$ is structurally complete iff $\mathbf{A} \in \mathbb{ISP}(\mathbf{F}_{\mathbb{Q}(\mathbf{A})})$.

(b) Q(A) is universally complete iff each finite non-trivial B ∈ Q(A) is exact.

Let \mathcal{Q} be a quasivariety and call each algebra $A \in \mathbb{IS}(F_{\mathcal{Q}})$ exact.

Lemma

If $Q = Q(\mathcal{K})$ and each $A \in \mathcal{K}$ is exact, then Q is structurally complete.

Lemma

If each non-trivial finitely presented $\mathbf{A} \in \mathcal{Q}$ is exact, then \mathcal{Q} is universally complete.

Theorem

For any finite algebra A:

(a) $\mathbb{Q}(\mathbf{A})$ is structurally complete iff $\mathbf{A} \in \mathbb{ISP}(\mathbf{F}_{\mathbb{Q}(\mathbf{A})})$.

(b) Q(A) is universally complete iff each finite non-trivial B ∈ Q(A) is exact.

Let \mathcal{Q} be a quasivariety and call each algebra $\mathbf{A} \in \mathbb{IS}(\mathbf{F}_{\mathcal{Q}})$ exact.

Lemma

If $Q = Q(\mathcal{K})$ and each $\mathbf{A} \in \mathcal{K}$ is exact, then Q is structurally complete.

Lemma

If each non-trivial finitely presented $\mathbf{A} \in \mathcal{Q}$ is exact, then \mathcal{Q} is universally complete.

Theorem

For any finite algebra A:

(a) $\mathbb{Q}(\mathbf{A})$ is structurally complete iff $\mathbf{A} \in \mathbb{ISP}(\mathbf{F}_{\mathbb{Q}(\mathbf{A})})$.

(b) Q(A) is universally complete iff each finite non-trivial B ∈ Q(A) is exact.

Let \mathcal{Q} be a quasivariety and call each algebra $\mathbf{A} \in \mathbb{IS}(\mathbf{F}_{\mathcal{Q}})$ exact.

Lemma

If $Q = Q(\mathcal{K})$ and each $A \in \mathcal{K}$ is exact, then Q is structurally complete.

Lemma

If each non-trivial finitely presented $\mathbf{A} \in \mathcal{Q}$ is exact, then \mathcal{Q} is universally complete.

Theorem

For any finite algebra A:

- (a) $\mathbb{Q}(A)$ is structurally complete iff $A \in \mathbb{ISP}(F_{\mathbb{Q}(A)})$.
- (b) Q(A) is universally complete iff each finite non-trivial B ∈ Q(A) is exact.

・ロン ・四 ・ ・ ヨン

A Case Study

Definition

De Morgan algebras are algebras $\langle A, \wedge, \vee, \neg, \bot, \top \rangle$ such that

• $\langle A, \land, \lor, \bot, \top \rangle$ is a bounded distributive lattice

•
$$\neg \neg x = x, \ \neg (x \land y) = \neg x \lor \neg y, \text{ and } \neg (x \lor y) = \neg x \land \neg y.$$

The class DMA of De Morgan algebras is an equational class generated as a quasivariety by $D_4 = \langle \{\bot, n, b, \top\}, \land, \lor, \neg, \bot, \top \rangle$.

∃ >

A Case Study

Definition

De Morgan algebras are algebras $\langle A, \wedge, \vee, \neg, \bot, \top \rangle$ such that

•
$$\langle A, \land, \lor, \bot, \top \rangle$$
 is a bounded distributive lattice

•
$$\neg \neg x = x, \neg (x \land y) = \neg x \lor \neg y, \text{ and } \neg (x \lor y) = \neg x \land \neg y.$$

The class DMA of De Morgan algebras is an equational class generated as a quasivariety by $D_4 = \langle \{\perp, n, b, \top\}, \land, \lor, \neg, \bot, \top \rangle$.

∃ >

A Case Study

Definition

De Morgan algebras are algebras $\langle A, \wedge, \vee, \neg, \bot, \top \rangle$ such that

•
$$\langle A, \land, \lor, \bot, \top \rangle$$
 is a bounded distributive lattice

•
$$\neg \neg x = x, \neg (x \land y) = \neg x \lor \neg y, \text{ and } \neg (x \lor y) = \neg x \land \neg y.$$

The class DMA of De Morgan algebras is an equational class generated as a quasivariety by $D_4 = \langle \{\perp, n, b, \top\}, \land, \lor, \neg, \bot, \top \rangle$.

Subvarieties

DMA has only two proper non-trivial subvarieties:

- The class of **Boolean algebras**, $BA = \mathbb{Q}(C_2)$.
- The class of **Kleene algebras**, $KA = \mathbb{Q}(C_3)$.

BA is universally complete, but not $KA = \mathbb{Q}(C_3)$ or $DMA = \mathbb{Q}(D_4)$; e.g.

$$p \approx \neg p \Rightarrow p \approx q$$
 (1)

holds in \mathbf{F}_{KA} and \mathbf{F}_{DMA} , but not \mathbf{C}_3 or \mathbf{D}_4 .

Subvarieties

DMA has only two proper non-trivial subvarieties:

- The class of **Boolean algebras**, $BA = \mathbb{Q}(C_2)$.
- The class of Kleene algebras, $KA = \mathbb{Q}(C_3)$.

BA is universally complete, but not $KA = \mathbb{Q}(C_3)$ or $DMA = \mathbb{Q}(D_4)$; e.g.

$$p \approx \neg p \Rightarrow p \approx q$$
 (1)

holds in \mathbf{F}_{KA} and \mathbf{F}_{DMA} , but not \mathbf{C}_3 or \mathbf{D}_4 .

Axiomatizing Admissible Single-Conclusion Rules

 $\mathbb{Q}(C_4)$ is structurally complete, since C_4 embeds into $F_{\mathbb{Q}(C_4)}$:

Moreover, $\mathbb{Q}(C_4)$ is axiomatized relative to KA by

$$\neg p \le p, \ p \land \neg q \le \neg p \lor q \quad \Rightarrow \quad \neg q \le q \tag{2}$$

But (2) holds in \mathbf{F}_{KA} , so it axiomatizes $\mathbb{Q}(\mathbf{F}_{KA})$ relative to KA.

Axiomatizing Admissible Single-Conclusion Rules

 $\mathbb{Q}(C_4)$ is structurally complete, since C_4 embeds into $F_{\mathbb{Q}(C_4)}$:

Moreover, $\mathbb{Q}(\mathbf{C_4})$ is axiomatized relative to KA by

$$eg p \leq p, \ p \land \neg q \leq \neg p \lor q \quad \Rightarrow \quad \neg q \leq q$$
 (2)

But (2) holds in \mathbf{F}_{KA} , so it axiomatizes $\mathbb{Q}(\mathbf{F}_{KA})$ relative to KA.

Axiomatizing Admissible Single-Conclusion Rules

 $\mathbb{Q}(C_4)$ is structurally complete, since C_4 embeds into $F_{\mathbb{Q}(C_4)}$:

Moreover, $\mathbb{Q}(\mathbf{C_4})$ is axiomatized relative to KA by

$$eg p \leq p, \ p \land \neg q \leq \neg p \lor q \quad \Rightarrow \quad \neg q \leq q$$
 (2)

But (2) holds in \mathbf{F}_{KA} , so it axiomatizes $\mathbb{Q}(\mathbf{F}_{KA})$ relative to KA.

Theorem

A finite non-trivial Kleene algebra is exact iff it satisfies (2) and

$$\boldsymbol{\rho} \lor \boldsymbol{q} \approx \top \Rightarrow \boldsymbol{\rho} \approx \top, \boldsymbol{q} \approx \top.$$
 (3)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

18/19

Also, these universal formulas axiomatize $\mathbb{U}(\mathbf{F}_{KA})$ relative to KA.

Theorem

A finite non-trivial De Morgan algebra is exact iff it satisfies (1) and (3). Also, these universal formulas axiomatize $\mathbb{U}(\mathbf{F}_{DMA})$ relative to DMA.

Theorem

A finite non-trivial Kleene algebra is exact iff it satisfies (2) and

$$\boldsymbol{\rho} \lor \boldsymbol{q} \approx \top \Rightarrow \boldsymbol{\rho} \approx \top, \boldsymbol{q} \approx \top.$$
 (3)

(日) (同) (日) (日) (日)

18/19

Also, these universal formulas axiomatize $\mathbb{U}(\mathbf{F}_{KA})$ relative to KA.

Theorem

A finite non-trivial De Morgan algebra is exact iff it satisfies (1) and (3). Also, these universal formulas axiomatize $\mathbb{U}(\mathbf{F}_{\mathsf{DMA}})$ relative to DMA.

- (Multiple-conclusion) admissible rules can be used to express properties of logics / classes of algebras.
- Can these rules be useful? E.g., for completeness / generation proofs or for speeding up proof search?
- Do we even have the right notion of admissibility for multiple-conclusion rules? E.g., should Ø / p, ¬p be admissible in classical logic?

.

- (Multiple-conclusion) admissible rules can be used to express properties of logics / classes of algebras.
- Can these rules be useful? E.g., for completeness / generation proofs or for speeding up proof search?
- Do we even have the right notion of admissibility for multiple-conclusion rules? E.g., should Ø / p, ¬p be admissible in classical logic?

- (Multiple-conclusion) admissible rules can be used to express properties of logics / classes of algebras.
- Can these rules be useful? E.g., for completeness / generation proofs or for speeding up proof search?
- Do we even have the right notion of admissibility for multiple-conclusion rules? E.g., should Ø / p, ¬p be admissible in classical logic?