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fuzzy logics vs quantum logics

@ most celebrated fuzzy logic - Hajek’s BL-logic:
general framework for formalizing statements of fuzzy
nature: statements principially true only in a certain
degree, no sharp yes-no

@ the logic of continuous t-norms and their residua

@ algebraic semantics: BL-algebras
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general framework for formalizing statements of fuzzy
nature: statements principially true only in a certain
degree, no sharp yes-no

@ the logic of continuous t-norms and their residua

@ algebraic semantics: BL-algebras

@ non-associative MV-logic: M.Botur, R.H. (2009), algebraic
semantics: commutative basic algebras CBA

@ naBL - algebraic semantics for a non-associative BL -
M.Botur (2011)
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fuzzy logics vs quantum logics

@ quantum logics: formalizing statements in quantum
mechanical experiments, statements of a probabilistic
character

@ typically: if some QM yes-no experiment leads to a positive
result

@ again: statements to which it is not possible to assign a
sharp truth value-but this time since the result is
unpredictable

@ formulas of the corresponding logic are interpreted by
effect algebras EA

@ nevertheless, quantum and fuzzy structures have common
structural properties:
lattice EA: pasted by blocks which are MV, Z. RieCanova
(1999)
BL can be viewed as a special class of weak EA,
(T.Vetterlein, series of papers)
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@ find a common structure theory for CBA, naBL and EA

@ 1st step: characterize CBA and naBL in the languge of EA



Effect algebras-definition

@ Effect algebras: D. Foulis and M. K. Bennett 1994

An effect algebra is a system & = (E;+,0,1) where 0 and 1
are two distinguished elements of E, + is a partial binary
operation with axioms:

(EA1) a+ b= b+ awhenever a+ b exists;

(EA2) a+(b+c)=(a+b)+cifone of the sides is
defined,;

(EA3) for every a € E there exists a unique & € E with
at+ad=1;

(EA4) if a+1 is defined then a=0.
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natural order:
a<b iff b=a+cforsomecckE

(E; <,0,1)...bounded poset
(E; <)...lattice...£ ...lattice effect algebra



Effect algebras-natural order relation

natural order:
a<b iff b=a+cforsomecckE

(E; <,0,1)...bounded poset
(E; <)...lattice...£ ...lattice effect algebra
Natural examples: OMLs and MV-algebras:

(1) If (L;v,A,*,0,1) is an orthomodular lattice then defining
at+b:=avb iff a<b',

(L;+,0,1) is a lattice effect algebra with & = a*.
(2) Given an MV-algebra < = (A; ®,—,0), defining

a+b:=aob iff a<-b,

(A;+,0,1) is a lattice effect algebra, where & = —a.



naBL-algebras
M.Botur (FSS 2011)
An algebra A = (A,V,A,®,—,0,1) of type (2,2,2,2,0,0) is a
(non-associative) residuated lattice (RL) if
(A1) (A,v,A,0,1) is a bounded lattice,
(A2) (A,®,1) is a commutative groupoid with 1,

(A3) forany x,y,ze A, xoy <zifandonlyifx<y—z
(adjointness property).
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naBL-algebras

An algebra A = (A,V,A,®,—,0,1) of type (2,2,2,2,0,0) is a
(non-associative) residuated lattice (RL) if

(A1) (A,v,A,0,1) is a bounded lattice,
(A2) (A,®,1) is a commutative groupoid with 1,

(A3) forany x,y,ze A, xoy <zifandonlyifx<y—z
(adjointness property).

@ BL-algebras: associative RL satisfying divisibility and
prelinearity:

XO(X—=y)=xAy,(x—=y)V(y—x)=1
@ «,p-terms:
ag(x):=(aob) — (a® (box)),
Bs(x):=b—(a— ((a©b)®x))
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naBL-algebras

@ representable RL: subdirect products of linearly ordered
members

@ naBL (M. Botur): def.: representable RL satisfying
divisibility

@ «,p-prelinearities
(x—=y)Vaily —x)=1 (a-prelinearity)
(x—=y)VBE(y — x) =1 (B-prelinearity),
@ naBL: RL satisfying divisibility and both o, -prelinearities

@ «,p-prelinearities can be substituted by
xLy = xLad(y) and x L BZ(y) =1
where x L y:=xVy=1.



naBL-algebras

Definition
A binary operation  on the interval [0, 1] of reals is said to be a
(non-associative) t-norm (nat-norm briefly) if

(t1) ([0,1],%,1) is a commutative groupoid with the neutral
element 1,

(t2) = is continuous,
(t8) = is monotone

(M.Botur)
na#¥ =1PsSPy(na7)




Definition
A structure (L, <,®,0) is called a naturally ordered abelian
groupoid (NAG, briefly) if

@ (NAGH1) (L,<,0) is a poset with a least element 0
(NAG2) (L,®,0) is an abelian groupoid with 0
(NAG3) a< biff a® x = b for some x € L.
2 is called bounded whenever (L, <) has a top element 1.




NAG’s (of type naBL)

A NAG .Z is called of type naBL if it fulfils

@ (NAG4) Va,b,c € L3cy,co e L:
ad(boc)=(adb)dcy,(adb)doc=a®d(bdco) and,
Vyel:ylc=ylc,ylc

@ (RP) (residuation property):
va,b,c € L there is the least x € L with a®x > b

@ (RDP) (Riesz decomposition property)
c<adb=c=a dbyforsomea; <a by <b

@ (CP) (compatibility property)
Va,be L3ay,by,cel:a=a ®c,b=b;dc,a;Ab; =0.

V.




NAG’s (of type naBL) and naBL-algebras

@ Given an naBL-algebra (L, <,,®,—,0p,1,), define its dual
(L,<,®,6,0,1):
puta<biffb<,a
asb:=aocob
1:=0,0:=1,
acb:=b—a



NAG’s (of type naBL) and naBL-algebras

@ Given an naBL-algebra (L, <,,®,—,0p,1,), define its dual
(L,<,®,6,0,1):
puta<biffb<,a
asb:=aocob
1:=0,0:=1,
acb:=b—a

Let (L, <,%,5,0,1) be a dual naBL-algebra. Then (L,<,®,0,1)
is a bounded NAG of type naBL.

Conversely, given a bounded NAG of type naBL (L,<,®,0,1),
then it can be expanded in a unique way to a dual
naBL-algebra (L,<,®,5,0,1).




Sketch of proof

@ (L,<)is alattice:
(CP)= a=aj®c,b=by®c,agsAb;j=0=
c=aAb,aieb=b;da=avb
@ boa:=max{x:a®x=aVvb}
@ a-prelinearity:
(L,<,®,6,0,1) is a dual of a residuated lattice:
(NAG4) gives a® (bdc) =(adb)®cq forsome ¢y € L
¢ > af(c)
Vyel:ylc=ylc=ylal(c)
this by Botur’s result is equivalent to a-prelinearity
@ f-prelinearity: analogous



QBCK-algebras

A structure £ = (L, <,5,0) is called a quasi-BCK-algebra
(QBCK-algebra, briefly) if

@ (QBCK1) (L, <,0) is a poset with a least element 0

@ (QBCK2) & is a binary operation on L satisfying for all
a,b,ceL:
(a) ac(asb)<b
(b)a>b=coa<cobacc>boc
(c)ac0=0
@ (QBCK3) a<biffacb=0.
Z is called bounded whenever (L, <) has a top element 1.




QBCK-algebras

A structure £ = (L, <,5,0) is called a quasi-BCK-algebra
(QBCK-algebra, briefly) if

@ (QBCK1) (L, <,0) is a poset with a least element 0

@ (QBCK2) & is a binary operation on L satisfying for all
a,b,ceL:
(a) ac(asb)<b
(b)a>b=coa<cobacc>boc
(c)ac0=0
@ (QBCK3) a<biffacb=0.
Z is called bounded whenever (L, <) has a top element 1.

@ BCK: (b) (acb)c(acc)<ceb
{—,1}-subreducts of commutative integral RL



QBCK-algebras of type naBL

A bounded QBCK-algebra .Z is called of type naBL if it fulfils

@ (OP)Va,belLiddelLvcel:d>c<sa>cob

@ (SC) (strong cancellability):
Va,b,celL,c<ab:a<bsacc<boc

@ (CP) (compatibility property)
Va,belL:(acb)An(boa)=0

@ (o, p)-property:
Va,b,c € L let di,d>,d3 € L be the greatest elements with
b>dicc
a>aood
a>a;ob.
ThenVyel:ylc=yl(dheds),y L (dhobeoa.




QBCK-algebras of type naBL

Let (L,<,®,5,0,1) be a dual naBL-algebra. Then (L,<,5,0,1)
is a bounded QBCK-algebra of type naBL.

Conversely, given a bounded QBCK-algebra of type naBL

(L, <,6,0,1), then it can be expanded in a unique way to a dual
naBL-algebra (L,<,®,©,0,1).




Basic algebras

@ =lattices with SAl
@ BA-assigned algebras «7(L) = (L,®,—,0)

Bl xe0=x

B2) -—x=x

B3) ~(—xay)py=-(-yoex)ex

(B4) ~(—(-(xoy)oy)dz)d(xd2z)=1.

@ commutative basic algebras CBA: & is commutative

@ used also in another (independent) context: algebraic
model of BPC (Alizadeh, Ardeshir) (close to Heyting
algebras)



CBA’s and NAG’s of type naBL

Let(L,<,®,5,0,1) be a dual naBL-algebra. Then L is a CBA iff

@ (CBAI) If ais the least element x withx®b =1, then b is
the least y witha®y =1

@ (CBA2) Let y be the least element with a® y =1,
Z the least element withb® z =1,
X the least element with a® x = aV b.
Thenz@d x> y.




