naBL-algebras and quantum structures

Radomír Halaš

Department of Algebra and Geometry
Palacký University Olomouc
Czech Republic

TACL 11, Marseille

- most celebrated fuzzy logic - Hájek's BL-logic: general framework for formalizing statements of fuzzy nature: statements principially true only in a certain degree, no sharp yes-no
- the logic of continuous t-norms and their residua
- algebraic semantics: BL-algebras
- non-associative MV-logic: M.Botur, R.H. (2009), algebraic semantics: commutative basic algebras CBA
- naBL - algebraic semantics for a non-associative BL M.Botur (2011)
- most celebrated fuzzy logic - Hájek's BL-logic: general framework for formalizing statements of fuzzy nature: statements principially true only in a certain degree, no sharp yes-no
- the logic of continuous t-norms and their residua
- algebraic semantics: BL-algebras
- non-associative MV-logic: M.Botur, R.H. (2009), algebraic semantics: commutative basic algebras CBA
- naBL - algebraic semantics for a non-associative BL M.Botur (2011)
- quantum logics: formalizing statements in quantum mechanical experiments, statements of a probabilistic character
- typically: if some QM yes-no experiment leads to a positive result
- again: statements to which it is not possible to assign a sharp truth value-but this time since the result is unpredictable
- formulas of the corresponding logic are interpreted by effect algebras EA
- nevertheless, quantum and fuzzy structures have common structural properties:
lattice EA: pasted by blocks which are MV, Z. Riečanová
(1999)

BL can be viewed as a special class of weak EA,
(T.Vetterlein, series of papers)

- quantum logics: formalizing statements in quantum mechanical experiments, statements of a probabilistic character
- typically: if some QM yes-no experiment leads to a positive result
- again: statements to which it is not possible to assign a sharp truth value-but this time since the result is unpredictable
- formulas of the corresponding logic are interpreted by effect algebras EA
- nevertheless, quantum and fuzzy structures have common structural properties: lattice EA: pasted by blocks which are MV, Z. Riečanová (1999)

BL can be viewed as a special class of weak EA,
(T.Vetterlein, series of papers)

- quantum logics: formalizing statements in quantum mechanical experiments, statements of a probabilistic character
- typically: if some QM yes-no experiment leads to a positive result
- again: statements to which it is not possible to assign a sharp truth value-but this time since the result is unpredictable
- formulas of the corresponding logic are interpreted by effect algebras EA
- nevertheless, quantum and fuzzy structures have common structural properties: lattice EA: pasted by blocks which are MV, Z. Riečanová (1999)

BL can be viewed as a special class of weak EA,
(T.Vetterlein, series of papers)

- quantum logics: formalizing statements in quantum mechanical experiments, statements of a probabilistic character
- typically: if some QM yes-no experiment leads to a positive result
- again: statements to which it is not possible to assign a sharp truth value-but this time since the result is unpredictable
- formulas of the corresponding logic are interpreted by effect algebras EA
- nevertheless, quantum and fuzzy structures have common structural properties:
lattice EA: pasted by blocks which are MV, Z. Riečanová (1999)

BL can be viewed as a special class of weak EA, (T.Vetterlein, series of papers)

- find a common structure theory for CBA, naBL and EA
- 1st step: characterize CBA and naBL in the languge of EA
- find a common structure theory for CBA, naBL and EA
- 1st step: characterize CBA and naBL in the languge of EA
- Effect algebras: D. Foulis and M. K. Bennett 1994

An effect algebra is a system $\mathscr{E}=(E ;+, 0,1)$ where 0 and 1 are two distinguished elements of $E,+$ is a partial binary operation with axioms:
(EA1) $a+b=b+a$ whenever $a+b$ exists;
(EA2) $a+(b+c)=(a+b)+c$ if one of the sides is defined;
(EA3) for every $a \in E$ there exists a unique $a^{\prime} \in E$ with $a+a^{\prime}=1 ;$
(EA4) if $a+1$ is defined then $a=0$.
natural order:

$$
a \leq b \quad \text { iff } \quad b=a+c \text { for some } c \in E
$$

($E ; \leq, 0,1$)...bounded poset
($E ; \leq$)...lattice... \mathscr{E}...lattice effect algebra
Natural examples: OML's and MV-algebras:
(1) If $\left(L ; \vee, \wedge,{ }^{\perp}, 0,1\right)$ is an orthomodular lattice then defining
$(L ;+, 0,1)$ is a lattice effect algebra with $a^{\prime}=a^{\perp}$
(2) Given an MV-algebra $\mathscr{A}=(A ; \oplus, \neg, 0)$, defining
$(A ;+, 0,1)$ is a lattice effect algebra, where $a^{\prime}=\neg a$.
natural order:

$$
a \leq b \quad \text { iff } \quad b=a+c \text { for some } c \in E
$$

($E ; \leq, 0,1$)...bounded poset
($E ; \leq$)...lattice...E゚ ...lattice effect algebra
Natural examples: OML's and MV-algebras:
(1) If $\left(L ; \vee, \wedge,{ }^{\perp}, 0,1\right)$ is an orthomodular lattice then defining

$$
a+b:=a \vee b \quad \text { iff } \quad a \leq b^{\perp}
$$

$(L ;+, 0,1)$ is a lattice effect algebra with $a^{\prime}=a^{\perp}$.
(2) Given an MV-algebra $\mathscr{A}=(A ; \oplus, \neg, 0)$, defining

$$
a+b:=a \oplus b \quad \text { iff } \quad a \leq \neg b
$$

$(A ;+, 0,1)$ is a lattice effect algebra, where $a^{\prime}=\neg a$.

M.Botur (FSS 2011)

Definition

An algebra $\mathbf{A}=(A, \vee, \wedge, \odot, \rightarrow, 0,1)$ of type $\langle 2,2,2,2,0,0\rangle$ is a (non-associative) residuated lattice (RL) if
(A1) $(A, \vee, \wedge, 0,1)$ is a bounded lattice,
(A2) $(A, \odot, 1)$ is a commutative groupoid with 1 ,
(A3) for any $x, y, z \in A, x \odot y \leq z$ if and only if $x \leq y \rightarrow z$ (adjointness property).

- BL-algebras: associative RL satisfying divisibility and prelinearity:

$$
x \odot(x \rightarrow y)=x \wedge y,(x \rightarrow y) \vee(y \rightarrow x)=1
$$

- α, β-terms:

Definition

An algebra $\mathbf{A}=(A, \vee, \wedge, \odot, \rightarrow, 0,1)$ of type $\langle 2,2,2,2,0,0\rangle$ is a (non-associative) residuated lattice (RL) if
(A1) $(A, \vee, \wedge, 0,1)$ is a bounded lattice,
(A2) $(A, \odot, 1)$ is a commutative groupoid with 1 ,
(A3) for any $x, y, z \in A, x \odot y \leq z$ if and only if $x \leq y \rightarrow z$ (adjointness property).

- BL-algebras: associative RL satisfying divisibility and prelinearity:

$$
x \odot(x \rightarrow y)=x \wedge y,(x \rightarrow y) \vee(y \rightarrow x)=1
$$

- α, β-terms:

Definition

An algebra $\mathbf{A}=(A, \vee, \wedge, \odot, \rightarrow, 0,1)$ of type $\langle 2,2,2,2,0,0\rangle$ is a (non-associative) residuated lattice (RL) if
(A1) $(A, \vee, \wedge, 0,1)$ is a bounded lattice,
(A2) $(A, \odot, 1)$ is a commutative groupoid with 1 ,
(A3) for any $x, y, z \in A, x \odot y \leq z$ if and only if $x \leq y \rightarrow z$ (adjointness property).

- BL-algebras: associative RL satisfying divisibility and prelinearity:

$$
x \odot(x \rightarrow y)=x \wedge y,(x \rightarrow y) \vee(y \rightarrow x)=1
$$

- α, β-terms:

$$
\begin{aligned}
& \alpha_{b}^{a}(x):=(a \odot b) \rightarrow(a \odot(b \odot x)) \\
& \beta_{b}^{a}(x):=b \rightarrow(a \rightarrow((a \odot b) \odot x))
\end{aligned}
$$

- representable RL: subdirect products of linearly ordered members
- naBL (M. Botur): def.: representable RL satisfying divisibility
- α, β-prelinearities

$$
\begin{array}{lc}
(x \rightarrow y) \vee \alpha_{b}^{a}(y \rightarrow x)=1 & (\alpha \text {-prelinearity }) \\
(x \rightarrow y) \vee \beta_{b}^{a}(y \rightarrow x)=1 & (\beta \text {-prelinearity }),
\end{array}
$$

- naBL: RL satisfying divisibility and both α, β-prelinearities
- α, β-prelinearities can be substituted by

$$
x \perp y \Rightarrow x \perp \alpha_{b}^{a}(y) \text { and } x \perp \beta_{b}^{a}(y)=1
$$

where $x \perp y:=x \vee y=1$.

- representable RL: subdirect products of linearly ordered members
- naBL (M. Botur): def.: representable RL satisfying divisibility
- α, β-prelinearities

$$
\begin{array}{lc}
(x \rightarrow y) \vee \alpha_{b}^{a}(y \rightarrow x)=1 & (\alpha \text {-prelinearity }) \\
(x \rightarrow y) \vee \beta_{b}^{a}(y \rightarrow x)=1 & (\beta \text {-prelinearity })
\end{array}
$$

- naBL: RL satisfying divisibility and both α, β-prelinearities
- α, β-prelinearities can be substituted by

where $x \perp y:=x \vee y=1$.
- representable RL: subdirect products of linearly ordered members
- naBL (M. Botur): def.: representable RL satisfying divisibility
- α, β-prelinearities

$$
\begin{array}{lc}
(x \rightarrow y) \vee \alpha_{b}^{a}(y \rightarrow x)=1 & (\alpha \text {-prelinearity }) \\
(x \rightarrow y) \vee \beta_{b}^{a}(y \rightarrow x)=1 & (\beta \text {-prelinearity }),
\end{array}
$$

- naBL: RL satisfying divisibility and both α, β-prelinearities
- α, β-prelinearities can be substituted by
where $x \perp y:=x \vee y=1$.
- representable RL: subdirect products of linearly ordered members
- naBL (M. Botur): def.: representable RL satisfying divisibility
- α, β-prelinearities

$$
\begin{array}{lc}
(x \rightarrow y) \vee \alpha_{b}^{a}(y \rightarrow x)=1 & (\alpha \text {-prelinearity }) \\
(x \rightarrow y) \vee \beta_{b}^{a}(y \rightarrow x)=1 & (\beta \text {-prelinearity })
\end{array}
$$

- naBL: RL satisfying divisibility and both α, β-prelinearities
- α, β-prelinearities can be substituted by

$$
x \perp y \Rightarrow x \perp \alpha_{b}^{a}(y) \text { and } x \perp \beta_{b}^{a}(y)=1
$$

where $x \perp y:=x \vee y=1$.

Definition

A binary operation $*$ on the interval $[0,1]$ of reals is said to be a (non-associative) t-norm (nat-norm briefly) if
(t1) $([0,1], *, 1)$ is a commutative groupoid with the neutral element 1 ,
(t2) $*$ is continuous,
(t 3) $*$ is monotone

Theorem

(M.Botur)
$n a \mathscr{B L}=\operatorname{IP}_{\mathrm{S}} \mathrm{SP}_{\mathrm{U}}(n a \mathscr{T})$

Definition

A structure $(L, \leq, \oplus, 0)$ is called a naturally ordered abelian groupoid (NAG, briefly) if

- (NAG1) $(L, \leq, 0)$ is a poset with a least element 0
- (NAG2) $(L, \oplus, 0)$ is an abelian groupoid with 0
- (NAG3) $a \leq b$ iff $a \oplus x=b$ for some $x \in L$.
\mathscr{L} is called bounded whenever (L, \leq) has a top element 1 .

Definition

A NAG \mathscr{L} is called of type naBL if it fulfils

- (NAG4) $\forall a, b, c \in L \exists c_{1}, c_{2} \in L$:

$$
a \oplus(b \oplus c)=(a \oplus b) \oplus c_{1},(a \oplus b) \oplus c=a \oplus\left(b \oplus c_{2}\right) \text { and }
$$

$\forall y \in L: y \perp c \Rightarrow y \perp c_{1}, y \perp c_{2}$

- (RP) (residuation property):
$\forall a, b, c \in L$ there is the least $x \in L$ with $a \oplus x \geq b$
- (RDP) (Riesz decomposition property)

$$
c \leq a \oplus b \Rightarrow c=a_{1} \oplus b_{1} \text { for some } a_{1} \leq a, b_{1} \leq b
$$

- (CP) (compatibility property)

$$
\forall a, b \in L \exists a_{1}, b_{1}, c \in L: a=a_{1} \oplus c, b=b_{1} \oplus c, a_{1} \wedge b_{1}=0
$$

- Given an naBL-algebra $\left(L, \leq_{n}, \odot, \rightarrow, 0_{n}, 1_{n}\right)$, define its dual

$$
\begin{aligned}
& (L, \leq, \oplus, \ominus, 0,1): \\
& \text { put } a \leq b \text { iff } b \leq_{n} a \\
& a \oplus b:=a \odot b \\
& 1:=0_{n}, 0:=1_{n} \\
& a \ominus b:=b \rightarrow a
\end{aligned}
$$

Theorem
Let ($L . \leq, \oplus, \oplus, 0,1$) be a dual naBL-algebra. Then $(L, \leq, \oplus, 0,1)$
is a bounded NAG of type naBL.
Conversely, given a bounded NAG of type naBL $(L, \leq, \oplus, 0,1)$,
then it can be expanded in a unique way to a dual
naBL-algebra $(L, \leq, \oplus, \ominus, 0,1)$.

- Given an naBL-algebra $\left(L, \leq_{n}, \odot, \rightarrow, 0_{n}, 1_{n}\right)$, define its dual

$$
\begin{aligned}
& (L, \leq, \oplus, \ominus, 0,1): \\
& \text { put } a \leq b \text { iff } b \leq_{n} a \\
& a \oplus b:=a \odot b \\
& 1:=0_{n}, 0:=1_{n} \\
& a \ominus b:=b \rightarrow a
\end{aligned}
$$

Theorem

Let $(L, \leq, \oplus, \ominus, 0,1)$ be a dual naBL-algebra. Then $(L, \leq, \oplus, 0,1)$ is a bounded NAG of type naBL.
Conversely, given a bounded NAG of type naBL $(L, \leq, \oplus, 0,1)$, then it can be expanded in a unique way to a dual naBL-algebra $(L, \leq, \oplus, \ominus, 0,1)$.

- (L, \leq) is a lattice:
$(\mathrm{CP}) \Rightarrow a=a_{1} \oplus c, b=b_{1} \oplus c, a_{1} \wedge b_{1}=0 \Rightarrow$
$c=a \wedge b, a_{1} \oplus b=b_{1} \oplus a=a \vee b$
- $b \ominus a:=\max \{x: a \oplus x=a \vee b\}$
- α-prelinearity:
$(L, \leq, \oplus, \ominus, 0,1)$ is a dual of a residuated lattice:
(NAG4) gives $a \oplus(b \oplus c)=(a \oplus b) \oplus c_{1}$ for some $c_{1} \in L$
$c_{1} \geq \alpha_{b}^{a}(c)$
$\forall y \in L: y \perp c \Rightarrow y \perp c_{1} \Rightarrow y \perp \alpha_{b}^{a}(c)$
this by Botur's result is equivalent to α-prelinearity
- β-prelinearity: analogous

Definition

A structure $\mathscr{L}=(L, \leq, \ominus, 0)$ is called a quasi-BCK-algebra (QBCK-algebra, briefly) if

- (QBCK1) $(L, \leq, 0)$ is a poset with a least element 0
- (QBCK2) \ominus is a binary operation on L satisfying for all $a, b, c \in L$:
(a) $a \ominus(a \ominus b) \leq b$
(b) $a \geq b \Rightarrow c \ominus a \leq c \ominus b, a \ominus c \geq b \ominus c$
(c) $a \ominus 0=0$
- (QBCK3) $a \leq b$ iff $a \ominus b=0$.
\mathscr{L} is called bounded whenever (L, \leq) has a top element 1.
- BCK: $(b)(a \ominus b) \ominus(a \ominus c) \leq c \ominus b$

Definition

A structure $\mathscr{L}=(L, \leq, \ominus, 0)$ is called a quasi-BCK-algebra (QBCK-algebra, briefly) if

- (QBCK1) $(L, \leq, 0)$ is a poset with a least element 0
- (QBCK2) \ominus is a binary operation on L satisfying for all $a, b, c \in L$:
(a) $a \ominus(a \ominus b) \leq b$
(b) $a \geq b \Rightarrow c \ominus a \leq c \ominus b, a \ominus c \geq b \ominus c$
(c) $a \ominus 0=0$
- (QBCK3) $a \leq b$ iff $a \ominus b=0$.
\mathscr{L} is called bounded whenever (L, \leq) has a top element 1 .
- BCK: (b) $(a \ominus b) \ominus(a \ominus c) \leq c \ominus b$ $\{\rightarrow, 1\}$-subreducts of commutative integral RL

Definition

A bounded QBCK-algebra \mathscr{L} is called of type naBL if it fulfils

- (OP) $\forall a, b \in L \exists d \in L \forall c \in L: d \geq c \Leftrightarrow a \geq c \ominus b$
- (SC) (strong cancellability):
$\forall a, b, c \in L, c \leq a, b: a \leq b \Leftrightarrow a \ominus c \leq b \ominus c$
- (CP) (compatibility property)

$$
\forall a, b \in L:(a \ominus b) \wedge(b \ominus a)=0
$$

- (α, β)-property:
$\forall a, b, c \in L$ let $d_{1}, d_{2}, d_{3} \in L$ be the greatest elements with
$b \geq d_{1} \ominus c$
$a \geq d_{2} \ominus d_{1}$
$a \geq d_{3} \ominus b$.
Then $\forall y \in L: y \perp c \Rightarrow y \perp\left(d_{2} \ominus d_{3}\right), y \perp\left(d_{2} \ominus b\right) \ominus a$.

Theorem

Let $(L, \leq, \oplus, \ominus, 0,1)$ be a dual naBL-algebra. Then $(L, \leq, \ominus, 0,1)$ is a bounded QBCK-algebra of type naBL.
Conversely, given a bounded QBCK-algebra of type naBL ($L, \leq, \ominus, 0,1$), then it can be expanded in a unique way to a dual naBL-algebra $(L, \leq, \oplus, \ominus, 0,1)$.

- =lattices with SAI
- BA-assigned algebras $\mathscr{A}(\mathbf{L})=(L, \oplus, \neg, 0)$

$$
\begin{aligned}
& \text { (B1) } x \oplus 0=x \\
& \text { (B2) } \neg \neg x=x \\
& \text { (B3) } \neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x \\
& \text { (B4) } \neg(\neg(\neg(x \oplus y) \oplus y) \oplus z) \oplus(x \oplus z)=1 .
\end{aligned}
$$

- commutative basic algebras CBA: \oplus is commutative
- used also in another (independent) context: algebraic model of BPC (Alizadeh, Ardeshir) (close to Heyting algebras)

Theorem

Let $(L, \leq, \oplus, \ominus, 0,1)$ be a dual naBL-algebra. Then L is a CBA iff

- (CBA1) If a is the least element x with $x \oplus b=1$, then b is the least y with $a \oplus y=1$
- (CBA2) Let y be the least element with $a \oplus y=1$, z the least element with $b \oplus z=1$, x the least element with $a \oplus x=a \vee b$.
Then $z \oplus x \geq y$.

