On interpolation in $N E X T(\mathbf{K T B})$

Zofia Kostrzycka
University of Technology, Opole, Poland

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC, MARSEILLES

29 July 2011
*Supported by the State Committee for Scientific Research (KBN), research grant N N 101005238

Brouwerian logic KTB

Axioms CL and

$$
\begin{aligned}
K & :=\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q) \\
T & :=\square p \rightarrow p \\
B & :=p \rightarrow \square \diamond p
\end{aligned}
$$

and rules: (MP), (Sub) i (RG).

Extensions of the Brouwer logic KTB [I.Thomas 1964]

$\mathbf{T}_{\mathbf{n}}=\mathbf{K T B} \oplus\left(4_{n}\right)$, where

$$
\left(4_{n}\right) \quad \square^{n} p \rightarrow \square^{n+1} p
$$

Extensions of the Brouwer logic KTB [I.Thomas 1964]

$\mathbf{T}_{\mathbf{n}}=\mathbf{K T B} \oplus\left(4_{n}\right)$, where

$$
\left(4_{n}\right) \quad \square^{n} p \rightarrow \square^{n+1} p
$$

$\mathbf{K T B} \subset \ldots \subset \mathbf{T}_{\mathbf{n + 1}} \subset \mathbf{T}_{\mathbf{n}} \subset \ldots \subset \mathbf{T}_{\mathbf{2}} \subset \mathbf{T}_{\mathbf{1}}=\mathbf{S} 5$.

Relational semantics - Kripke frames for $\mathbf{T}_{\mathbf{n}}$

```
(tran}n) \forall \forallx,y(\mathrm{ if }x\mp@subsup{R}{}{n+1}y\mathrm{ then }x\mp@subsup{R}{}{n}y
where the relation of n-step accessibility is defined inductively as
follows:
```



```
In the case of the logic \(\mathbf{T}_{\mathbf{n}}, R\) is reflexive, symmetric and \(n\)-transitive. [Thomas 1964]
```


Relational semantics - Kripke frames for $\mathbf{T}_{\mathbf{n}}$

$$
\left(\operatorname{tran}_{n}\right) \quad \forall_{x, y}\left(\text { if } x R^{n+1} y \text { then } x R^{n} y\right)
$$

where the relation of n-step accessibility is defined inductively as follows:

In the case of the logic $\mathbf{T}_{\mathbf{n}}, R$ is reflexive, symmetric and n-transitive. [Thomas 1964]

Relational semantics - Kripke frames for $\mathbf{T}_{\mathbf{n}}$

$$
\left(\operatorname{tran}_{n}\right) \quad \forall_{x, y}\left(\text { if } x R^{n+1} y \text { then } x R^{n} y\right)
$$

where the relation of n-step accessibility is defined inductively as follows:

$$
\begin{array}{rll}
x R^{0} y & \text { iff } & x=y \\
x R^{n+1} y & \text { iff } & \exists_{z}\left(x R^{n} z \wedge z R y\right)
\end{array}
$$

In the case of the logic $\mathbf{T}_{\mathbf{n}}, R$ is reflexive, symmetric and n-transitive. [Thomas 1061]

Relational semantics - Kripke frames for $\mathbf{T}_{\mathbf{n}}$

$$
\left(\operatorname{tran}_{n}\right) \quad \forall_{x, y}\left(\text { if } x R^{n+1} y \text { then } x R^{n} y\right)
$$

where the relation of n-step accessibility is defined inductively as follows:

$$
\begin{array}{rll}
x R^{0} y & \text { iff } & x=y \\
x R^{n+1} y & \text { iff } & \exists_{z}\left(x R^{n} z \wedge z R y\right)
\end{array}
$$

In the case of the logic $\mathbf{T}_{\mathbf{n}}, R$ is reflexive, symmetric and n-transitive. [Thomas 1964]

Definitions

- A logic L has the Craig interpolation property (CIP) if for every implication $\alpha \rightarrow \beta$ in L , there exists a formula γ (interpolant for $\alpha \rightarrow \beta$ in L) such that $\alpha \rightarrow \gamma \in L$ and $\gamma \rightarrow \beta \in L$ and $\operatorname{Var}(\gamma) \subseteq \operatorname{Var}(\alpha) \cap \operatorname{Var}(\beta)$.
- A logic L is Halldén complete if

$$
\varphi \vee \psi \in L \text { implies } \varphi \in L \text { or } \psi \in L
$$

for all φ and ψ containing no common variables.

Definitions

- A logic L has the Craig interpolation property (CIP) if for every implication $\alpha \rightarrow \beta$ in L , there exists a formula γ (interpolant for $\alpha \rightarrow \beta$ in L) such that $\alpha \rightarrow \gamma \in L$ and $\gamma \rightarrow \beta \in L$ and $\operatorname{Var}(\gamma) \subseteq \operatorname{Var}(\alpha) \cap \operatorname{Var}(\beta)$.
for all φ and ψ containing no common variables.

Definitions

- A logic L has the Craig interpolation property (CIP) if for every implication $\alpha \rightarrow \beta$ in \mathbf{L}, there exists a formula γ (interpolant for $\alpha \rightarrow \beta$ in \mathbf{L}) such that $\alpha \rightarrow \gamma \in L$ and $\gamma \rightarrow \beta \in L$ and $\operatorname{Var}(\gamma) \subseteq \operatorname{Var}(\alpha) \cap \operatorname{Var}(\beta)$.
- A logic L is Halldén complete if

$$
\varphi \vee \psi \in L \text { implies } \varphi \in L \text { or } \psi \in L
$$

for all φ and ψ containing no common variables.
The connection between logics with CIP and Halldén-complete ones
Theorem
If L has only one Post-complete extension and isHalldén-incomplete, then interpolation fails in L. [Schumm, 1986]
G. F. Schumm, Some failures of interpolation in modal logic, NotreDame Journal of Formal Logic, Vol. 27 (1), (1986), 108-110.
Observation
All logics from NEXT(KTB) have only one Post-completeextension namely the logic Trin.

The connection between logics with CIP and Halldén-complete ones

Theorem

If L has only one Post-complete extension and is Halldén-incomplete, then interpolation fails in L. [Schumm, 1986]
G. F. Schumm, Some failures of interpolation in modal logic, Notre Dame Journal of Formal Logic, Vol. 27 (1), (1986), 108-110.

Observation

extension, namely the logic Triv

The connection between logics with CIP and Halldén-complete ones

Theorem

If L has only one Post-complete extension and is Halldén-incomplete, then interpolation fails in L. [Schumm, 1986]
G. F. Schumm, Some failures of interpolation in modal logic, Notre Dame Journal of Formal Logic, Vol. 27 (1), (1986), 108-110.

Observation

All logics from NEXT(KTB) have only one Post-complete extension, namely the logic Triv.

Halldén-completeness for KTB

Theorem

The logic KTB is Halldén complete.[Kripke, 1957]
S.A. Kripke, Semantical analysis of modal logic I, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, Vol. 9, (1957), 176-186.

Halldén-completeness for KTB

Theorem

The logic KTB is Halldén complete.[Kripke, 1957]
S.A. Kripke, Semantical analysis of modal logic I, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, Vol. 9, (1957), 176-186.

CIP for KTB and $\mathbf{T}_{\mathbf{n}}$

Theorem
 The logic KTB has CIP.

Theorem

The logics $\mathrm{T}_{\mathrm{n}}, n \geq 1$ have CIP.

Proof. A very general method of construction of inseparable tableaux is applicable here (see i.e. Chagrov, Zakharyaschev).

Corollary

The logics $\mathbf{T}_{\mathbf{n}}, n \geq 1$ are Halldén-complete.

CIP for KTB and $\mathbf{T}_{\mathbf{n}}$

Theorem

The logic KTB has CIP.

Theorem
 The logics $\mathrm{T}_{\mathrm{n}}, n \geq 1$ have CIP.

Proof. A very general method of construction of inseparable tableaux is applicable here (see i.e. Chagrov, Zakharyaschev).

Corollary

The logics $\mathbf{T}_{\mathbf{n}}, n \geq 1$ are Halldén-complete.

CIP for KTB and $\mathbf{T}_{\mathbf{n}}$

Theorem

The logic KTB has CIP.

Theorem
The logics $\mathbf{T}_{\mathbf{n}}, n \geq 1$ have CIP.
Proof. A very general method of construction of inseparable tableaux is applicable here (see i.e. Chagrov, Zakharyaschev).

Corollary

The logics $\mathrm{T}_{\mathrm{n}}, n \geq 1$ are Halldén-complete.

CIP for KTB and $\mathbf{T}_{\mathbf{n}}$

Theorem

The logic KTB has CIP.

Theorem

The logics $\mathbf{T}_{\mathbf{n}}, n \geq 1$ have CIP.

Proof. A very general method of construction of inseparable tableaux is applicable here (see i.e. Chagrov, Zakharyaschev).

Corollary
The logics $\mathbf{T}_{\mathbf{n}}, n \geq 1$ are Halldén-complete.

Halldén-completeness and CIP in $\operatorname{NEXT}\left(\mathbf{T}_{\mathbf{2}}\right)$

Logics determined by wheel-frames

We consider infinite families of wheel-frames:

$\left\{\mathfrak{N T}_{i}: i \in A\right.$ and i is nrime $\}$, where $A \subseteq \mathbb{N}$,
and logics determined by them:

$$
\begin{aligned}
L_{A}:= & L\left(\left\{\mathfrak{W}_{i}: i \in A \text { and } i \text { is prime }\right\}\right)= \\
& =\bigcap\left\{L\left(\mathfrak{W}_{i}\right): i \in A \text { and } i \text { is prime }\right\} .
\end{aligned}
$$

Logics determined by wheel-frames

We consider infinite families of wheel-frames:
$\left\{\mathfrak{W}_{i}: i \in A\right.$ and i is prime $\}$, where $A \subseteq \mathbb{N}$,
and logics determined by them:

$=\bigcap\left\{L\left(\mathfrak{W}_{i}\right): i \in A\right.$ and i is prime $\}$.

Logics determined by wheel-frames

We consider infinite families of wheel-frames: $\left\{\mathfrak{W}_{i}: i \in A\right.$ and i is prime $\}$, where $A \subseteq \mathbb{N}$, and logics determined by them:

Logics determined by wheel-frames

We consider infinite families of wheel-frames: $\left\{\mathfrak{W}_{i}: i \in A\right.$ and i is prime $\}$, where $A \subseteq \mathbb{N}$, and logics determined by them:

$$
\begin{aligned}
L_{A}:= & L\left(\left\{\mathfrak{W}_{i}: i \in A \text { and } i \text { is prime }\right\}\right)= \\
& =\bigcap\left\{L\left(\mathfrak{W}_{i}\right): i \in A \text { and } i \text { is prime }\right\} .
\end{aligned}
$$

Theorem

The family of logics $\left\{L_{A}\right\}_{A \in \mathbb{N}}$ is uncountably infinite. [Miyazaki, 2005]

\square
Y. Miyazaki, Normal modal logics containing KTB with some
finiteness conditions, Advances in Modal Logic, Vol. 5, (2005),
171-190.

Theorem

The family of logics $\left\{L_{A}\right\}_{A \subseteq \mathbb{N}}$ is uncountably infinite. [Miyazaki, 2005]
Y. Miyazaki, Normal modal logics containing KTB with some finiteness conditions, Advances in Modal Logic, Vol. 5, (2005), 171-190.

Nonequivalent formulas in $\mathbf{T}_{\mathbf{2}}$

Let $\alpha:=p \wedge \neg \diamond \square p$.

Nonequivalent formulas in $\mathbf{T}_{\mathbf{2}}$

Let $\alpha:=p \wedge \neg \diamond \square p$.

$$
\begin{aligned}
A_{1} & :=\neg p \wedge \square \neg \alpha, \\
A_{2} & :=\neg p \wedge \neg A_{1} \wedge \diamond A_{1}, \\
A_{3} & :=\alpha \wedge \diamond A_{2} \wedge \neg \diamond A_{1}, \\
\vdots & \\
A_{2 n} & :=\neg p \wedge \diamond A_{2 n-1} \wedge \neg \diamond A_{2 n-2} \quad \text { for } n \geq 2, \\
A_{2 n+1} & :=\alpha \wedge \diamond A_{2 n} \wedge \neg \diamond A_{2 n-1} \quad \text { for } n \geq 2 \\
\vdots &
\end{aligned}
$$

Lemma

The formulas $\left\{A_{i}\right\}, i \geq 1$ are non-equivalent in the logic $\mathbf{T}_{\mathbf{2}}$. [Z.K. 2006]

Proof
Let us take the following model $\mathfrak{M}=\langle W, R, V\rangle$:

Lemma

The formulas $\left\{A_{i}\right\}, i \geq 1$ are non-equivalent in the logic $\mathbf{T}_{\mathbf{2}}$. [Z.K. 2006]

Proof
Let us take the following model $\mathfrak{M}=\langle W, R, V\rangle$:

where

$$
\begin{aligned}
A_{2 n} & :=\neg p \wedge \diamond A_{2 n-1} \wedge \neg \diamond A_{2 n-2} \quad \text { for } n \geq 2, \\
A_{2 n+1} & :=\alpha \wedge \diamond A_{2 n} \wedge \neg \diamond A_{2 n-1} \quad \text { for } n \geq 2 .
\end{aligned}
$$

For any $i \geq 1$ and for any $x \in W$ the following holds:

$$
x \models A_{i} \quad \text { iff } \quad x=y_{i}
$$

For any $i \geq 1$ and for any $x \in W$ the following holds:

$$
x \models A_{i} \quad \text { iff } \quad x=y_{i}
$$

Then:

$$
y_{i} \not \vDash A_{i} \rightarrow A_{j} \quad \text { and } \quad y_{j} \not \models A_{j} \rightarrow A_{i}
$$

Formulas G_{k}

Formulas G_{k}

$$
G_{k}:=\left(\square p \wedge \bigwedge_{i=2}^{k-1} C_{i} \wedge D_{k-1} \wedge E\right) \rightarrow \diamond^{2} A_{k}
$$

Formulas G_{k}

$$
G_{k}:=\left(\square p \wedge \bigwedge_{i=2}^{k-1} C_{i} \wedge D_{k-1} \wedge E\right) \rightarrow \diamond^{2} A_{k} \text { and }
$$

$$
\begin{aligned}
& \beta:=\neg \square p \wedge \diamond \square p, \quad \gamma:=\beta \wedge \diamond A_{1} \wedge \neg \diamond A_{2} \wedge \neg \diamond A_{3}, \\
& C_{k}:=\square^{2}\left[A_{k-1} \rightarrow \diamond A_{k}\right] \quad \text { for } k \geq 2, \\
& D_{k}:=\square^{2}\left[\left(A_{k} \wedge \neg \diamond A_{k+1}\right) \rightarrow \diamond \varepsilon\right], \\
& E:=\square^{2}(\square p \rightarrow \diamond \gamma), \quad \varepsilon:=\beta \wedge \neg \diamond A_{1} \wedge \neg \diamond A_{2}
\end{aligned}
$$

Lemma

Let $k \geq 5$ and k - odd number.
$\mathfrak{W}_{i} \not \models G_{k}$ iff i is divisible by $k+2 .[Z . K$. 2007]
Z. K. On the existence of a continuum of logics in $\operatorname{NEXT}\left(K T B \oplus \square^{2} p \rightarrow \square^{3} p\right)$, BSL, Vol. 36 (1), (2007), 1-7.

Theorem

Each logic L_{A} (such that card $A \geq 2$) is Halldén incomplete.
Proof. Straightforward. Let $n_{1}, n_{2} \in A$, and n_{1}, n_{2} be prime. Let $G_{n_{1}-2}(p)$ be the above defined formula and $G_{n_{2}-2}(q)$ be the appropriate formula whose variable is q.
Then the disjunction $G_{n_{1}-2}(p) \vee G_{n_{2}-2}(q) \in L_{A}$ but none of $G_{n_{1}-2}(p)$ and $G_{n_{2}-2}(q)$ belongs to L_{A}.

Theorem

Each logic L_{A} (such that card $A \geq 2$) is Halldén incomplete.
Proof. Straightforward. Let $n_{1}, n_{2} \in A$, and n_{1}, n_{2} be prime. Let
$G_{n_{1}-2}(p)$ be the above defined formula and $G_{n_{2}-2}(q)$ be the appropriate formula whose variable is q.
Then the disjunction $G_{n_{1}-2}(p) \vee G_{n_{2}-2}(q) \in L_{A}$ but none of

Theorem

Each logic L_{A} (such that card $A \geq 2$) is Halldén incomplete.
Proof. Straightforward. Let $n_{1}, n_{2} \in A$, and n_{1}, n_{2} be prime. Let $G_{n_{1}-2}(p)$ be the above defined formula and $G_{n_{2}-2}(q)$ be the appropriate formula whose variable is q.
Then the disjunction $G_{n_{1}-2}(p) \vee G_{n_{2}-2}(q) \in L_{A}$ but none of $G_{n_{1}-2}(p)$ and $G_{n_{2}-2}(q)$ belongs to L_{A}.

Corollary

There are uncountably many logics in $N E X T\left(\mathbf{T}_{\mathbf{2}}\right)$ which are Halldén incomplete and hence - without (CIP).

Problem

To characterize all logics in $N E X T(\mathbf{K T B})$ (and in $N E X T\left(\mathbf{T}_{\mathbf{n}}\right)$)
having CIP (for example by finding the so-called conservative formulas).

Thank you for your attention.

