Algorithmic correspondence and canonicity for non-distributive logics

Willem Conradie¹ Alessandra Palmigiano²

¹University of Johannesburg

²ILLC, University of Amsterdam

TACL2011

(Classical) Modal Logic

Syntax

$$\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \Diamond \varphi$$

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics

(Classical) Modal Logic

Syntax

$$\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \Diamond \varphi$$

Semantics

Relational Kripke frames $\mathfrak{F} = (W, R)$ Valuations: $V : Var \rightarrow \mathscr{P}(W)$

Algebraic

BAO's $\mathbb{A} = (A, \land, \lor, -, 1, 0, \diamondsuit)$ Assignments: $v : Var \rightarrow A$

イロト イポト イヨト イヨト

Correspondence: An example

On models:

$$(\mathfrak{F},V)\models p\to\Diamond p$$

Correspondence: An example

On models:

$$(\mathfrak{F}, V) \models p \to \Diamond p$$

iff $(\mathfrak{F}, V) \models \forall x (P(x) \to \exists y (Rxy \land P(y)))$

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics

Correspondence: An example

On models:

$$(\mathfrak{F}, \mathsf{V}) \models p \to \diamond p$$

iff $(\mathfrak{F}, \mathsf{V}) \models \forall x (\mathsf{P}(x) \to \exists y (\mathsf{R}xy \land \mathsf{P}(y)))$

On frames:

$$\mathfrak{F}\models p\to \Diamond p$$

Correspondence: An example

On models:

$$(\mathfrak{F}, \mathsf{V}) \models p \to \Diamond p$$

iff $(\mathfrak{F}, \mathsf{V}) \models \forall x (\mathsf{P}(x) \to \exists y (\mathsf{R}xy \land \mathsf{P}(y)))$

On frames:

$$\widetilde{\mathfrak{F}} \models p \to \Diamond p$$
iff $\widetilde{\mathfrak{F}} \models \forall P \forall x (P(x) \to \exists y (Rxy \land P(y)))$

Correspondence: An example

On models:

$$(\mathfrak{F}, \mathsf{V}) \models p \to \diamond p$$

iff $(\mathfrak{F}, \mathsf{V}) \models \forall x (\mathsf{P}(x) \to \exists y (\mathsf{R}xy \land \mathsf{P}(y)))$

On frames:

$$\begin{aligned} &\widetilde{v} \vDash p \to \Diamond p \\ &\text{iff} \quad &\widetilde{v} \vDash \forall P \forall x (P(x) \to \exists y (Rxy \land P(y))) \\ &\text{iff} \quad &\widetilde{v} \vDash \forall x Rxx \end{aligned}$$

Correspondence theory

 Given a modal formula φ, does it always have a first order correspondent?

イロト イヨト イヨト イヨト

Correspondence theory

 Given a modal formula φ, does it always have a first order correspondent? NO.

イロト イヨト イヨト イヨト

Correspondence theory

- Given a modal formula φ, does it always have a first order correspondent? NO.
- Central question: Which modal fmls have first-order frame correspondents? [Sahhlqvist, van Benthem, 1970's]

イロト イポト イヨト イヨト

Correspondence theory

- Given a modal formula φ, does it always have a first order correspondent? NO.
- **Central question:** Which modal fmls have first-order frame correspondents? [Sahhlqvist, van Benthem, 1970's]
- Syntactic classes: Sahlqvist formulas [Sahlqvist], inductive formulas [Goranko, Vakarelov], Complex formulas [Vakarelov]

Correspondence theory

- Given a modal formula φ, does it always have a first order correspondent? NO.
- **Central question:** Which modal fmls have first-order frame correspondents? [Sahhlqvist, van Benthem, 1970's]
- Syntactic classes: Sahlqvist formulas [Sahlqvist], inductive formulas [Goranko, Vakarelov], Complex formulas [Vakarelov]
- Algorithms: SCAN [Gabbay, Olbach], DLS [Szalas], SQEMA [Conradie, Goranko, Vakarelov]

Correspondence theory

- Given a modal formula φ, does it always have a first order correspondent? NO.
- **Central question:** Which modal fmls have first-order frame correspondents? [Sahhlqvist, van Benthem, 1970's]
- Syntactic classes: Sahlqvist formulas [Sahlqvist], inductive formulas [Goranko, Vakarelov], Complex formulas [Vakarelov]
- Algorithms: SCAN [Gabbay, Olbach], DLS [Szalas], SQEMA [Conradie, Goranko, Vakarelov]
- Strong relationship between correspondence and completeness / canonicity.

ヘロト 人間 ト 人間 ト 人間 トー

• How can I prove that a formula does not correspond?

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics

イロト イヨト イヨト イヨト

 How can I prove that a formula does <u>not</u> correspond? With model-theoretic techniques (failure of Löwenheim-Skolem, compactness, etc.)

イロト イボト イヨト イヨト

- How can I prove that a formula does <u>not</u> correspond? With model-theoretic techniques (failure of Löwenheim-Skolem, compactness, etc.)
- Is there a characterization of all the formulas that have a first order correspondent?

イロト イボト イヨト イヨト

- How can I prove that a formula does <u>not</u> correspond? With model-theoretic techniques (failure of Löwenheim-Skolem, compactness, etc.)
- Is there a characterization of all the formulas that have a first order correspondent? No, and this class is an undecidable. [Chagrova]

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Generalizing: Lattice based logics

Relational RS Frames [Gehrke] Algebraic Lattices with operators e.g. $\mathbb{L} = (L, \land, \lor, \circ, \star, \diamondsuit, \Box, \triangleleft, \triangleright, \bot, \top)$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Generalizing: Lattice based logics

Relational RS Frames [Gehrke] Algebraic Lattices with operators e.g. $\mathbb{L} = (L, \land, \lor, \circ, \star, \diamondsuit, \Box, \triangleleft, \triangleright, \bot, \top)$

3

- $(L, \land, \lor, \bot, \top)$ is perfect if it is
 - complete,
 - completely join generated by its completely join irreducible elements J[∞], and
 - So completely meet generated by its completely meet irreducible elements the set M^{∞} .

Reflexivity, again

$\forall p[p \le \Diamond p]$

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics

ヘロト ヘヨト ヘヨト ヘヨト

æ

Reflexivity, again

$\forall p[p \le \diamondsuit p]$

$\forall j \forall m \forall p \left[\left\{ \begin{array}{l} j \leq p, \quad \Diamond p \leq m \end{array} \right\} \Rightarrow j \leq m \right]$

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics

イロト イヨト イヨト イヨト

Reflexivity, again

$$\forall p[p \le \diamondsuit p]$$

$$\forall \mathbf{j} \forall \mathbf{m} \forall p \left[\left\{ \begin{array}{l} \mathbf{j} \le p, \quad \Diamond p \le \mathbf{m} \end{array} \right\} \Rightarrow \mathbf{j} \le \mathbf{m} \right]$$
$$\forall \mathbf{j} \forall \mathbf{m} \forall p \left[\left\{ \begin{array}{l} \Diamond \mathbf{j} \le \mathbf{m} \end{array} \right\} \Rightarrow \mathbf{j} \le \mathbf{m} \right]$$

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics

ヘロト ヘヨト ヘヨト ヘヨト

æ

Reflexivity, again

$$\forall p[p \le \diamondsuit p]$$

$$\forall \mathbf{j} \forall \mathbf{m} \forall p \left[\left\{ \begin{array}{l} \mathbf{j} \le p, \quad \Diamond p \le \mathbf{m} \end{array} \right\} \Rightarrow \mathbf{j} \le \mathbf{m} \right]$$
$$\forall \mathbf{j} \forall \mathbf{m} \forall p \left[\left\{ \begin{array}{l} \Diamond \mathbf{j} \le \mathbf{m} \end{array} \right\} \Rightarrow \mathbf{j} \le \mathbf{m} \right]$$

j≤¢j

Concretely (on Kripke frames / BAO's): $\{x\} \subseteq \{y \in W \mid Rxy\}$, i.e., Rxx.

Ackermann's Lemma

- $\bullet \ \mathbb{L}$ a perfect lattice with operators.
- α , β and γ terms such that
 - *p* ∉ VAR(α),
 - $\beta(p)$ positive in p, and
 - γ(p) negative in p
- TFAE:

イロト イボト イヨト イヨト

Ackermann's Lemma

- $\bullet \ \mathbb{L}$ a perfect lattice with operators.
- α , β and γ terms such that
 - *p* ∉ VAR(α),
 - $\beta(p)$ positive in p, and
 - γ(p) negative in p

TFAE:

 $\bigcirc \mathbb{L}, \mathsf{v} \models \beta(\alpha) \leq \gamma(\alpha)$

2 there exists some $v' \sim_p v$ such that $\mathbb{L}, v' \models \alpha \leq p$ and $\mathbb{L}, v' \models \beta(p) \leq \gamma(p)$.

ヘロト 人間 ト 人間 ト 人間 トー

Adjunction

 $\mathbb A$ and $\mathbb B$ complete lattices.

 $f : \mathbb{A} \to \mathbb{B}$ and $g : \mathbb{B} \to \mathbb{A}$.

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics

イロト イヨト イヨト イヨト

Adjunction

 $\mathbb A$ and $\mathbb B$ complete lattices.

$$f : \mathbb{A} \to \mathbb{B}$$
 and $g : \mathbb{B} \to \mathbb{A}$.

$$f \dashv g$$
 if $f(a) \le b$ iff $a \le g(b)$

iff
$$f(\lor S) = \lor_{s \in S} f(s)$$
 and $g(\land S) = \land_{s \in S} g(s)$

イロト イヨト イヨト イヨト

Adjunction

$\mathbb A$ and $\mathbb B$ complete lattices.

$$f : \mathbb{A} \to \mathbb{B}$$
 and $g : \mathbb{B} \to \mathbb{A}$.

$$f \dashv g$$
 if $f(a) \le b$ iff $a \le g(b)$

iff
$$f(\lor S) = \bigvee_{s \in S} f(s)$$
 and $g(\land S) = \bigwedge_{s \in S} g(s)$

Example

 $\Diamond^{-1} \dashv \Box$ and $\Diamond \dashv \Box^{-1}$

ヘロト ヘヨト ヘヨト ヘヨト

æ

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$

$\forall p[\Diamond \Box p \leq \Box \Diamond p]$

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$

$\forall p[\Diamond \Box p \leq \Box \Diamond p]$

$$\forall p[\diamondsuit \bigvee \{j \in J^{\infty} \mid j \leq \Box p\} \leq \bigwedge \{m \in M^{\infty} \mid \Box \diamondsuit p \leq m\}]$$

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$

 $\forall p[\diamondsuit \Box p \le \Box \diamondsuit p]$

$$\forall p[\diamondsuit \bigvee \{j \in J^{\infty} \mid j \le \Box p\} \le \bigwedge \{m \in M^{\infty} \mid \Box \diamondsuit p \le m\}]$$
$$\forall p[\bigvee \{\diamondsuit j \mid j \in J^{\infty} \& j \le \Box p\} \le \bigwedge \{m \in M^{\infty} \mid \Box \diamondsuit p \le m\}]$$

ヘロト 人間 ト 人間 ト 人間 トー

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$

 $\forall p[\Diamond \Box p \leq \Box \Diamond p]$

$$\forall p[\diamondsuit \bigvee \{j \in J^{\infty} \mid j \le \Box p\} \le \bigwedge \{m \in M^{\infty} \mid \Box \diamondsuit p \le m\}]$$
$$\forall p[\bigvee \{\diamondsuit j \mid j \in J^{\infty} \& j \le \Box p\} \le \bigwedge \{m \in M^{\infty} \mid \Box \diamondsuit p \le m\}]$$
$$\forall p \forall j \forall m[(j \le \Box p \& \Box \diamondsuit p \le m) \Rightarrow \diamondsuit j \le m]$$

イロト イヨト イヨト イヨト

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$

 $\forall p[\Diamond \Box p \leq \Box \Diamond p]$

$$\forall p[\diamond \bigvee \{j \in J^{\infty} \mid j \leq \Box p\} \leq \bigwedge \{m \in M^{\infty} \mid \Box \diamond p \leq m\}]$$

$$\forall p[\bigvee \{\diamond j \mid j \in J^{\infty} \& j \leq \Box p\} \leq \bigwedge \{m \in M^{\infty} \mid \Box \diamond p \leq m\}]$$

$$\forall p \forall j \forall m[(j \leq \Box p \& \Box \diamond p \leq m) \Rightarrow \diamond j \leq m]$$

$$\forall p \forall j \forall m [(\blacklozenge j \le p \& \Box \diamondsuit p \le m) \Rightarrow \diamondsuit j \le m]$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$

 $\forall p[\Diamond \Box p \leq \Box \Diamond p]$

$$\begin{split} \forall p[\diamond \bigvee \{j \in J^{\infty} \mid j \leq \Box p\} \leq \bigwedge \{m \in M^{\infty} \mid \Box \diamond p \leq m\}] \\ \forall p[\bigvee \{\diamond j \mid j \in J^{\infty} \& j \leq \Box p\} \leq \bigwedge \{m \in M^{\infty} \mid \Box \diamond p \leq m\}] \\ \forall p \forall j \forall m[(j \leq \Box p \& \Box \diamond p \leq m) \Rightarrow \diamond j \leq m] \\ \forall p \forall j \forall m[(\blacklozenge j \leq p \& \Box \diamond p \leq m) \Rightarrow \diamond j \leq m] \end{split}$$

$$\forall j \forall m [(\Box \diamondsuit \blacklozenge j \le m) \Rightarrow \diamondsuit j \le m]$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$

 $\forall p[\Diamond \Box p \leq \Box \Diamond p]$

$$\forall p[\diamondsuit \bigvee \{j \in J^{\infty} \mid j \le \Box p\} \le \bigwedge \{m \in M^{\infty} \mid \Box \diamondsuit p \le m\}]$$
$$\forall p[\bigvee \{\diamondsuit j \mid j \in J^{\infty} \& j \le \Box p\} \le \bigwedge \{m \in M^{\infty} \mid \Box \diamondsuit p \le m\}]$$

 $\forall p \forall j \forall m [(j \leq \Box p \& \Box \Diamond p \leq m) \Rightarrow \Diamond j \leq m]$

 $\forall p \forall j \forall m [(\blacklozenge j \le p \& \Box \diamondsuit p \le m) \Rightarrow \diamondsuit j \le m]$

$$\forall j \forall m [(\Box \diamondsuit \blacklozenge j \le m) \Rightarrow \diamondsuit j \le m]$$

 $\forall i [\diamond i \leq \Box \diamond \diamond i]$

Algorithmic correspondence and canonicity for non-distributive logics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$ — Translation

On Kripke frames

 $\forall j[\diamondsuit j \leq \Box \diamondsuit \blacklozenge j]$

ヘロト 人間 ト 人間 ト 人間 トー

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$ — Translation

On Kripke frames

 $\forall j[\diamondsuit j \leq \Box \diamondsuit \blacklozenge j]$

$\forall y \big[\diamondsuit \{y\} \le \Box \diamondsuit \diamondsuit^{-1} \{y\} \big]$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

э

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$ — Translation

On Kripke frames

 $\forall j [\diamondsuit j \le \Box \diamondsuit \blacklozenge j]$

$$\forall y [\diamondsuit\{y\} \le \Box \diamondsuit \diamondsuit^{-1}\{y\}]$$

$\forall y [Rxy \rightarrow \forall z (Rxz \rightarrow \exists u (Rzu \land Ryu))]$

イロト イヨト イヨト イヨト

э.

Confluence: $\Diamond \Box p \rightarrow \Box \Diamond p$ — Translation

On Kripke frames

$$\forall j [\diamondsuit j \le \Box \diamondsuit \blacklozenge j]$$

$$\forall y [\diamondsuit\{y\} \le \Box \diamondsuit \diamondsuit^{-1}\{y\}]$$

$$\forall y [Rxy \rightarrow \forall z (Rxz \rightarrow \exists u (Rzu \land Ryu))]$$

On DML-frames / intuitionistic-ML frames

 $\forall y \big[\diamondsuit\{y\} \big\uparrow \leq \Box \diamondsuit \blacklozenge\{y\} \big\uparrow \big]$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

ALBA algorithm

Algorithm / calculus:

• based on Ackermann, approximation, and residuation rules.

ALBA algorithm

Algorithm / calculus:

- based on Ackermann, approximation, and residuation rules.
- eliminates propositional variables from inequalities for sake of special variables ranging over J^{∞} and M^{∞} .

ALBA algorithm

Algorithm / calculus:

- based on Ackermann, approximation, and residuation rules.
- eliminates propositional variables from inequalities for sake of special variables ranging over J^{∞} and M^{∞} .

Theorem

All ALBA-reducible inequalities are elementary on the relational semantics.

ALBA algorithm

Algorithm / calculus:

- based on Ackermann, approximation, and residuation rules.
- eliminates propositional variables from inequalities for sake of special variables ranging over J[∞] and M[∞].

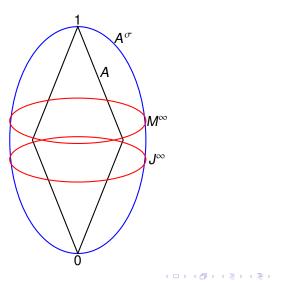
Theorem

All ALBA-reducible inequalities are elementary on the relational semantics.

Theorem

All ALBA-reducible inequalities are canonical.

Canononical Extension



æ

Canonicity

Admissible assignment *v* for \mathcal{L}^+ on \mathbb{A}^{σ} :

 $v : \mathsf{PROP} \to A,$ $v : \mathsf{J} \to J^{\infty}(\mathbb{A}^{\sigma}),$ and $v : \mathsf{M} \to M^{\infty}(\mathbb{A}^{\sigma}).$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

Canonicity

Admissible assignment v for \mathcal{L}^+ on \mathbb{A}^{σ} :

 $v : \mathsf{PROP} \to A,$ $v : \mathsf{J} \to J^{\infty}(\mathbb{A}^{\sigma}),$ and $v : \mathsf{M} \to M^{\infty}(\mathbb{A}^{\sigma}).$

Notation: Validity under admissible assignments: $\mathbb{A}^{\sigma} \models_{\mathbb{A}} \varphi \leq \psi$.

э

Canonicity

Admissible assignment v for \mathcal{L}^+ on \mathbb{A}^{σ} :

 $v : \mathsf{PROP} \to A,$ $v : \mathsf{J} \to J^{\infty}(\mathbb{A}^{\sigma}),$ and $v : \mathsf{M} \to M^{\infty}(\mathbb{A}^{\sigma}).$

Notation: Validity under admissible assignments: $\mathbb{A}^{\sigma} \models_{\mathbb{A}} \varphi \leq \psi$.

Outline of the canonicity proof: $\mathbb{A} \models \varphi \leq \psi$ \mathbb{Q} \mathbb{Q} $\mathbb{A}^{\sigma} \models_{\mathbb{A}} \varphi \leq \psi$ \mathbb{Q} \mathbb{Q} $\mathbb{A}^{\sigma} \models_{\mathbb{A}} \mathsf{ALBA}(\varphi \leq \psi)$ \Leftrightarrow $\mathbb{A}^{\sigma} \models_{\mathbb{A}} \mathsf{ALBA}(\varphi \leq \psi)$

A D N A B N A B N A B N

э.

Justifying the Ackermann rule

We need an Ackermann lemma which says:

TFAE:

(2) there exists some $v' \sim_p v$ such that $\mathbb{A}^{\sigma}, v' \models \alpha \leq p$ and $\mathbb{L}, v' \models \beta(p) \leq \gamma(p)$.

for admissible assignments v and v', where

•
$$\alpha, \beta, \gamma \in \mathcal{L}^+$$
,

• with positivity/negativity as before.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Justifying the Ackermann rule

We need an Ackermann lemma which says:

TFAE:

(2) there exists some $v' \sim_p v$ such that $\mathbb{A}^{\sigma}, v' \models \alpha \leq p$ and $\mathbb{L}, v' \models \beta(p) \leq \gamma(p)$.

for admissible assignments v and v', where

•
$$\alpha, \beta, \gamma \in \mathcal{L}^+$$
,

• with positivity/negativity as before.

PROBLEM: $v(\alpha) \notin \mathbb{A}$.

Justifying the Ackermann rule (2)

This would we possible if we could prove the following equivalent:

$\beta(\mathbf{v}(\alpha)) \leq \gamma(\mathbf{v}(\alpha))$

Justifying the Ackermann rule (2)

This would we possible if we could prove the following equivalent:

$$\beta(\mathbf{v}(\alpha)) \leq \gamma(\mathbf{v}(\alpha))$$

$$\beta(\bigwedge \{ \mathbf{a} \in \mathbb{A} \mid \mathbf{v}(\alpha) \leq \mathbf{a} \}) \leq \gamma(\bigwedge \{ \mathbf{a} \in \mathbb{A} \mid \mathbf{v}(\alpha) \leq \mathbf{a} \})$$

Justifying the Ackermann rule (2)

This would we possible if we could prove the following equivalent:

$$\begin{aligned} \beta(\mathbf{v}(\alpha)) &\leq \gamma(\mathbf{v}(\alpha)) \\ \beta(\bigwedge \{ \mathbf{a} \in \mathbb{A} \mid \mathbf{v}(\alpha) \leq \mathbf{a} \}) &\leq \gamma(\bigwedge \{ \mathbf{a} \in \mathbb{A} \mid \mathbf{v}(\alpha) \leq \mathbf{a} \}) \\ \bigwedge \{ \beta(\mathbf{a}) \mid \mathbf{v}(\alpha) \leq \mathbf{a} \in \mathbb{A} \} &\leq \bigvee \{ \gamma(\mathbf{a}) \mid \mathbf{v}(\alpha) \leq \mathbf{a} \in \mathbb{A} \} \end{aligned}$$

Justifying the Ackermann rule (2)

This would we possible if we could prove the following equivalent:

$$\begin{split} \beta(\mathbf{v}(\alpha)) &\leq \gamma(\mathbf{v}(\alpha)) \\ \beta(\bigwedge \{a \in \mathbb{A} \mid \mathbf{v}(\alpha) \leq a\}) &\leq \gamma(\bigwedge \{a \in \mathbb{A} \mid \mathbf{v}(\alpha) \leq a\}) \\ \bigwedge \{\beta(a) \mid \mathbf{v}(\alpha) \leq a \in \mathbb{A}\} &\leq \bigvee \{\gamma(a) \mid \mathbf{v}(\alpha) \leq a \in \mathbb{A}\} \\ \beta(a_0) &\leq \gamma(a_0) \end{split}$$

Justifying the Ackermann rule (2)

This would we possible if we could prove the following equivalent:

$$\beta(\mathbf{v}(\alpha)) \leq \gamma(\mathbf{v}(\alpha))$$

$$\beta(\bigwedge \{a \in \mathbb{A} \mid \mathbf{v}(\alpha) \leq a\}) \leq \gamma(\bigwedge \{a \in \mathbb{A} \mid \mathbf{v}(\alpha) \leq a\})$$

$$\bigwedge \{\beta(a) \mid \mathbf{v}(\alpha) \leq a \in \mathbb{A}\} \leq \bigvee \{\gamma(a) \mid \mathbf{v}(\alpha) \leq a \in \mathbb{A}\})$$

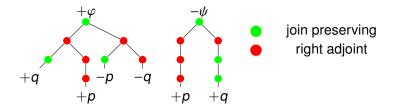
$$\beta(a_0) \leq \gamma(a_0)$$

Use classification of \mathcal{L}^+ -terms as syntactically open / closed.

Sahlqvist inequalities

$$\varphi \leq \psi$$

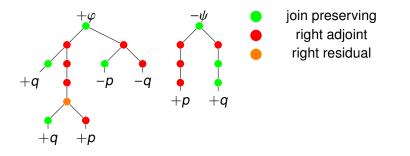
with
$$\epsilon_p = 1$$
 and $\epsilon_q = \partial$.



Inductive Inequalities

$$\varphi \leq \psi$$

with $\epsilon_p = 1$, and $\epsilon_q = \partial$, and $q <_{\Omega} p$.



ヘロト ヘ部ト ヘヨト ヘヨト

Completeness for inductive inequalities

Theorem

ALBA successfully reduces all inductive (and hence Sahlqvist) inequalities.

Corollary

All inductive (and hence Sahlqvist) inequalities are elementary and canonical.

ヘロト 人間 トイヨト イヨト

Willem Conradie, Alessandra Palmigiano

Algorithmic correspondence and canonicity for non-distributive logics