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Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

(Classical) Modal Logic

Syntax

ϕ ::= ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | ^ϕ

Semantics

Relational Algebraic
Kripke frames BAO’s
F = (W ,R) A = (A ,∧,∨,−, 1, 0,^)
Valuations: V : Var→ ℘(W) Assignments: v : Var→ A
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Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

Correspondence: An example

On models:

(F,V) |= p → ^p

iff (F,V) |= ∀x(P(x)→ ∃y(Rxy ∧ P(y)))

On frames:

F |= p → ^p

iff F |= ∀P∀x(P(x)→ ∃y(Rxy ∧ P(y)))

iff F |= ∀xRxx
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Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

Correspondence theory

Given a modal formula ϕ, does it always have a first order
correspondent?

NO.

Central question: Which modal fmls have first-order frame
correspondents? [Sahhlqvist, van Benthem, 1970’s]

Syntactic classes: Sahlqvist formulas [Sahlqvist], inductive
formulas [Goranko, Vakarelov], Complex formulas [Vakarelov]

Algorithms: SCAN [Gabbay, Olbach], DLS [Szalas], SQEMA
[Conradie, Goranko, Vakarelov]

Strong relationship between correspondence and
completeness / canonicity.
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Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

FAQ:

How can I prove that a formula does not correspond?

With
model-theoretic techniques (failure of Löwenheim-Skolem,
compactness, etc.)

Is there a characterization of all the formulas that have a first
order correspondent? No, and this class is an undecidable.
[Chagrova]
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compactness, etc.)

Is there a characterization of all the formulas that have a first
order correspondent? No, and this class is an undecidable.
[Chagrova]

Willem Conradie, Alessandra Palmigiano Algorithmic correspondence and canonicity for non-distributive logics



Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

FAQ:

How can I prove that a formula does not correspond? With
model-theoretic techniques (failure of Löwenheim-Skolem,
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Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

Generalizing: Lattice based logics

Relational Algebraic
RS Frames [Gehrke] Lattices with operators

e.g. L = (L ,∧,∨, ◦, ?,^,�,C,B,⊥,>)

(L ,∧,∨,⊥,>) is perfect if it is
1 complete,
2 completely join generated by its completely join irreducible

elements J∞, and
3 completely meet generated by its completely meet irreducible

elements the set M∞.
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Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

Reflexivity, again

∀p[p ≤ ^p]

∀j∀m∀p
[{

j ≤ p, ^p ≤ m
}
⇒ j ≤ m

]
∀j∀m∀p

[{
^j ≤ m

}
⇒ j ≤ m

]
j ≤ ^j

Concretely (on Kripke frames / BAO’s):
{x} ⊆ {y ∈ W | Rxy}, i.e., Rxx.
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Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

Ackermann’s Lemma

L a perfect lattice with operators.
α, β and γ terms such that

p < VAR(α),
β(p) positive in p, and
γ(p) negative in p

TFAE:

1 L, v |= β(α) ≤ γ(α)

2 there exists some v′ ∼p v such that
L, v′ |= α ≤ p and L, v′ |= β(p) ≤ γ(p).
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Adjunction

A and B complete lattices.

f : A→ B and g : B→ A.

f a g if f(a) ≤ b iff a ≤ g(b)

iff f(
∨

S) =
∨

s∈S f(s) and g(
∧

S) =
∧

s∈S g(s)

Example

^−1 a � and ^ a �−1
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Sahlqvist and Inductive Inequalities

Confluence: ^�p → �^p

∀p[^�p ≤ �^p]

∀p[^
∨
{j ∈ J∞ | j ≤ �p} ≤

∧
{m ∈ M∞ | �^p ≤ m}]

∀p[
∨
{^j | j ∈ J∞ & j ≤ �p} ≤

∧
{m ∈ M∞ | �^p ≤ m}]

∀p∀j∀m[(j ≤ �p & �^p ≤ m)⇒ ^j ≤ m]

∀p∀j∀m[(_j ≤ p & �^p ≤ m)⇒ ^j ≤ m]

∀j∀m[(�^_j ≤ m)⇒ ^j ≤ m]

∀j[^j ≤ �^_j]
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Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

Confluence: ^�p → �^p — Translation

On Kripke frames

∀j[^j ≤ �^_j]

∀y[^{y} ≤ �^^−1{y}]

∀y[Rxy → ∀z(Rxz → ∃u(Rzu ∧ Ryu))]

On DML-frames / intuitionistic-ML frames

∀y[^{y}↑ ≤ �^_{y}↑]
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Correspondence Theory
ALBA and the non-distributive lattice setting

Sahlqvist and Inductive Inequalities

ALBA algorithm

Algorithm / calculus:

based on Ackermann, approximation, and residuation rules.

eliminates propositional variables from inequalities for sake of
special variables ranging over J∞ and M∞.

Theorem
All ALBA-reducible inequalities are elementary on the relational
semantics.

Theorem
All ALBA-reducible inequalities are canonical.
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Canononical Extension

Aσ

A

J∞

M∞

1

0
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Canonicity

Admissible assignment v for L+ on Aσ:
v : PROP→ A ,
v : J→ J∞(Aσ), and
v : M→ M∞(Aσ).

Notation: Validity under admissible assignments: Aσ |=A ϕ ≤ ψ.

Outline of the canonicity proof:

A |= ϕ ≤ ψ Aσ |= ϕ ≤ ψ

m

Aσ |=A ϕ ≤ ψ m

m

Aσ |=A ALBA(ϕ ≤ ψ) ⇔ Aσ |= ALBA(ϕ ≤ ψ)
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Justifying the Ackermann rule

We need an Ackermann lemma which says:

TFAE:

1 Aσ, v |= β(α) ≤ γ(α)

2 there exists some v′ ∼p v such that
Aσ, v′ |= α ≤ p and L, v′ |= β(p) ≤ γ(p).

for admissible assignments v and v′, where

α, β, γ ∈ L+,

with positivity/negativity as before.

PROBLEM: v(α) < A.
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Justifying the Ackermann rule (2)

This would we possible if we could prove the following equivalent:

β(v(α)) ≤ γ(v(α))

β(
∧
{a ∈ A | v(α) ≤ a}) ≤ γ(

∧
{a ∈ A | v(α) ≤ a})∧

{β(a) | v(α) ≤ a ∈ A} ≤
∨
{γ(a) | v(α) ≤ a ∈ A})

β(a0) ≤ γ(a0)

Use classification of L+-terms as syntactically open / closed.
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Sahlqvist inequalities

ϕ ≤ ψ

with εp = 1 and εq = ∂.

+ϕ −ψ

+q −p −q
+p +p +q

join preserving
right adjoint
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Inductive Inequalities

ϕ ≤ ψ

with εp = 1, and εq = ∂, and
q <Ω p.

+ϕ −ψ

+q −p −q
+p +q

+q +p

join preserving
right adjoint
right residual
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Completeness for inductive inequalities

Theorem
ALBA successfully reduces all inductive (and hence Sahlqvist)
inequalities.

Corollary

All inductive (and hence Sahlqvist) inequalities are elementary and
canonical.
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