On scattered convex geometries

joint work with Maurice Pouzet Université Claude-Bernard, Lyon

K. Adaricheva

Yeshiva University, New York

July 29, 2011 / TACL-2011 Marseille, France

Outline

Convex geometries

- 2 Order-scattered algebraic lattices: main problem
- 3 Representation of $\Omega(\eta)$ in a convex geometry
- 4 Semilattices of finite ∨-dimension: main result
- 5 Results for particular classes of convex geometries

Other results

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi : 2^X \to 2^X$ on X a convex geometry, if

- it is a zero-closed space (i.e. $\overline{\emptyset} = \emptyset$)
- ϕ satisfies the anti-exchange axiom:

 $x \in \overline{X \cup \{y\}}$ and $x \notin X$ imply that $y \notin \overline{X \cup \{x\}}$ for all $x \neq y$ in A and all closed $X \subseteq A$.

Infinite convex geometries were introduced and studied in

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi : 2^X \to 2^X$ on X a convex geometry, if

• it is a zero-closed space (i.e. $\overline{\emptyset} = \emptyset$)

• ϕ satisfies the anti-exchange axiom:

 $x \in \overline{X \cup \{y\}}$ and $x \notin X$ imply that $y \notin \overline{X \cup \{x\}}$ for all $x \neq y$ in A and all closed $X \subseteq A$.

Infinite convex geometries were introduced and studied in

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi : 2^X \to 2^X$ on X a convex geometry, if

- it is a zero-closed space (i.e. $\overline{\emptyset} = \emptyset$)
- ϕ satisfies the anti-exchange axiom:

 $x \in \overline{X \cup \{y\}}$ and $x \notin X$ imply that $y \notin \overline{X \cup \{x\}}$ for all $x \neq y$ in A and all closed $X \subseteq A$.

Infinite convex geometries were introduced and studied in

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi : 2^X \to 2^X$ on X a convex geometry, if

- it is a zero-closed space (i.e. $\overline{\emptyset} = \emptyset$)
- ϕ satisfies the anti-exchange axiom:

 $x \in \overline{X \cup \{y\}}$ and $x \notin X$ imply that $y \notin \overline{X \cup \{x\}}$ for all $x \neq y$ in A and all closed $X \subseteq A$.

Infinite convex geometries were introduced and studied in

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi : 2^X \to 2^X$ on X a convex geometry, if

• it is a zero-closed space (i.e. $\overline{\emptyset} = \emptyset$)

• ϕ satisfies the anti-exchange axiom:

 $x \in \overline{X \cup \{y\}}$ and $x \notin X$ imply that $y \notin \overline{X \cup \{x\}}$ for all $x \neq y$ in A and all closed $X \subseteq A$.

Infinite convex geometries were introduced and studied in

• A subset $Y \subseteq X$ is called *closed*, if $Y = \phi(Y)$.

- The collection of closed sets Cl(X, φ) forms a complete lattice, with respect to order of containment.
- If φ is a *finitary* closure operator, then CI(X, φ) is an *algebraic* lattice.
- Convex geometry may be given by $CI(X, \phi)$.

- A subset $Y \subseteq X$ is called *closed*, if $Y = \phi(Y)$.
- The collection of closed sets Cl(X, φ) forms a complete lattice, with respect to order of containment.
- If φ is a *finitary* closure operator, then Cl(X, φ) is an algebraic lattice.
- Convex geometry may be given by $CI(X, \phi)$.

- A subset $Y \subseteq X$ is called *closed*, if $Y = \phi(Y)$.
- The collection of closed sets Cl(X, φ) forms a complete lattice, with respect to order of containment.
- If φ is a *finitary* closure operator, then Cl(X, φ) is an algebraic lattice.
- Convex geometry may be given by $CI(X, \phi)$.

- A subset $Y \subseteq X$ is called *closed*, if $Y = \phi(Y)$.
- The collection of closed sets Cl(X, φ) forms a complete lattice, with respect to order of containment.
- If φ is a *finitary* closure operator, then Cl(X, φ) is an algebraic lattice.
- Convex geometry may be given by $CI(X, \phi)$.

- Let V be a real vector space and X ⊆ V. Convex geometry Co(V, X) it the collection of sets C ∩ X, where C is a convex subset of V.
- Let S be an (infinite) ∧-semilattice. The convex geometry Sub_∧(S) is the collection of ∧-subsemilattices of S.
- For a partially ordered set ⟨P, ≤⟩, let ≤* denote a strict suborder of ≤, i.e. ≤*= {(p,q) ⊆ P² : p ≤ q and p ≠ q}. The convex geometry of suborders O(P) is the lattice of transitively closed subsets of ≤*.
- All three examples are *algebraic* convex geometries.

- Let V be a real vector space and X ⊆ V. Convex geometry Co(V, X) it the collection of sets C ∩ X, where C is a convex subset of V.
- Let S be an (infinite) ∧-semilattice. The convex geometry Sub_∧(S) is the collection of ∧-subsemilattices of S.
- For a partially ordered set ⟨P, ≤⟩, let ≤* denote a strict suborder of ≤, i.e. ≤*= {(p, q) ⊆ P² : p ≤ q and p ≠ q}. The convex geometry of suborders O(P) is the lattice of transitively closed subsets of ≤*.
- All three examples are *algebraic* convex geometries.

- Let V be a real vector space and X ⊆ V. Convex geometry Co(V, X) it the collection of sets C ∩ X, where C is a convex subset of V.
- Let S be an (infinite) ∧-semilattice. The convex geometry Sub_∧(S) is the collection of ∧-subsemilattices of S.
- For a partially ordered set ⟨P, ≤⟩, let ≤* denote a strict suborder of ≤, i.e. ≤*= {(p,q) ⊆ P² : p ≤ q and p ≠ q}. The convex geometry of suborders O(P) is the lattice of transitively closed subsets of ≤*.
- All three examples are *algebraic* convex geometries.

- Let V be a real vector space and X ⊆ V. Convex geometry Co(V, X) it the collection of sets C ∩ X, where C is a convex subset of V.
- Let S be an (infinite) ∧-semilattice. The convex geometry Sub_∧(S) is the collection of ∧-subsemilattices of S.
- For a partially ordered set ⟨P, ≤⟩, let ≤* denote a strict suborder of ≤, i.e. ≤*= {(p, q) ⊆ P² : p ≤ q and p ≠ q}. The convex geometry of suborders O(P) is the lattice of transitively closed subsets of ≤*.
- All three examples are *algebraic* convex geometries.

- Let V be a real vector space and X ⊆ V. Convex geometry Co(V, X) it the collection of sets C ∩ X, where C is a convex subset of V.
- Let S be an (infinite) ∧-semilattice. The convex geometry Sub_∧(S) is the collection of ∧-subsemilattices of S.
- For a partially ordered set ⟨P, ≤⟩, let ≤* denote a strict suborder of ≤, i.e. ≤*= {(p, q) ⊆ P² : p ≤ q and p ≠ q}. The convex geometry of suborders O(P) is the lattice of transitively closed subsets of ≤*.
- All three examples are *algebraic* convex geometries.

Problem. Describe order-scattered algebraic lattices.

Given algebraic lattice *L*, the set of its compact elements $S = S(L) \subseteq L$ forms a \lor -subsemilattice in *L*. It is well- known that $L \simeq Id(S)$, where Id(S) is the lattice of ideals of semilattice *S*.

Problem. (re-visited)

Describe when algebraic lattice L is order-scattered in terms of the shape of semilattice S(L) of its compact elements.

Problem. Describe order-scattered algebraic lattices.

Given algebraic lattice *L*, the set of its compact elements $S = S(L) \subseteq L$ forms a \lor -subsemilattice in *L*. It is well- known that $L \simeq Id(S)$, where Id(S) is the lattice of ideals of semilattice *S*.

Problem. (re-visited)

Describe when algebraic lattice L is order-scattered in terms of the shape of semilattice S(L) of its compact elements.

Problem. Describe order-scattered algebraic lattices.

Given algebraic lattice *L*, the set of its compact elements $S = S(L) \subseteq L$ forms a \lor -subsemilattice in *L*. It is well- known that $L \simeq Id(S)$, where Id(S) is the lattice of ideals of semilattice *S*.

Problem. (re-visited) Describe when algebraic lattice *L* is order-scattered in terms of the shape of semilattice S(L) of its compact elements.

Problem. Describe order-scattered algebraic lattices.

Given algebraic lattice *L*, the set of its compact elements $S = S(L) \subseteq L$ forms a \lor -subsemilattice in *L*. It is well- known that $L \simeq Id(S)$, where Id(S) is the lattice of ideals of semilattice *S*.

Problem. (re-visited)

Describe when algebraic lattice *L* is order-scattered in terms of the shape of semilattice S(L) of its compact elements.

Examples of "non-scattered" shapes

Example 1. Let \mathbb{N} be the set of natural numbers, and let $S = \mathfrak{P}^{<\omega}(\mathbb{N})$ be the \lor -semilattice of its finite subsets. Then L = Id(S) is not order-scattered.

Example 2. Consider a sub-semilattice $\Omega(\eta)$ of $\mathbb{N} \times \mathbb{Q}$, where \mathbb{Q} is a chain of rational numbers. Then $L = Id(\Omega(\eta))$ is not order-scattered.

Figure: $\Omega(\eta)$

Examples of "non-scattered" shapes

Example 1. Let \mathbb{N} be the set of natural numbers, and let $S = \mathfrak{P}^{<\omega}(\mathbb{N})$ be the \vee -semilattice of its finite subsets.

Then L = Id(S) is not order-scattered.

Example 2. Consider a sub-semilattice $\Omega(\eta)$ of $\mathbb{N} \times \mathbb{Q}$, where \mathbb{Q} is a chain of rational numbers.

Then $L = Id(\Omega(\eta))$ is not order-scattered.

Figure: $\Omega(\eta)$

Hypothesis

Problem. (re-visited again)

For a semilattice *S*, show that L = Id(S) is order-scattered iff *S* is order-scattered and does not contain either $\mathfrak{P}^{<\omega}(\mathbb{N})$ or $\Omega(\eta)$ as a sub-semilattice.

Earlier result

I. Chakir, and M. Pouzet, *The length of chains in modular algebraic lattices*, Order, 24(2007), 227–247.

Theorem. Algebraic *modular* lattice *L* is order-scattered iff the semilattice *S* of its compact elements is order-scattered and does not contain $\mathfrak{P}^{<\omega}(\mathbb{N})$ as a subsemilattice.

Note. In most cases, the modular law fails in convex geometries, unless they are distributive.

Earlier result

I. Chakir, and M. Pouzet, *The length of chains in modular algebraic lattices*, Order, 24(2007), 227–247.

Theorem. Algebraic *modular* lattice *L* is order-scattered iff the semilattice *S* of its compact elements is order-scattered and does not contain $\mathfrak{P}^{<\omega}(\mathbb{N})$ as a subsemilattice.

Note. In most cases, the modular law fails in convex geometries, unless they are distributive.

Main question

Can the problem be solved in algebraic convex geometries?

Answer so far: YES, under some additional finitary assumption on convex geometries.

Two important components in the proof:

- representation of $\Omega(\eta)$ in convex geometry called *a multichain*
- Galvin's Theorem in infinite combinatorics

Main question

Can the problem be solved in algebraic convex geometries?

Answer so far: YES, under some additional finitary assumption on convex geometries.

Two important components in the proof:

- representation of $\Omega(\eta)$ in convex geometry called *a multichain*
- Galvin's Theorem in infinite combinatorics

Main question

Can the problem be solved in algebraic convex geometries?

Answer so far: YES, under some additional finitary assumption on convex geometries.

Two important components in the proof:

- representation of $\Omega(\eta)$ in convex geometry called *a multichain*
- Galvin's Theorem in infinite combinatorics

- Consider an infinite set *E*.
- Let $(\mathcal{L}_i : i \in I)$ be the set of linear orders on *E*.
- Build a convex geometry $C_i = Id(E, \mathcal{L}_i)$, for each $i \in I$.
- Build a closure system $C = \bigvee_{i \in I} C_i$ on E. Closed sets in C are $X = \bigcap X_i$, where X_i is closed in C_i , for each i.
- For arbitrary *I*, *C* is a convex geometry. For any finite *I*, *C* is algebraic.

- Consider an infinite set E.
- Let $(\mathcal{L}_i : i \in I)$ be the set of linear orders on *E*.
- Build a convex geometry $C_i = Id(E, \mathcal{L}_i)$, for each $i \in I$.
- Build a closure system $C = \bigvee_{i \in I} C_i$ on E. Closed sets in C are $X = \bigcap X_i$, where X_i is closed in C_i , for each i.
- For arbitrary *I*, *C* is a convex geometry. For any finite *I*, *C* is algebraic.

- Consider an infinite set E.
- Let $(\mathcal{L}_i : i \in I)$ be the set of linear orders on E.
- Build a convex geometry $C_i = Id(E, \mathcal{L}_i)$, for each $i \in I$.
- Build a closure system $C = \bigvee_{i \in I} C_i$ on E. Closed sets in C are $X = \bigcap X_i$, where X_i is closed in C_i , for each i.
- For arbitrary *I*, *C* is a convex geometry. For any finite *I*, *C* is algebraic.

- Consider an infinite set E.
- Let $(\mathcal{L}_i : i \in I)$ be the set of linear orders on E.
- Build a convex geometry $C_i = Id(E, \mathcal{L}_i)$, for each $i \in I$.
- Build a closure system $C = \bigvee_{i \in I} C_i$ on E. Closed sets in C are $X = \bigcap X_i$, where X_i is closed in C_i , for each i.
- For arbitrary *I*, *C* is a convex geometry. For any finite *I*, *C* is algebraic.

- Consider an infinite set E.
- Let $(\mathcal{L}_i : i \in I)$ be the set of linear orders on E.
- Build a convex geometry $C_i = Id(E, \mathcal{L}_i)$, for each $i \in I$.
- Build a closure system $C = \bigvee_{i \in I} C_i$ on E. Closed sets in C are $X = \bigcap X_i$, where X_i is closed in C_i , for each i.
- For arbitrary *I*, *C* is a convex geometry. For any finite *I*, *C* is algebraic.

- Consider an infinite set E.
- Let $(\mathcal{L}_i : i \in I)$ be the set of linear orders on E.
- Build a convex geometry $C_i = Id(E, \mathcal{L}_i)$, for each $i \in I$.
- Build a closure system $C = \bigvee_{i \in I} C_i$ on *E*. Closed sets in *C* are $X = \bigcap X_i$, where X_i is closed in C_i , for each *i*.
- For arbitrary *I*, *C* is a convex geometry. For any finite *I*, *C* is algebraic.

- E is a countable set;
- |*I*| = 2;
- (E, \mathcal{L}_1) is isomorphic to a chain of natural numbers;
- (E, \mathcal{L}_2) has a sub-chain of rational numbers.

- E is a countable set;
- |*I*| = 2;
- (E, \mathcal{L}_1) is isomorphic to a chain of natural numbers;
- (E, \mathcal{L}_2) has a sub-chain of rational numbers.

- *E* is a countable set;
- |*I*| = 2;
- (E, \mathcal{L}_1) is isomorphic to a chain of natural numbers;
- (E, \mathcal{L}_2) has a sub-chain of rational numbers.

- *E* is a countable set;
- |*I*| = 2;
- (E, \mathcal{L}_1) is isomorphic to a chain of natural numbers;
- (E, \mathcal{L}_2) has a sub-chain of rational numbers.

Representation

Lemma. For any duplex $C = Id(E, \mathcal{L}_1) \vee Id(E, \mathcal{L}_2)$, $\Omega(\eta)$ is a sub-semilattice of the semilattice of compact elements of *C*.

Galvin's Theorem

Theorem (F. Galvin, unpublished)

Suppose the pairs of rationals are divided into finitely many classes A_1, \ldots, A_n . Fix the ordering on the rationals with order type Ω . Then there is a subset *X* of rationals of order type η and indices *i*, *j* (with possibly *i* = *j*) such that all pairs of *X* on which two orders coincide belong to A_i , and all pairs of *X* on which the two orders disagree belong to A_j .

The proof is available in: R. Fraïssé, *The theory of relations*, North-Holland Pub.Co., Amsterdam, 2000.

Galvin's Theorem

Theorem (F. Galvin, unpublished)

Suppose the pairs of rationals are divided into finitely many classes A_1, \ldots, A_n . Fix the ordering on the rationals with order type Ω . Then there is a subset *X* of rationals of order type η and indices *i*, *j* (with possibly *i* = *j*) such that all pairs of *X* on which two orders coincide belong to A_i , and all pairs of *X* on which the two orders disagree belong to A_j .

The proof is available in: R. Fraïssé, *The theory of relations*, North-Holland Pub.Co., Amsterdam, 2000.

We say that a semilattice *S* with 0 has \lor -dimension dim $_{\lor}(S) = \kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains C_i , $i < \kappa$, with minimal element 0_i
- and injective map $f: S \rightarrow \prod C_i$ satisfying
- $f(a \lor b) = f(a) \lor f(b)$
- $f(0) = (0_i, i < \kappa).$

Finitary condition needed for the main theorem. We say that a semilattice *S* with 0 has \lor -*dimension dim* $_{\lor}(S) = \kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains C_i , $i < \kappa$, with minimal element 0_i
- and injective map $f: S \rightarrow \prod C_i$ satisfying
- $f(a \lor b) = f(a) \lor f(b)$
- $f(0) = (0_i, i < \kappa).$

Finitary condition needed for the main theorem. We say that a semilattice *S* with 0 has \lor -*dimension* $dim_{\lor}(S) = \kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains C_i , $i < \kappa$, with minimal element 0_i
- and injective map $f: S \rightarrow \prod C_i$ satisfying
- $f(a \lor b) = f(a) \lor f(b)$
- $f(0) = (0_i, i < \kappa).$

Finitary condition needed for the main theorem. We say that a semilattice *S* with 0 has \lor -*dimension* $dim_{\lor}(S) = \kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains C_i , $i < \kappa$, with minimal element 0_i
- and injective map $f: S \rightarrow \sqcap C_i$ satisfying
- $f(a \lor b) = f(a) \lor f(b)$
- $f(0) = (0_i, i < \kappa).$

We say that a semilattice *S* with 0 has \lor -*dimension dim* $_{\lor}(S) = \kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains C_i , $i < \kappa$, with minimal element 0_i
- and injective map $f: S \rightarrow \prod C_i$ satisfying
- $f(a \lor b) = f(a) \lor f(b)$
- $f(0) = (0_i, i < \kappa).$

We say that a semilattice *S* with 0 has \lor -*dimension dim* $_{\lor}(S) = \kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains C_i , $i < \kappa$, with minimal element 0_i
- and injective map $f: S \rightarrow \prod C_i$ satisfying
- $f(a \lor b) = f(a) \lor f(b)$
- $f(0) = (0_i, i < \kappa).$

We say that a semilattice *S* with 0 has \lor -*dimension dim* $_{\lor}(S) = \kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains C_i , $i < \kappa$, with minimal element 0_i
- and injective map $f: S \rightarrow \prod C_i$ satisfying
- $f(a \lor b) = f(a) \lor f(b)$
- $f(0) = (0_i, i < \kappa).$

We say that a semilattice *S* with 0 has \lor -*dimension dim* $_{\lor}(S) = \kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains C_i , $i < \kappa$, with minimal element 0_i
- and injective map $f: S \rightarrow \prod C_i$ satisfying
- $f(a \lor b) = f(a) \lor f(b)$
- $f(0) = (0_i, i < \kappa).$

M_3 has the order dimension 2.

If a, b, c are atoms, then $f : M_3 \to C_1 \times C_2$, where $C_1 = 0_1 < a_1 < b_1 < c_1 < 1_1$, $C_2 = 0_2 < c_2 < b_2 < a_2 < 1_2$, and $f(x) = (x_1, x_2)$. f does not preserve the join operation.

Figure: M₃

On the other hand, one can make \lor -embedding with three chains: $C_x = 0_x < x < 1_x$, x = a, b, c. Thus, $dim_{\lor}(M_3) = 3$.

K.Adaricheva (Yeshiva University, New York)

 M_3 has the order dimension 2. If a, b, c are atoms, then $f: M_3 \rightarrow C_1 \times C_2$, where $C_1 = 0_1 < a_1 < b_1 < c_1 < 1_1$,

 $C_2 = 0_2 < c_2 < b_2 < a_2 < 1_2$, and $f(x) = (x_1, x_2)$. *f* does not preserve the join operation.

Figure: M₃

On the other hand, one can make \lor -embedding with three chains: $C_x = 0_x < x < 1_x$, x = a, b, c. Thus, $dim_{\lor}(M_3) = 3$.

K.Adaricheva (Yeshiva University, New York)

 M_3 has the order dimension 2. If a, b, c are atoms, then $f: M_3 \rightarrow C_1 \times C_2$, where $C_1 = 0_1 < a_1 < b_1 < c_1 < 1_1$, $C_2 = 0_2 < c_2 < b_2 < a_2 < 1_2$, and $f(x) = (x_1, x_2)$. f does not preserve the join operation.

Figure: M₃

On the other hand, one can make \lor -embedding with three chains: $C_x = 0_x < x < 1_x$, x = a, b, c. Thus, $dim_{\lor}(M_3) = 3$.

K.Adaricheva (Yeshiva University, New York)

 M_3 has the order dimension 2. If a, b, c are atoms, then $f: M_3 \rightarrow C_1 \times C_2$, where $C_1 = 0_1 < a_1 < b_1 < c_1 < 1_1$, $C_2 = 0_2 < c_2 < b_2 < a_2 < 1_2$, and $f(x) = (x_1, x_2)$. f does not preserve the join operation.

Figure: M₃

On the other hand, one can make \lor -embedding with three chains: $C_x = 0_x < x < 1_x$, x = a, b, c. Thus, $dim_{\lor}(M_3) = 3$.

K.Adaricheva (Yeshiva University, New York)

 M_3 has the order dimension 2. If a, b, c are atoms, then $f: M_3 \rightarrow C_1 \times C_2$, where $C_1 = 0_1 < a_1 < b_1 < c_1 < 1_1$, $C_2 = 0_2 < c_2 < b_2 < a_2 < 1_2$, and $f(x) = (x_1, x_2)$. f does not preserve the join operation.

Figure: M₃

On the other hand, one can make \lor -embedding with three chains: $C_x = 0_x < x < 1_x$, x = a, b, c. Thus, $dim_{\lor}(M_3) = 3$.

K.Adaricheva (Yeshiva University, New York)

 M_3 has the order dimension 2. If a, b, c are atoms, then $f: M_3 \rightarrow C_1 \times C_2$, where $C_1 = 0_1 < a_1 < b_1 < c_1 < 1_1$, $C_2 = 0_2 < c_2 < b_2 < a_2 < 1_2$, and $f(x) = (x_1, x_2)$. f does not preserve the join operation.

Figure: M₃

On the other hand, one can make \lor -embedding with three chains: $C_x = 0_x < x < 1_x$, x = a, b, c. Thus, $dim_{\lor}(M_3) = 3$.

Main result

Theorem 1. Let *S* be the semilattice of compact elements of algebraic convex geometry C = Id(S). If $dim_{\vee}S = n < \omega$, then *C* is order scattered iff *S* is order scattered and $\Omega(\eta)$ is not a subsemilattice of *S*.

Note: $\mathfrak{P}^{<\omega}(\mathbb{N})$ cannot appear as a sub-semilattice of any semilattice *S* with $\dim_{\vee} S = n < \omega$.

Main result

Theorem 1. Let *S* be the semilattice of compact elements of algebraic convex geometry C = Id(S). If $dim_{\vee}S = n < \omega$, then *C* is order scattered iff *S* is order scattered and $\Omega(\eta)$ is not a subsemilattice of *S*.

Note: $\mathfrak{P}^{<\omega}(\mathbb{N})$ cannot appear as a sub-semilattice of any semilattice *S* with $\dim_{\vee} S = n < \omega$.

Main result

Theorem 1. Let *S* be the semilattice of compact elements of algebraic convex geometry C = Id(S). If $dim_{\vee}S = n < \omega$, then *C* is order scattered iff *S* is order scattered and $\Omega(\eta)$ is not a subsemilattice of *S*.

Note: $\mathfrak{P}^{<\omega}(\mathbb{N})$ cannot appear as a sub-semilattice of any semilattice *S* with $\dim_{\vee} S = n < \omega$.

Convex sets of vector spaces

Theorem 2. Convex geometry C = Co(V, X) is order scattered iff the semilattice *S* of compact elements of *C* is order scattered and does not have $\mathfrak{P}^{<\omega}(\mathbb{N})$ as a subsemilattice.

Subsemilattices and suborders

Theorem 3. Let *P* be an infinite \land -semilattice, then the lattice $Sub_{\land}(P)$ of subsemilattices of *P* always has a copy of \mathbb{Q} . Thus, $Sub_{\land}(P)$ is order-scattered iff *P* is finite.

Theorem 4. Let (P, \leq) be a partially ordered set, and $\leq^* = \leq \setminus \{(p, p) : p \in P\}$. The lattice of suborders O(P) is order-scattered iff \leq^* is finite.

Subsemilattices and suborders

- **Theorem 3.** Let *P* be an infinite \land -semilattice, then the lattice $Sub_{\land}(P)$ of subsemilattices of *P* always has a copy of \mathbb{Q} . Thus, $Sub_{\land}(P)$ is order-scattered iff *P* is finite.
- **Theorem 4.** Let (P, \leq) be a partially ordered set, and $\leq^* = \leq \setminus \{(p, p) : p \in P\}$. The lattice of suborders O(P) is order-scattered iff \leq^* is finite.

- Algebraic convex geometries have the geometric description: per L. Santocanale and F. Wehrung, Varieties of lattices with geometric description, http://arxiv.org/abs/1102.2195
- Example of algebraic distributive lattice which is not a convex geometry.
- Convex geometry Co(V, X) is order-scattered iff it is topologically scattered. (Analogue of Theorem of M. Mislov for algebraic distributive lattices.)

- Algebraic convex geometries have the geometric description: per L. Santocanale and F. Wehrung, Varieties of lattices with geometric description, http://arxiv.org/abs/1102.2195
- Example of algebraic distributive lattice which is not a convex geometry.
- Convex geometry Co(V, X) is order-scattered iff it is topologically scattered. (Analogue of Theorem of M. Mislov for algebraic distributive lattices.)

- Algebraic convex geometries have the geometric description: per L. Santocanale and F. Wehrung, Varieties of lattices with geometric description, http://arxiv.org/abs/1102.2195
- Example of algebraic distributive lattice which is not a convex geometry.
- Convex geometry Co(V, X) is order-scattered iff it is topologically scattered. (Analogue of Theorem of M. Mislov for algebraic distributive lattices.)

- Algebraic convex geometries have the geometric description: per L. Santocanale and F. Wehrung, Varieties of lattices with geometric description, http://arxiv.org/abs/1102.2195
- Example of algebraic distributive lattice which is not a convex geometry.
- Convex geometry Co(V, X) is order-scattered iff it is topologically scattered. (Analogue of Theorem of M. Mislov for algebraic distributive lattices.)

Other results

Maurice Pouzet

Figure: At the moment of thought

Greetings from New York State

Thank you ! Mercy ! Spasibo !

Figure: Manhattan from Bear Mountain

K.Adaricheva (Yeshiva University, New York)