On scattered convex geometries joint work with Maurice Pouzet Université Claude-Bernard, Lyon

K. Adaricheva

Yeshiva University, New York
July 29, 2011 / TACL-2011
Marseille, France

Outline

(1) Convex geometries
(2) Order-scattered algebraic lattices: main problem
(3) Representation of $\Omega(\eta)$ in a convex geometry
(4) Semilattices of finite \vee-dimension: main result
(5) Results for particular classes of convex geometries

6 Other results

Definition of a convex geometry

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi: 2^{X} \rightarrow 2^{X}$ on X a convex geometry, if

- it is a zero-closed space (i.e. $\bar{\emptyset}=\emptyset$)
ϕ satisfies the anti-exchange axiom:

Infinite convex geometries were introduced and studied in
K.V. Adaricheva, V.A Gorbunov, and VI. Tumanov

Join-semidistributive lattices and convex geometries
Adv. Math., 173 (2003), 1-49.

Definition of a convex geometry

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi: 2^{X} \rightarrow 2^{X}$ on X a convex geometry, if

- it is a zero-closed space (i.e. $\bar{\emptyset}=\emptyset$)
- ϕ satisfies the anti-exchange axiom:

Infinite convex geometries were introduced and studied in
K.V. Adaricheva, V.A Gorbunov, and VII Tumanov

Join-semidistributive lattices and convex geometries
Adv. Math., 173 (2003), 1-49.

Definition of a convex geometry

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi: 2^{X} \rightarrow 2^{X}$ on X a convex geometry, if

- it is a zero-closed space (i.e. $\bar{\emptyset}=\emptyset$)
- ϕ satisfies the anti-exchange axiom:

Infinite convex geometries were introduced and studied in
K.V. Adaricheva, V/A Gorbunov, and V/I Tumanov

Join-semidistributive lattices and convex geometries
Adv. Math., 173 (2003), 1-49.

Definition of a convex geometry

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi: 2^{X} \rightarrow 2^{X}$ on X a convex geometry, if

- it is a zero-closed space (i.e. $\bar{\emptyset}=\emptyset$)
- ϕ satisfies the anti-exchange axiom:

$$
\begin{aligned}
& x \in \overline{X \cup\{y\}} \text { and } x \notin X \text { imply that } y \notin \overline{X \cup\{x\}} \\
& \quad \text { for all } x \neq y \text { in } A \text { and all closed } X \subseteq A .
\end{aligned}
$$

Infinite convex geometries were introduced and studied in
K.V. Adaricheva, V.A. Gorbunov, and V.I. Tumanov

Join-semidistributive lattices and convex geometries
Adv. Math., 173 (2003), 1-49.

Definition of a convex geometry

A pair (X, ϕ) of a non-empty set X and a closure operator $\phi: 2^{X} \rightarrow 2^{X}$ on X a convex geometry, if

- it is a zero-closed space (i.e. $\bar{\emptyset}=\emptyset$)
- ϕ satisfies the anti-exchange axiom:

$$
\begin{aligned}
& x \in \overline{X \cup\{y\}} \text { and } x \notin X \text { imply that } y \notin \overline{X \cup\{x\}} \\
& \quad \text { for all } x \neq y \text { in } A \text { and all closed } X \subseteq A .
\end{aligned}
$$

Infinite convex geometries were introduced and studied in
K.V. Adaricheva, V.A. Gorbunov, and V.I. Tumanov Join-semidistributive lattices and convex geometries Adv. Math., 173 (2003), 1-49.

- A subset $Y \subseteq X$ is called closed, if $Y=\phi(Y)$.
- The collection of closed sets $C I(X, \phi)$ forms a complete lattice, with respect to order of containment.
- If ϕ is a finitary closure operator, then $\boldsymbol{C} /(X, \phi)$ is an algebraic lattice.
- Convex geometry may be given by $\operatorname{Cl}(X, \phi)$.
- A subset $Y \subseteq X$ is called closed, if $Y=\phi(Y)$.
- The collection of closed sets $C I(X, \phi)$ forms a complete lattice, with respect to order of containment.
- If ϕ is a finitary closure operator, then $\mathrm{CI}(X, \phi)$ is an algebraic lattice.
- Convex geometry may be given by $C I(X, \phi)$.
- A subset $Y \subseteq X$ is called closed, if $Y=\phi(Y)$.
- The collection of closed sets $C I(X, \phi)$ forms a complete lattice, with respect to order of containment.
- If ϕ is a finitary closure operator, then $\operatorname{Cl}(X, \phi)$ is an algebraic lattice.
- Convex geometry may be given by $\operatorname{Cl}(X, \phi)$.
- A subset $Y \subseteq X$ is called closed, if $Y=\phi(Y)$.
- The collection of closed sets $C I(X, \phi)$ forms a complete lattice, with respect to order of containment.
- If ϕ is a finitary closure operator, then $\operatorname{Cl}(X, \phi)$ is an algebraic lattice.
- Convex geometry may be given by $\operatorname{Cl}(X, \phi)$.

Examples

- Let V be a real vector space and $X \subseteq V$. Convex geometry $C o(V, X)$ it the collection of sets $C \cap X$, where C is a convex subset of V.
- Let S be an (infinite) \wedge-semilattice. The convex geometry Sub^(S) is the collection of \wedge-subsemilattices of S.
- For a partially ordered set $\langle P, \leq\rangle$, let \leq^{*} denote a strict suborder of \leq, i.e. $\leq^{*}=\left\{(p, q) \subseteq P^{2}: p \leq q\right.$ and $\left.p \neq q\right\}$. The convex geometry of suborders $O(P)$ is the lattice of transitively closed subsets of
- All three examples are algebraic convex geometries.

Examples

- Let V be a real vector space and $X \subseteq V$. Convex geometry $C o(V, X)$ it the collection of sets $C \cap X$, where C is a convex subset of V.
- Let S be an (infinite) \wedge-semilattice. The convex geometry $\operatorname{Sub}_{\wedge}(S)$ is the collection of \wedge-subsemilattices of S.
- For a partially ordered set $\langle P, \leq\rangle$, let \leq^{*} denote a strict suborder of \leq, i.e. $\leq^{*}=\left\{(p, q) \subseteq P^{2}: p \leq q\right.$ and $\left.p \neq q\right\}$. The convex geometry of suborders $O(P)$ is the lat ice of transitively closed subsets of
- All three examples are algebraic convex geometries.

Examples

- Let V be a real vector space and $X \subseteq V$. Convex geometry $\operatorname{Co}(V, X)$ it the collection of sets $C \cap X$, where C is a convex subset of V.
- Let S be an (infinite) \wedge-semilattice. The convex geometry $\operatorname{Sub}_{\wedge}(S)$ is the collection of \wedge-subsemilattices of S.
- For a partially ordered set $\langle P, \leq\rangle$, let \leq^{*} denote a strict suborder of \leq, i.e. $\leq^{*}=\left\{(p, q) \subseteq P^{2}: p \leq q\right.$ and $\left.p \neq q\right\}$.
The convex geometry of suborders $O(P)$ is the lattice of transitively closed subsets of
- All three examples are algebraic convex geometries.

Examples

- Let V be a real vector space and $X \subseteq V$. Convex geometry $\operatorname{Co}(V, X)$ it the collection of sets $C \cap X$, where C is a convex subset of V.
- Let S be an (infinite) \wedge-semilattice. The convex geometry $\operatorname{Sub}_{\wedge}(S)$ is the collection of \wedge-subsemilattices of S.
- For a partially ordered set $\langle P, \leq\rangle$, let \leq^{*} denote a strict suborder of \leq, i.e. $\leq^{*}=\left\{(p, q) \subseteq P^{2}: p \leq q\right.$ and $\left.p \neq q\right\}$. The convex geometry of suborders $O(P)$ is the lattice of transitively closed subsets of \leq^{*}.
- All three examples are algebraic convex geometries.

Examples

- Let V be a real vector space and $X \subseteq V$. Convex geometry $C o(V, X)$ it the collection of sets $C \cap X$, where C is a convex subset of V.
- Let S be an (infinite) \wedge-semilattice. The convex geometry $\operatorname{Sub}_{\wedge}(S)$ is the collection of \wedge-subsemilattices of S.
- For a partially ordered set $\langle P, \leq\rangle$, let \leq^{*} denote a strict suborder of \leq, i.e. $\leq^{*}=\left\{(p, q) \subseteq P^{2}: p \leq q\right.$ and $\left.p \neq q\right\}$. The convex geometry of suborders $O(P)$ is the lattice of transitively closed subsets of \leq^{*}.
- All three examples are algebraic convex geometries.

A poset (P, \leq) is called order-scattered, if the chain of rational numbers \mathbb{Q} is not a sub-poset in (P, \leq).

Problem. Describe order-scattered algebraic lattices.

Given algebraic lattice L, the set of its compact elements $S=S(L) \subseteq L$ forms a \vee-subsemilattice in L. It is well- known that $L \simeq \operatorname{ld}(S)$, where $\operatorname{ld}(S)$ is the lattice of ideals of semilattice S.

Problem. (re-visited)
Describe when algebraic lattice L is order-scattered in terms of the shape of semilattice $S(L)$ of its compact elements.

A poset (P, \leq) is called order-scattered, if the chain of rational numbers \mathbb{Q} is not a sub-poset in (P, \leq).

Problem. Describe order-scattered algebraic lattices.

Given algebraic lattice L, the set of its compact elements $S=S(L) \subseteq L$ forms a \vee-subsemilattice in L. It is well- known that $L \simeq \operatorname{ld}(S)$, where $\operatorname{ld}(S)$ is the lattice of ideals of semilattice S.

Problem. (re-visited)
Describe when algebraic lattice L is order-scattered in terms of the shape of semilattice $S(L)$ of its compact elements.

A poset (P, \leq) is called order-scattered, if the chain of rational numbers \mathbb{Q} is not a sub-poset in (P, \leq).

Problem. Describe order-scattered algebraic lattices.

Given algebraic lattice L, the set of its compact elements $S=S(L) \subseteq L$ forms a \vee-subsemilattice in L. It is well- known that $L \simeq \operatorname{ld}(S)$, where $\operatorname{ld}(S)$ is the lattice of ideals of semilattice S.

Problem. (re-visited)
Describe when algebraic lattice L is order-scattered in terms of the shape of semilattice $S(L)$ of its compact elements.

A poset (P, \leq) is called order-scattered, if the chain of rational numbers \mathbb{Q} is not a sub-poset in (P, \leq).

Problem. Describe order-scattered algebraic lattices.

Given algebraic lattice L, the set of its compact elements $S=S(L) \subseteq L$ forms a \vee-subsemilattice in L. It is well- known that $L \simeq \operatorname{ld}(S)$, where $\operatorname{ld}(S)$ is the lattice of ideals of semilattice S.

Problem. (re-visited)
Describe when algebraic lattice L is order-scattered in terms of the shape of semilattice $S(L)$ of its compact elements.

Examples of "non-scattered" shapes

Example 1. Let \mathbb{N} be the set of natural numbers, and let $S=\mathfrak{P}^{<\omega}(\mathbb{N})$ be the V -semilattice of its finite subsets. Then $L=\operatorname{ld}(S)$ is not order-scattered.

Example 2. Consider a sub-semilattice $\Omega(\eta)$ of $\mathbb{N} \times \mathbb{Q}$, where \mathbb{Q} is a chain of rational numbers.
Then $L=\operatorname{ld}(\Omega(\eta))$ is not order-scattered.

Examples of "non-scattered" shapes

Example 1. Let \mathbb{N} be the set of natural numbers, and let $S=\mathfrak{P}^{<\omega}(\mathbb{N})$ be the V -semilattice of its finite subsets.
Then $L=\operatorname{ld}(S)$ is not order-scattered.
Example 2. Consider a sub-semilattice $\Omega(\eta)$ of $\mathbb{N} \times \mathbb{Q}$, where \mathbb{Q} is a chain of rational numbers.
Then $L=\operatorname{ld}(\Omega(\eta))$ is not order-scattered.

Figure: $\Omega(\eta)$

Hypothesis

Problem. (re-visited again)
For a semilattice S, show that $L=\operatorname{ld}(S)$ is order-scattered iff S is order-scattered and does not contain either $\mathfrak{P}^{<\omega}(\mathbb{N})$ or $\Omega(\eta)$ as a sub-semilattice.

Earlier result

I. Chakir, and M. Pouzet, The length of chains in modular algebraic lattices, Order, 24(2007), 227-247.

Theorem. Algebraic modular lattice L is order-scattered iff the semilattice S of its compact elements is order-scattered and does not contain $\mathfrak{P}^{<\omega}(\mathbb{N})$ as a subsemilattice.

Note. In most cases, the modular law fails in convex geometries, unless they are distributive.

Earlier result

I. Chakir, and M. Pouzet, The length of chains in modular algebraic lattices, Order, 24(2007), 227-247.

Theorem. Algebraic modular lattice L is order-scattered iff the semilattice S of its compact elements is order-scattered and does not contain $\mathfrak{P}^{<\omega}(\mathbb{N})$ as a subsemilattice.

Note. In most cases, the modular law fails in convex geometries, unless they are distributive.

Main question

Can the problem be solved in algebraic convex geometries?

Answer so far: YES, under some additional finitary assumption on convex geometries.

Two important components in the proof:
 - representation of $\Omega(\eta)$ in convex geornetry called a multichain
 - Galvin's Theorem in infinite combinatorics

Main question

Can the problem be solved in algebraic convex geometries?
Answer so far: YES, under some additional finitary assumption on convex geometries.

Two important components in the proof:

- representation of $\Omega(\eta)$ in convex geometry called a multichain
- Galvin's Theorem in infinite combinatorics

Main question

Can the problem be solved in algebraic convex geometries?
Answer so far: YES, under some additional finitary assumption on convex geometries.

Two important components in the proof:

- representation of $\Omega(\eta)$ in convex geometry called a multichain
- Galvin's Theorem in infinite combinatorics

Multi-chains

Defining the multi-chains:

- Consider an infinite set E.
- Let $\left(\mathcal{L}_{i}: i \in I\right)$ be the set of linear orders on E.
- Build a convex aeometry $C_{i}=\operatorname{Id}\left(E, \mathcal{L}_{i}\right)$, for each $i \in I$.
- Build a closure system $C=V_{i \in 1} C_{i}$ on E. Closed sets in C are $X=\bigcap X_{i}$, where X_{i} is closed in C_{i}, for each i.
- For arbitrary I, C is a convex geometry. For any finite I, C is algebraic.

Multi-chains

Defining the multi-chains:

- Consider an infinite set E.
- Let $\left(\mathcal{L}_{i}: i \in I\right)$ be the set of linear orders on E.
- Build a convex geometry $C_{i}=\operatorname{Id}\left(E, \mathcal{L}_{i}\right)$, for each $i \in I$.
- Build a closure system $C=\bigvee_{i=1} C_{i}$ on E. Closed sets in C are $X=\bigcap X_{i}$, where X_{i} is closed in C_{i}, for each i.
- For arbitrary I, C is a convex geometry. For any finite I, C is algebraic.

Multi-chains

Defining the multi-chains:

- Consider an infinite set E.
- Let $\left(\mathcal{L}_{i}: i \in I\right)$ be the set of linear orders on E.
- Build a convex geometry $C_{i}=\operatorname{Id}\left(E, \mathcal{L}_{i}\right)$, for each $i \in I$.
- Build a closure system $C=\bigvee_{i \in 1} C_{i}$ on E. Closed sets in C are $X=\bigcap X_{i}$, where X_{i} is closed in C_{i}, for each i.
- For arbitrary I, C is a convex geometry. For any finite I, C is algebraic.

Multi-chains

Defining the multi-chains:

- Consider an infinite set E.
- Let $\left(\mathcal{L}_{i}: i \in I\right)$ be the set of linear orders on E.
- Build a convex geometry $C_{i}=\operatorname{ld}\left(E, \mathcal{L}_{i}\right)$, for each $i \in I$.
- Build a closure system $C=\bigvee_{i \in I} C_{i}$ on E. Closed sets in C are $X=\bigcap X_{i}$, where X_{i} is closed in C_{i}, for each i.
- For arbitrary I, C is a convex geometry. For any finite I, C is algebraic.

Multi-chains

Defining the multi-chains:

- Consider an infinite set E.
- Let $\left(\mathcal{L}_{i}: i \in I\right)$ be the set of linear orders on E.
- Build a convex geometry $C_{i}=\operatorname{ld}\left(E, \mathcal{L}_{i}\right)$, for each $i \in I$.
- Build a closure system $C=\bigvee_{i \in 1} C_{i}$ on E. Closed sets in C are $X=\bigcap X_{i}$, where X_{i} is closed in C_{i}, for each i.
- For arbitrary I, C is a convex geometry. For any finite I, C is algebraic.

Multi-chains

Defining the multi-chains:

- Consider an infinite set E.
- Let $\left(\mathcal{L}_{i}: i \in I\right)$ be the set of linear orders on E.
- Build a convex geometry $C_{i}=\operatorname{ld}\left(E, \mathcal{L}_{i}\right)$, for each $i \in I$.
- Build a closure system $C=\bigvee_{i \in I} C_{i}$ on E. Closed sets in C are $X=\bigcap X_{i}$, where X_{i} is closed in C_{i}, for each i.
- For arbitrary I, C is a convex geometry. For any finite I, C is algebraic.

Duplex

The multi-chain $C=\bigvee_{i \in I} \operatorname{ld}\left(E, \mathcal{L}_{i}\right)$ is called a duplex, if

- E is a countable set;
- || $=2$;
- $\left(E, \mathcal{L}_{1}\right)$ is isomorphic to a chain of natural numbers;
- (E, \mathcal{L}_{2}) has a sub-chain of rational numbers.

Duplex

The multi-chain $C=\bigvee_{i \in I} \operatorname{ld}\left(E, \mathcal{L}_{i}\right)$ is called a duplex, if

- E is a countable set;
- $|I|=2$;
- $\left(E, \mathcal{L}_{1}\right)$ is isomorphic to a chain of natural numbers;
- $\left(E, \mathcal{L}_{2}\right)$ has a sub-chain of rational numbers.

Duplex

The multi-chain $C=\bigvee_{i \in I} \operatorname{ld}\left(E, \mathcal{L}_{i}\right)$ is called a duplex, if

- E is a countable set;
- $|I|=2$;
- $\left(E, \mathcal{L}_{1}\right)$ is isomorphic to a chain of natural numbers;
- $\left(E, \mathcal{L}_{2}\right)$ has a sub-chain of rational numbers.

Duplex

The multi-chain $C=\bigvee_{i \in I} \operatorname{ld}\left(E, \mathcal{L}_{i}\right)$ is called a duplex, if

- E is a countable set;
- $|I|=2$;
- $\left(E, \mathcal{L}_{1}\right)$ is isomorphic to a chain of natural numbers;
- $\left(E, \mathcal{L}_{2}\right)$ has a sub-chain of rational numbers.

Representation

Lemma. For any duplex $C=\operatorname{ld}\left(E, \mathcal{L}_{1}\right) \vee \operatorname{Id}\left(E, \mathcal{L}_{2}\right), \Omega(\eta)$ is a sub-semilattice of the semilattice of compact elements of C.

Figure: $\Omega(\eta)$

Galvin's Theorem

Theorem (F. Galvin, unpublished)
Suppose the pairs of rationals are divided into finitely many classes A_{1}, \ldots, A_{n}. Fix the ordering on the rationals with order type Ω. Then there is a subset X of rationals of order type η and indices i, j (with possibly $i=j$) such that all pairs of X on which two orders coincide belong to A_{i}, and all pairs of X on which the two orders disagree belong to A_{j}.

The proof is available in:
R. Fraïssé, The theory of relations, North-Holland Pub.Co.,

Amsterdam, 2000.

Galvin's Theorem

Theorem (F. Galvin, unpublished)
Suppose the pairs of rationals are divided into finitely many classes A_{1}, \ldots, A_{n}. Fix the ordering on the rationals with order type Ω. Then there is a subset X of rationals of order type η and indices i, j (with possibly $i=j$) such that all pairs of X on which two orders coincide belong to A_{i}, and all pairs of X on which the two orders disagree belong to A_{j}.

The proof is available in:
R. Fraïssé, The theory of relations, North-Holland Pub.Co., Amsterdam, 2000.

Definition of V -dimension

Finitary condition needed for the main theorem.
We say that a semilattice S with 0 has \vee-dimension $\operatorname{dim}_{V}(S)=\kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains $C_{i}, i<\kappa$, with minimal element 0_{i}
- and injective map $f: S \rightarrow \Pi C_{i}$ satisfying
- $f(a \vee b)=f(a) \vee f(b)$
- $f(0)=\left(0_{i}, i<\kappa\right)$.

Compare: for the definition of the order dimension of S, f is simply order-preserving map.

Definition of V -dimension

Finitary condition needed for the main theorem.
We say that a semilattice S with 0 has \vee-dimension $\operatorname{dim}_{\vee}(S)=\kappa$, if

- k is the smallest cardinal for which
- there exist κ chains $C_{i}, i<\kappa$, with minimal element 0_{i}
- and injective map $f: S \rightarrow \Pi C_{i}$ satisfying
- $f(a \vee b)=f(a) \vee f(b)$
- $f(0)=\left(0_{i}, i<\kappa\right)$.

Compare: for the definition of the order dimension of S, f is simply order-preserving map.

Definition of V -dimension

Finitary condition needed for the main theorem.
We say that a semilattice S with 0 has \vee-dimension $\operatorname{dim}_{\vee}(S)=\kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains $C_{i}, i<\kappa$, with minimal element 0_{i}
- and injective map $f: S \rightarrow \Pi C_{i}$ satisfying
- $f(a \vee b)=f(a) \vee f(b)$
- $f(0)=\left(0_{i}, i<k\right)$.

Compare: for the definition of the order dimension of S, f is simply order-preserving map.

Definition of V -dimension

Finitary condition needed for the main theorem.
We say that a semilattice S with 0 has \vee-dimension $\operatorname{dim}_{\vee}(S)=\kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains $C_{i}, i<\kappa$, with minimal element 0_{i}
- and injective map $f: S \rightarrow \Pi C_{i}$ satisfying

- $f(0)=\left(0_{i}, i<\kappa\right)$.

Compare: for the definition of the order dimension of S, f is simply order-preserving map.

Definition of V -dimension

Finitary condition needed for the main theorem.
We say that a semilattice S with 0 has \vee-dimension $\operatorname{dim}_{\vee}(S)=\kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains $C_{i}, i<\kappa$, with minimal element 0_{i}
- and injective map $f: S \rightarrow \Pi C_{i}$ satisfying

Compare: for the definition of the order dimension of S, f is simply order-preserving map.

Definition of V -dimension

Finitary condition needed for the main theorem.
We say that a semilattice S with 0 has \vee-dimension $\operatorname{dim}_{\vee}(S)=\kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains $C_{i}, i<\kappa$, with minimal element 0_{i}
- and injective map $f: S \rightarrow \Pi C_{i}$ satisfying
- $f(a \vee b)=f(a) \vee f(b)$

Compare: for the definition of the order dimension of S, f is simply order-preserving map.

Definition of V -dimension

Finitary condition needed for the main theorem.
We say that a semilattice S with 0 has \vee-dimension $\operatorname{dim}_{\vee}(S)=\kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains $C_{i}, i<\kappa$, with minimal element 0_{i}
- and injective map $f: S \rightarrow \Pi C_{i}$ satisfying
- $f(a \vee b)=f(a) \vee f(b)$
- $f(0)=\left(0_{i}, i<\kappa\right)$.

Compare: for the definition of the order dimension of S, f is simply order-preserving map.

Definition of V -dimension

Finitary condition needed for the main theorem.
We say that a semilattice S with 0 has \vee-dimension $\operatorname{dim}_{\vee}(S)=\kappa$, if

- κ is the smallest cardinal for which
- there exist κ chains $C_{i}, i<\kappa$, with minimal element 0_{i}
- and injective map $f: S \rightarrow \Pi C_{i}$ satisfying
- $f(a \vee b)=f(a) \vee f(b)$
- $f(0)=\left(0_{i}, i<\kappa\right)$.

Compare: for the definition of the order dimension of S, f is simply order-preserving map.

M_{3} example

M_{3} has the order dimension 2.

Figure: M_{3}

On the other hand, one can make \vee-embedding with three chains:
$C_{x}=0_{x}<x<1_{x}, x=a, b, c$. Thus, $\operatorname{dim}_{v}\left(M_{3}\right)=3$.

M_{3} example

M_{3} has the order dimension 2.
If a, b, c are atoms, then $f: M_{3} \rightarrow C_{1} \times C_{2}$, where
$C_{1}=0_{1}<a_{1}<b_{1}<c_{1}<1_{1}$,
$C_{2}=0_{2}<c_{2}<b_{2}<a_{2}<1_{2}$, and $f(x)=\left(x_{1}, x_{2}\right)$. f does not preserve
the join operation.

Figure: M_{3}

On the other hand, one can make \vee-embedding with three chains: $C_{x}=0_{x}<x<1_{x}, x=a, b, c$. Thus, $\operatorname{dim}_{v}\left(M_{3}\right)=3$.

M_{3} example

M_{3} has the order dimension 2.
If a, b, c are atoms, then $f: M_{3} \rightarrow C_{1} \times C_{2}$, where
$C_{1}=0_{1}<a_{1}<b_{1}<c_{1}<1_{1}$,
$C_{2}=0_{2}<c_{2}<b_{2}<a_{2}<1_{2}$, and $f(x)=\left(x_{1}, x_{2}\right)$. f does not preserve

Figure: M_{3}

On the other hand, one can make \vee-embedding with three chains: $C_{x}=0_{x}<x<1_{x}, x=a, b, c$. Thus, $\operatorname{dim}_{v}\left(M_{3}\right)=3$.

M_{3} example

M_{3} has the order dimension 2.
If a, b, c are atoms, then $f: M_{3} \rightarrow C_{1} \times C_{2}$, where
$C_{1}=0_{1}<a_{1}<b_{1}<c_{1}<1_{1}$,
$C_{2}=0_{2}<c_{2}<b_{2}<a_{2}<1_{2}$, and $f(x)=\left(x_{1}, x_{2}\right)$. f does not preserve
the join operation.

Figure: M_{3}

On the other hand, one can make \vee-embedding with three chains: $C_{x}=0_{x}<x<1_{x}, x=a, b, c$. Thus, $\operatorname{dim}_{v}\left(M_{3}\right)=3$.

M_{3} example

M_{3} has the order dimension 2.
If a, b, c are atoms, then $f: M_{3} \rightarrow C_{1} \times C_{2}$, where
$C_{1}=0_{1}<a_{1}<b_{1}<c_{1}<1_{1}$,
$C_{2}=0_{2}<c_{2}<b_{2}<a_{2}<1_{2}$, and $f(x)=\left(x_{1}, x_{2}\right)$. f does not preserve the join operation.

Figure: M_{3}

On the other hand, one can make \vee-embedding with three chains: $C_{x}=0_{x}<x<1_{x}, x=a, b, c$. Thus, $\operatorname{dim}_{v}\left(M_{3}\right)=3$.

M_{3} example

M_{3} has the order dimension 2.
If a, b, c are atoms, then $f: M_{3} \rightarrow C_{1} \times C_{2}$, where
$C_{1}=0_{1}<a_{1}<b_{1}<c_{1}<1_{1}$,
$C_{2}=0_{2}<c_{2}<b_{2}<a_{2}<1_{2}$, and $f(x)=\left(x_{1}, x_{2}\right)$. f does not preserve the join operation.

Figure: M_{3}

On the other hand, one can make \vee-embedding with three chains: $C_{x}=0_{x}<x<1_{x}, x=a, b, c$. Thus, $\operatorname{dim}_{\vee}\left(M_{3}\right)=3$.

Main result

Theorem 1. Let S be the semilattice of compact elements of algebraic convex geometry $C=\operatorname{ld}(S)$. If $\operatorname{dim}_{\checkmark} S=n<\omega$, then C is order scattered iff S is order scattered and $\Omega(\eta)$ is not a subsemilattice of S.

Note: $\mathfrak{P}^{<\omega}(\mathbb{N})$ cannot appear as a sub-semilattice of any semilattice S with $\operatorname{dim}_{\vee} S=n<\omega$.

Main result

Theorem 1. Let S be the semilattice of compact elements of algebraic convex geometry $C=\operatorname{ld}(S)$. If $\operatorname{dim}_{\checkmark} S=n<\omega$, then C is order scattered iff S is order scattered and $\Omega(\eta)$ is not a subsemilattice of S.

Note: $\mathfrak{P}^{<\omega}(\mathbb{N})$ cannot appear as a sub-semilattice of any semilattice S with $\operatorname{dim}_{\vee} S=n<\omega$.

Main result

Theorem 1. Let S be the semilattice of compact elements of algebraic convex geometry $C=\operatorname{ld}(S)$. If $\operatorname{dim}_{\checkmark} S=n<\omega$, then C is order scattered iff S is order scattered and $\Omega(\eta)$ is not a subsemilattice of S.

Note: $\mathfrak{P}^{<\omega}(\mathbb{N})$ cannot appear as a sub-semilattice of any semilattice S with $\operatorname{dim}_{\vee} S=n<\omega$.

Convex sets of vector spaces

Theorem 2. Convex geometry $C=\operatorname{Co}(V, X)$ is order scattered iff the semilattice S of compact elements of C is order scattered and does not have $\mathfrak{P}^{<\omega}(\mathbb{N})$ as a subsemilattice.

Subsemilattices and suborders

Theorem 3. Let P be an infinite \wedge-semilattice, then the lattice $\operatorname{Sub}_{\wedge}(P)$ of subsemilattices of P always has a copy of \mathbb{Q}. Thus, $\operatorname{Sub}_{\wedge}(P)$ is order-scattered iff P is finite.

Subsemilattices and suborders

Theorem 3. Let P be an infinite \wedge-semilattice, then the lattice $\operatorname{Sub}_{\wedge}(P)$ of subsemilattices of P always has a copy of \mathbb{Q}. Thus, $\operatorname{Sub}_{\wedge}(P)$ is order-scattered iff P is finite.

Theorem 4. Let (P, \leq) be a partially ordered set, and $\leq^{*}=\leq \backslash\{(p, p): p \in P\}$. The lattice of suborders $O(P)$ is order-scattered iff $\leq *$ is finite.

Other results

- Algebraic convex geometries have the geometric description: per L. Santocanale and F. Wehrung, Varieties of lattices with geometric description, http://arxiv.org/abs/1102.2195
- Example of algebraic distributive lattice which is not a convex geometry.
- Convex geometry $\operatorname{Co}(V, X)$ is order-scattered iff it is topologically scattered. (Analogue of Theorem of M. Mislov for algebraic distributive lattices.)

Other results

- Algebraic convex geometries have the geometric description: per L. Santocanale and F. Wehrung, Varieties of lattices with geometric description, http://arxiv.org/abs/1102.2195
- Example of algebraic distributive lattice which is not a convex geometry.
- Convex geometry $\operatorname{Co}(V, X)$ is order-scattered iff it is topologically scattered. (Analogue of Theorem of M. Mislov for algebraic distributive lattices.)

Other results

- Algebraic convex geometries have the geometric description: per L. Santocanale and F. Wehrung, Varieties of lattices with geometric description, http://arxiv.org/abs/1102.2195
- Example of algebraic distributive lattice which is not a convex geometry.
- Convex geometry $\operatorname{Co}(\mathrm{V}, \mathrm{X})$ is order-scattered iff it is topologically scattered. (Analogue of Theorem of M. Mislov for algebraic distributive lattices.)

Other results

- Algebraic convex geometries have the geometric description: per L. Santocanale and F. Wehrung, Varieties of lattices with geometric description, http://arxiv.org/abs/1102.2195
- Example of algebraic distributive lattice which is not a convex geometry.
- Convex geometry $\operatorname{Co}(V, X)$ is order-scattered iff it is topologically scattered. (Analogue of Theorem of M. Mislov for algebraic distributive lattices.)

Maurice Pouzet

Figure: At the moment of thought

Greetings from New York State

Thank you!Mercy! Spasibo!

Figure: Manhattan from Bear Mountain

