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Closure spaces, lattices and implications

Closure spaces

〈X , φ〉 is a closure space, if
X is non-empty set (finite in this talk);
φ is a closure operator on X , i.e. φ : B(X )→ B(X ) with
(1) Y ⊆ φ(Y );
(2) Y ⊆ Z implies φ(Y ) ⊆ φ(Z );
(3) φ(φ(Y )) = φ(Y ), for all Y ,Z ⊆ X .

Closed set: A = φ(A);
Lattice of closed sets: Cl(X , φ).
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Closure spaces, lattices and implications

Lattices and closure spaces

Proposition. Every finite lattice L is the lattice of closed sets of some
closure space 〈X , φ〉.

Take X = J(L), the set of join-irreducible elements: j ∈ J(L), if
j 6= 0, and j = a ∨ b implies j = a or j = b;
define φ(Y ) = {j ∈ J(L) : j ≤

∨
Y}, Y ⊆ X .
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Closure spaces, lattices and implications

Example: Building a closure space associated with lattice A12.
X = J(A12) = {1,2,3,4,5,6}. φ({4,6}) = {1,3,4,6}, φ({2,4}) = X
etc.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure: A12
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Closure spaces, lattices and implications

Closure spaces and implications

An implication σ on X : Y → Z , for Y ,Z ⊆ X , Z 6= ∅.
σ-closed subset A of X : if Y ⊆ A, then Z ⊆ A.
Closure space 〈X , φΣ〉 defined by set Σ of implications on X : A is
closed, if it is σ-closed, for each σ ∈ Σ

Every closure space 〈X , φ〉 can be presented as 〈X , ψΣ〉, for some
set Σ of implications on X .
Example: Σ = {A→ φ(A) : A ⊆ X ,A 6= φ(A)}.
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Closure spaces, lattices and implications

Implications and propositional Horn logic

Unit implication σ on X : Y → z, Y ⊆ X , z ∈ X .
Every implication Y → Z is equivalent to the set of unit
implications {Y → z, z ∈ Z}: unit expansion.
Logical interpretation of unit implication σ:
X = {x1, . . . , xn},Y = {x1, . . . , xk}, z = xk+1
σ ≡ x1 ∧ x2 · · · ∧ xk → xk+1.
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Closure spaces, lattices and implications

Summarizing:

Three equivalent ways to look at closure system 〈X , φ〉:
lattice of closed sets Cl(X , φ);
set of implications Σ(X , φ);
definite Horn formula ΣH(X , φ).
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Closure spaces, lattices and implications

Connections to computer science fields

Closure operators appear: relational data bases, data-mining,
knowledge structures, data analysis etc.
Horn formulas appear: logic programming.
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Canonical direct unit basis

K.Bertet-B.Monjardet

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit
implicational basis, Theoretical Computer Science 411 (2010),
2155-2166.

Given unit basis Σ and Y ⊂ X , define
πΣ(Y ) = Y ∪

⋃
{b : (A→ b) ∈ Σ,A ⊆ Y}.

Then φΣ(Y ) = πΣ(Y ) ∪ π2
Σ(Y ) ∪ π3

Σ(Y ) ∪ . . .

A unit implicational basis is called direct, if
φΣ(Y ) = πΣ(Y ), for all Y ⊆ X .
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Canonical direct unit basis

Example

Take ΣC , the basis of 8 implications for 〈J(A12), φ〉:
2→ 1,6→ 13,3→ 1,5→ 4,14→ 3,123→ 6,1345→ 6,12346→ 5.
Consider Y = {2,4}. Then π(Y ) = {2,4,1}, π2(Y ) = {2,4,1,3},
π3(Y ) = {2,4,1,3,6}, π4(Y ) = {1,2,3,4,5,6} = φ(Y ). This basis is
not direct.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure: A12
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Canonical direct unit basis

Example: continued

Another set of implications ΣU for 〈J(A12), φ〉:
2→ 1,6→ 1,6→ 3,3→ 1,5→ 4,14→ 3,24→ 3,15→ 3,
23→ 6,15→ 6,25→ 6,24→ 5,24→ 6.
Consider Y = {2,4}. Then π(Y ) = {2,4,1,3,5,6} = φ(Y ). This basis
is direct.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4
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Figure 2. Example 16
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Figure: A12
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Canonical direct unit basis

Types of direct bases

Various unit direct bases surveyed in B-M:
Left-minimal basis: D. Maier, The theory of relational databases,
1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
Weak-implication basis: A. Rusch and R. Wille, Data analysis and
Information systems, 1995;
Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.
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Canonical direct unit basis

Theorem on unity

Theorem (B-M, 2010). For every finite closure system (X , φ), its
left-minimal basis,
dependence relation basis,
canonical iteration-free basis,
direct optimal basis and
weak-implication basis

are the same.
This basis is called a canonical unit basis.
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Canonical direct unit basis

Minimality

Corollary. Canonical unit basis is
smallest
has minimal size

among all unit direct bases for closure system (X , φ), ordered by
inclusion.
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Ordered direct basis

Ordered iteration

Suppose the set of implications Σ are put into some linear order:

Σ = 〈s1, s2, . . . , sn〉.

A mapping ρΣ : P(X )→ P(X ) associated with this ordering is called an
ordered iteration of Σ:

For any Y ⊆ S, let Y0 = Y .
If Yk is computed and implication sk+1 is A→ b, then

Yk+1 =

{
Yk ∪ {b}, if A ⊆ Yk ,
Yk , otherwise.

Finally, ρΣ(Y ) = Yn.
Such iteration is utilized in forward chaining algorithm in logic
programming.
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Ordered direct basis

Example

Take ΣC , the set of implications for 〈J(A12), φ〉, in its original order:
2→ 1,6→ 13,3→ 1,5→ 4,14→ 3,123→ 6,1345→ 6,12346→ 5.

Consider Y = {2,4}.

Then π(Y ) = {2,4,1}, while
ρ(Y ) = {2,4,1,3,6,5} = φ(Y ).
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Ordered direct basis

Ordered direct basis

An implicational basis of 〈X , φ〉, together with its order: Σ = 〈s1, . . . , sn〉
is called ordered direct, if ρ(Y ) = φ(Y ), for every Y ⊆ X .
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D-basis: Main Theorem

D-basis

OD-graph of a finite lattice:
J.B.Nation An approach to lattice varieties of finite height, Algebra
Universalis 27 (1990), 521–543.

The full information about a finite lattice L can be compactly recorded
in

partially ordered set of join-irreducible elements 〈J(L),≤〉;
the minimal join-covers of join-irreducible elements.
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D-basis: Main Theorem

Example 1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure: A12

For lattice A12, the poset of join-irreducible elements is:
〈J(A12),≤〉 = 〈{1,2,3,4,5,6, },1 ≤ 2,1 ≤ 3 ≤ 6,4 ≤ 5〉.
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D-basis: Main Theorem

Example:continued

We say join-irreducible elements j1, . . . , jk form a minimal join-cover for
j ∈ J(L), if

j ≤ j1 ∨ · · · ∨ jk ,
none of j1, . . . , jk can be replaced by smaller join-irreducible or 0
so that the new join is still above j .

For example, 3 ≤ 1 ∨ 4 is a minimal cover.
6 ≤ 2 ∨ 5 is not minimal cover, since 4 ≤ 5 and 6 ≤ 2 ∨ 4 is a cover.

1 2 3 4 5

Figure 1. Example 9

1
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3 4
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Figure 2. Example 16
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Figure: A12
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D-basis: Main Theorem

D-basis

Definition. Let 〈X , φ〉 be a canonical closure system with L = Cl(X , φ).
The set of implications ΣD is called a D-basis of 〈X , φ〉, if it is made of
two parts:

{a→ b : b ∈ φ({a})}; equivalently, b ≤ a in 〈J(L),≤〉.
This part is called a binary part of the basis.
{j1 . . . jk → j : j ≤ j1 ∨ · · · ∨ jk is a minimal join cover in L}.
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D-basis: Main Theorem

Main Theorem

Theorem.
ΣD generates 〈X , φ〉, i.e., D-basis is indeed a basis of this closure
system.
ΣD is a subset of the canonical unit basis.
ΣD is an ordered direct basis, associated with any order, where
the binary part precedes the rest of implications.
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D-basis: Main Theorem

Algorithmic aspects

If Σ is a any unit direct basis of 〈X , φ〉 of size s(Σ) = S with m
implications, then

it takes time O(S2) to extract D-basis from Σ;
it takes time O(m) to put extracted D-basis into a proper order.
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D-basis: Main Theorem

Comparison

Unit canonical basis ΣU for 〈J(A12), φ〉 has 13 implications.
2→ 1,6→ 1,6→ 3,3→ 1,5→ 4,14→ 3,24→ 3,15→ 3,
23→ 6,15→ 6,25→ 6,24→ 5,24→ 6.

D-basis has 9 implications.
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 5,24→ 6.

ΣC , or canonical basis of Duquenne-Guiques, has 8 implications.
2→ 1,6→ 13,3→ 1,5→ 4,14→ 3,123→ 6,1345→ 6,12346→ 5.
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Duquenne-Guigues Canonical basis

Canonical basis

J.L. Guiques, V. Duquenne, Familles minimales d’implications
informatives résultant d’une tables de données binares, Math. Sci.
Hum. 95 (1986), 5–18.

Defined critical subsets of X for any given closure system 〈X , φ〉.
Canonical basis ΣC is {A→ B : A is critical, B = φ(A) \ A}.
ΣC is the minimum basis among all the bases generating 〈X , φ〉.
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Duquenne-Guigues Canonical basis

Computer testing

Proposition. There is no possibility, in general, to establish the order
on canonical basis that would turn it into ordered direct.

Example. Canonical basis of Duquenne-Guigues on 6-element set
that cannot be ordered:
4→ 1,15→ 3,35→ 1,25→ 6,56→ 2,26→ 5,36→ 14,134→ 6,
146→ 3.
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Duquenne-Guigues Canonical basis

Lattice of the counterexample

1 2 3 5

4

6

Figure 1. Example 67

1

Figure: Lattice for D-G non-orderable
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Three bases comparison

Three bases comparison
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Three bases comparison

More results are coming...

further optimizations of D-basis;
comparison of existing forward chaining algorithm with ordered
direct basis algorithm;
establishing the connection between E-basis and canonical D-G
basis in systems without cycles;
finding a decent algorithm to build D-basis from any given (still
open).
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Three bases comparison

Regards from Yeshiva College, New York

Figure: Yeshiva college graduating students, 2011
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Three bases comparison

Regards from across America: New York-Hawai’i

Figure: Hiking in Catskill mountains, New York State
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