Ordered direct basis of a finite closure system

 joint work with J.B.Nation, University of Hawaii R. Rand, Yeshiva CollegeK. Adaricheva

Yeshiva University, New York
July 29, 2011 / TACL-2011, Marseille, France

Outline

(1) Closure spaces, lattices and implications
(2) Canonical direct unit basis
(3) Ordered direct basis
4. D-basis: Main Theorem
(5) Duquenne-Guigues Canonical basis
(6) Three bases comparison

Closure spaces

$\langle X, \phi\rangle$ is a closure space, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: B(X) \rightarrow B(X)$ with
(1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
(3) $\phi(\phi(Y))=\phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C I(X, \phi)$.

Closure spaces

$\langle X, \phi\rangle$ is a closure space, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: B(X) \rightarrow B(X)$ with
(1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
(3) $\phi(\phi(Y))=\phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C l(X, \phi)$.

Closure spaces

$\langle X, \phi\rangle$ is a closure space, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi: B(X) \rightarrow B(X)$ with
(1) $Y \subseteq \phi(Y)$;
(2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
(3) $\phi(\phi(Y))=\phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A=\phi(A)$;
- Lattice of closed sets: $C I(X, \phi)$.

Lattices and closure spaces

Proposition. Every finite lattice L is the lattice of closed sets of some closure space $\langle\boldsymbol{X}, \phi\rangle$.

- Take $X=J(L)$, the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j=a \vee b$ implies $j=a$ or $j=b$;

Lattices and closure spaces

Proposition. Every finite lattice L is the lattice of closed sets of some closure space $\langle X, \phi\rangle$.

- Take $X=J(L)$, the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j=a \vee b$ implies $j=a$ or $j=b$;

Lattices and closure spaces

Proposition. Every finite lattice L is the lattice of closed sets of some closure space $\langle X, \phi\rangle$.

- Take $X=J(L)$, the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j=a \vee b$ implies $j=a$ or $j=b$;
- define $\phi(Y)=\{j \in J(L): j \leq \bigvee Y\}, Y \subseteq X$.

Example: Building a closure space associated with lattice A_{12}.

 $X=J\left(A_{12}\right)=\{1,2,3,4,5,6\} . \phi(\{4,6\})=\{1,3,4,6\}, \phi(\{2,4\})=X$ etc.

Figure: A_{12}

Closure spaces and implications

- An implication σ on $X: \quad Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ-closed subset A of X : if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space $\left\langle X, \phi_{\Sigma}\right\rangle$ defined by set Σ of implications on X : A is closed, if it is σ-closed, for each $\sigma \in \Sigma$
- Every closure space $\langle X, \phi\rangle$ can be presented as $\left\langle X, \psi_{\Sigma}\right\rangle$, for some set Σ of implications on X.
- Example: $\Sigma=\{A \rightarrow \phi(A)$

Closure spaces and implications

- An implication σ on X :
$Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ-closed subset A of X : if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space $\left\langle X, \phi_{\Sigma}\right\rangle$ defined by set Σ of implications on $X: A$ is closed, if it is σ-closed, for each $\sigma \in \Sigma$
- Every closure space $\langle X, \phi\rangle$ can be presented as $\left\langle X, \psi_{\Sigma}\right\rangle$, for some set Σ of implications on X.
- Example: $\Sigma=\{A \rightarrow \phi(A)$
$A \subseteq X, A \neq \phi(A)\}$

Closure spaces and implications

- An implication σ on X :
$Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ-closed subset A of X :
if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space $\left\langle X, \phi_{\Sigma}\right\rangle$ defined by set Σ of implications on $X: A$ is closed, if it is σ-closed, for each $\sigma \in \Sigma$
- Every closure space $\langle X, \phi\rangle$ can be presented as $\left\langle X, \psi_{\Sigma}\right\rangle$, for some set Σ of implications on X.

Closure spaces and implications

- An implication σ on $X: \quad Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ-closed subset A of X : if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space $\left\langle X, \phi_{\Sigma}\right\rangle$ defined by set Σ of implications on $X: A$ is closed, if it is σ-closed, for each $\sigma \in \Sigma$
- Every closure space $\langle X, \phi\rangle$ can be presented as $\left\langle X, \psi_{\Sigma}\right\rangle$, for some set Σ of implications on X.

Closure spaces and implications

- An implication σ on $X: \quad Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ-closed subset A of X : if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space $\left\langle X, \phi_{\Sigma}\right\rangle$ defined by set Σ of implications on X : A is closed, if it is σ-closed, for each $\sigma \in \Sigma$
- Every closure space $\langle X, \phi\rangle$ can be presented as $\left\langle X, \psi_{\Sigma}\right\rangle$, for some set Σ of implications on X.
- Example: $\Sigma=\{A \rightarrow \phi(A): A \subseteq X, A \neq \phi(A)\}$.

Implications and propositional Horn logic

- Unit implication σ on X :
$Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication $Y \rightarrow Z$ is equivalent to the set of unit implications $\{Y \rightarrow z, z \in Z\}$: unit expansion.
- Logical interpretation of unit implication σ :

$\sigma \equiv x_{1} \wedge x_{2} \cdots \wedge x_{k} \rightarrow x_{k+1}$.

Implications and propositional Horn logic

- Unit implication σ on $X: \quad Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication $Y \rightarrow Z$ is equivalent to the set of unit implications $\{Y \rightarrow z, z \in Z\}$: unit expansion.

Implications and propositional Horn logic

- Unit implication σ on $X: \quad Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication $Y \rightarrow Z$ is equivalent to the set of unit implications $\{Y \rightarrow Z, z \in Z\}$: unit expansion.
- Logical interpretation of unit implication σ :
$X=\left\{x_{1}, \ldots, x_{n}\right\}, Y=\left\{x_{1}, \ldots, x_{k}\right\}, z=x_{k+1}$
$\sigma \equiv x_{1} \wedge x_{2} \cdots \wedge x_{k} \rightarrow x_{k+1}$.

Summarizing:

Three equivalent ways to look at closure system $\langle X, \phi\rangle$:

- lattice of closed sets $C I(X, \phi)$;
- set of implications $\Sigma(X, \phi)$;
- definite Horn formula $\Sigma_{H}(X, \phi)$.

Summarizing:

Three equivalent ways to look at closure system $\langle X, \phi\rangle$:

- lattice of closed sets $C I(X, \phi)$;
- set of implications $\Sigma(X, \phi)$;
- definite Horn formula $\Sigma_{H}(X, \phi)$.

Summarizing:

Three equivalent ways to look at closure system $\langle X, \phi\rangle$:

- lattice of closed sets $C I(X, \phi)$;
- set of implications $\Sigma(X, \phi)$;
- definite Horn formula $\Sigma_{H}(X, \phi)$.

Connections to computer science fields

- Closure operators appear: relational data bases, data-mining, knowledge structures, data analysis etc.
- Horn formulas appear: logic programming.

Connections to computer science fields

- Closure operators appear: relational data bases, data-mining, knowledge structures, data analysis etc.
- Horn formulas appear: logic programming.

K.Bertet-B.Monjardet

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science 411 (2010), 2155-2166.

A unit implicational basis is called direct, if

K.Bertet-B.Monjardet

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science 411 (2010), 2155-2166.

Given unit basis Σ and $Y \subset X$, define $\pi_{\Sigma}(Y)=Y \cup \bigcup\{b:(A \rightarrow b) \in \Sigma, A \subseteq Y\}$.

A unit implicational basis is called direct, if

K.Bertet-B.Monjardet

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science 411 (2010), 2155-2166.

Given unit basis Σ and $Y \subset X$, define $\pi_{\Sigma}(Y)=Y \cup \bigcup\{b:(A \rightarrow b) \in \Sigma, A \subseteq Y\}$. Then $\phi_{\Sigma}(Y)=\pi_{\Sigma}(Y) \cup \pi_{\Sigma}^{2}(Y) \cup \pi_{\Sigma}^{3}(Y) \cup \ldots$

A unit implicational basis is called direct, if

K.Bertet-B.Monjardet

K.Bertet, B.Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science 411 (2010), 2155-2166.

Given unit basis Σ and $Y \subset X$, define $\pi_{\Sigma}(Y)=Y \cup \bigcup\{b:(A \rightarrow b) \in \Sigma, A \subseteq Y\}$. Then $\phi_{\Sigma}(Y)=\pi_{\Sigma}(Y) \cup \pi_{\Sigma}^{2}(Y) \cup \pi_{\Sigma}^{3}(Y) \cup \ldots$

A unit implicational basis is called direct, if $\phi_{\Sigma}(Y)=\pi_{\Sigma}(Y)$, for all $Y \subseteq X$.

Example

Take Σ_{C}, the basis of 8 implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$. Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}, \pi^{2}(Y)=\{2,4,1,3\}$, $\pi^{3}(Y)=\{2,4,1,3,6\}, \pi^{4}(Y)=\{1,2,3,4,5,6\}=\phi(Y)$. This basis is not direct.

Example

Take Σ_{C}, the basis of 8 implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$. Consider $Y=\{2,4\}$.

Example

Take Σ_{C}, the basis of 8 implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$:
$2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}$,

Example

Take Σ_{C}, the basis of 8 implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$:
$2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}, \pi^{2}(Y)=\{2,4,1,3\}$,

not direct.

Example

Take Σ_{C}, the basis of 8 implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$:
$2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}, \pi^{2}(Y)=\{2,4,1,3\}$, $\pi^{3}(Y)=\{2,4,1,3,6\}$,

Example

Take Σ_{C}, the basis of 8 implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$:
$2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}, \pi^{2}(Y)=\{2,4,1,3\}$, $\pi^{3}(Y)=\{2,4,1,3,6\}, \pi^{4}(Y)=\{1,2,3,4,5,6\}=\phi(Y)$.

Example

Take Σ_{C}, the basis of 8 implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$:
$2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1\}, \pi^{2}(Y)=\{2,4,1,3\}$, $\pi^{3}(Y)=\{2,4,1,3,6\}, \pi^{4}(Y)=\{1,2,3,4,5,6\}=\phi(Y)$. This basis is not direct.

Figure: A_{12}

Example: continued

Another set of implications Σ_{U} for $\left\langle J\left(A_{12}\right), \phi\right\rangle$:
$2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1,3,5,6\}=\phi(Y)$. This basis is direct.

Example: continued

Another set of implications Σ_{U} for $\left\langle J\left(A_{12}\right), \phi\right\rangle$:
$2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1,3,5,6\}=\phi(Y)$. This basis

Example: continued

Another set of implications Σ_{U} for $\left\langle J\left(A_{12}\right), \phi\right\rangle$:
$2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1,3,5,6\}=\phi(Y)$.
This basis

Example: continued

Another set of implications Σ_{U} for $\left\langle J\left(A_{12}\right), \phi\right\rangle$:
$2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$,
$23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Consider $Y=\{2,4\}$. Then $\pi(Y)=\{2,4,1,3,5,6\}=\phi(Y)$. This basis is direct.

Figure: A_{12}

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Types of direct bases

Various unit direct bases surveyed in B-M:

- Left-minimal basis: D. Maier, The theory of relational databases, 1983 and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Theorem on unity

Theorem (B-M, 2010). For every finite closure system (X, ϕ), its

- left-minimal basis,
- dependence relation basis,
- canonical iteration-free basis,
- direct optimal basis and
- weak-implication basis
are the same.
This basis is called a canonical unit basis.

Theorem on unity

Theorem (B-M, 2010). For every finite closure system (X, ϕ), its

- left-minimal basis,
- dependence relation basis,
- canonical iteration-free basis,
- direct optimal basis and
- weak-implication basis
are the same.
This basis is called a canonical unit basis.

Minimality

Corollary. Canonical unit basis is

- smallest
- has minimal size
among all unit direct bases for closure system (X, ϕ), ordered by inclusion.

Ordered iteration

Suppose the set of implications Σ are put into some linear order:

$$
\Sigma=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle .
$$

A mapping $\rho_{\Sigma}: P(X) \rightarrow P(X)$ associated with this ordering is called an ordered iteration of Σ :

- For any $Y \subseteq S$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

- Finally, $\rho_{\Sigma}(Y)=Y_{n}$.

Such iteration is utilized in forward chaining algorithm in logic programming.

Ordered iteration

Suppose the set of implications Σ are put into some linear order:

$$
\Sigma=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle
$$

A mapping $\rho_{\Sigma}: P(X) \rightarrow P(X)$ associated with this ordering is called an ordered iteration of Σ :

- For any $Y \subseteq S$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

- Finally, $\rho_{\Sigma}(Y)=Y_{n}$.

Such iteration is utilized in forward chaining algorithm in logic programming.

Ordered iteration

Suppose the set of implications Σ are put into some linear order:

$$
\Sigma=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle
$$

A mapping $\rho_{\Sigma}: P(X) \rightarrow P(X)$ associated with this ordering is called an ordered iteration of Σ :

- For any $Y \subseteq S$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

- Finally, $\rho_{\Sigma}(Y)=Y_{n}$.

Such iteration is utilized in forward chaining algorithm in logic programming.

Ordered iteration

Suppose the set of implications Σ are put into some linear order:

$$
\Sigma=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle .
$$

A mapping $\rho_{\Sigma}: P(X) \rightarrow P(X)$ associated with this ordering is called an ordered iteration of Σ :

- For any $Y \subseteq S$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

$$
Y_{k+1}= \begin{cases}Y_{k} \cup\{b\}, & \text { if } A \subseteq Y_{k}, \\ Y_{k}, & \text { otherwise. }\end{cases}
$$

- Finally, $\rho_{\Sigma}(Y)=Y_{n}$.

Such iteration is utilized in forward chaining algorithm in logic programming.

Ordered iteration

Suppose the set of implications Σ are put into some linear order:

$$
\Sigma=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle .
$$

A mapping $\rho_{\Sigma}: P(X) \rightarrow P(X)$ associated with this ordering is called an ordered iteration of Σ :

- For any $Y \subseteq S$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

$$
Y_{k+1}= \begin{cases}Y_{k} \cup\{b\}, & \text { if } A \subseteq Y_{k}, \\ Y_{k}, & \text { otherwise. }\end{cases}
$$

- Finally, $\rho_{\Sigma}(Y)=Y_{n}$.

Such iteration is utilized in forward chaining algorithm in logic programming.

Ordered iteration

Suppose the set of implications Σ are put into some linear order:

$$
\Sigma=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle .
$$

A mapping $\rho_{\Sigma}: P(X) \rightarrow P(X)$ associated with this ordering is called an ordered iteration of Σ :

- For any $Y \subseteq S$, let $Y_{0}=Y$.
- If Y_{k} is computed and implication s_{k+1} is $A \rightarrow b$, then

$$
Y_{k+1}= \begin{cases}Y_{k} \cup\{b\}, & \text { if } A \subseteq Y_{k}, \\ Y_{k}, & \text { otherwise. }\end{cases}
$$

- Finally, $\rho_{\Sigma}(Y)=Y_{n}$.

Such iteration is utilized in forward chaining algorithm in logic programming.

Example

Take Σ_{C}, the set of implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$, in its original order: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Example

Take Σ_{C}, the set of implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$, in its original order: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Consider $Y=\{2,4\}$.
Then $\pi(Y)=\{2,4,1\}$, while

Example

Take Σ_{C}, the set of implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$, in its original order: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Consider $Y=\{2,4\}$.
Then $\pi(Y)=\{2,4,1\}$, while

Example

Take Σ_{C}, the set of implications for $\left\langle J\left(A_{12}\right), \phi\right\rangle$, in its original order: $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Consider $Y=\{2,4\}$.
Then $\pi(Y)=\{2,4,1\}$, while $\rho(Y)=\{2,4,1,3,6,5\}=\phi(Y)$.

Ordered direct basis

An implicational basis of $\langle X, \phi\rangle$, together with its order: $\Sigma=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is called ordered direct, if $\rho(Y)=\phi(Y)$, for every $Y \subseteq X$.

D-basis

OD-graph of a finite lattice:
 J.B.Nation An approach to lattice varieties of finite height, Algebra Universalis 27 (1990), 521-543.

The full information about a finite lattice L can be compactly recorded

- partially ordered set of join-irreducible elements $\langle J(L), \leq\rangle$;
- the minimal join-covers of join-irreducible elements.

D-basis

OD-graph of a finite lattice:
J.B.Nation An approach to lattice varieties of finite height, Algebra Universalis 27 (1990), 521-543.

The full information about a finite lattice L can be compactly recorded in

- partially ordered set of join-irreducible elements $\langle J(L), \leq\rangle$:
- the minimal join-covers of join-irreducible elements.

D-basis

OD-graph of a finite lattice:
J.B.Nation An approach to lattice varieties of finite height, Algebra Universalis 27 (1990), 521-543.

The full information about a finite lattice L can be compactly recorded in

- partially ordered set of join-irreducible elements $\langle J(L), \leq\rangle$;
- the minimal join-covers of join-irreducible elements.

D-basis

OD-graph of a finite lattice:
J.B.Nation An approach to lattice varieties of finite height, Algebra Universalis 27 (1990), 521-543.

The full information about a finite lattice L can be compactly recorded in

- partially ordered set of join-irreducible elements $\langle J(L), \leq\rangle$;
- the minimal join-covers of join-irreducible elements.

Example

Figure: A_{12}

For lattice A_{12}, the poset of join-irreducible elements is: $\left\langle J\left(A_{12}\right), \leq\right\rangle=\langle\{1,2,3,4,5,6\},, 1 \leq 2,1 \leq 3 \leq 6,4 \leq 5\rangle$.

Example:continued

We say join-irreducible elements j_{1}, \ldots, j_{k} form a minimal join-cover for $j \in J(L)$, if

- none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducible or 0 so that the new join is still above j. For example, $3 \leq 1 \vee 4$ is a minimal cover. $6 \leq 2 \vee 5$ is not minimal cover, since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example:continued

We say join-irreducible elements j_{1}, \ldots, j_{k} form a minimal join-cover for $j \in J(L)$, if
$\bullet j \leq j_{1} \vee \cdots \vee j_{k}$,
none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducible or 0 so that the new join is still above j.
For example, $3 \leq 1 \vee 4$ is a minimal cover
$6 \leq 2 \vee 5$ is not minimal cover, since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example:continued

We say join-irreducible elements j_{1}, \ldots, j_{k} form a minimal join-cover for $j \in J(L)$, if
$\bullet j \leq j_{1} \vee \cdots \vee j_{k}$,

- none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducible or 0 so that the new join is still above j.
For example, $3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not minimal cover, since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example:continued

We say join-irreducible elements j_{1}, \ldots, j_{k} form a minimal join-cover for $j \in J(L)$, if

- $j \leq j_{1} \vee \cdots \vee j_{k}$,
- none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducible or 0 so that the new join is still above j.
For example, $3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not minimal cover, since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example:continued

We say join-irreducible elements j_{1}, \ldots, j_{k} form a minimal join-cover for $j \in J(L)$, if
$\bullet j \leq j_{1} \vee \cdots \vee j_{k}$,

- none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducible or 0 so that the new join is still above j.
For example, $3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not minimal cover, since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example:continued

We say join-irreducible elements j_{1}, \ldots, j_{k} form a minimal join-cover for $j \in J(L)$, if
$\bullet j \leq j_{1} \vee \cdots \vee j_{k}$,

- none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducible or 0 so that the new join is still above j.
For example, $3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not minimal cover, since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Example:continued

We say join-irreducible elements j_{1}, \ldots, j_{k} form a minimal join-cover for $j \in J(L)$, if

- $j \leq j_{1} \vee \cdots \vee j_{k}$,
- none of j_{1}, \ldots, j_{k} can be replaced by smaller join-irreducible or 0 so that the new join is still above j.
For example, $3 \leq 1 \vee 4$ is a minimal cover.
$6 \leq 2 \vee 5$ is not minimal cover, since $4 \leq 5$ and $6 \leq 2 \vee 4$ is a cover.

Definition. Let $\langle X, \phi\rangle$ be a canonical closure system with $L=C I(X, \phi)$. The set of implications Σ_{D} is called a D-basis of $\langle X, \phi\rangle$, if it is made of two parts:

- $\{a \rightarrow b: b \in \phi(\{a\})\} ;$ equivalently, $b \leq a \operatorname{in}\langle J(L), \leq\rangle$ This part is called a binary part of the basis. - $\left\{j_{1} \ldots j_{k} \rightarrow j: j \leq j_{1} \vee \cdots \vee j_{k}\right.$ is a minimal join cover in $\left.L\right\}$.

D-basis

Definition. Let $\langle X, \phi\rangle$ be a canonical closure system with $L=C I(X, \phi)$. The set of implications Σ_{D} is called a D-basis of $\langle X, \phi\rangle$, if it is made of two parts:

This part is called a binary part of the basis.

D-basis

Definition. Let $\langle X, \phi\rangle$ be a canonical closure system with $L=C I(X, \phi)$. The set of implications Σ_{D} is called a D-basis of $\langle X, \phi\rangle$, if it is made of two parts:

- $\{a \rightarrow b: b \in \phi(\{a\})\}$; equivalently, $b \leq a$ in $\langle J(L), \leq\rangle$.

D-basis

Definition. Let $\langle X, \phi\rangle$ be a canonical closure system with $L=C I(X, \phi)$. The set of implications Σ_{D} is called a D-basis of $\langle X, \phi\rangle$, if it is made of two parts:

- $\{a \rightarrow b: b \in \phi(\{a\})\}$; equivalently, $b \leq a$ in $\langle J(L), \leq\rangle$. This part is called a binary part of the basis.

D-basis

Definition. Let $\langle X, \phi\rangle$ be a canonical closure system with $L=C I(X, \phi)$. The set of implications Σ_{D} is called a D-basis of $\langle X, \phi\rangle$, if it is made of two parts:

- $\{a \rightarrow b: b \in \phi(\{a\})\}$; equivalently, $b \leq a$ in $\langle J(L), \leq\rangle$. This part is called a binary part of the basis.
- $\left\{j_{1} \ldots j_{k} \rightarrow j: j \leq j_{1} \vee \cdots \vee j_{k}\right.$ is a minimal join cover in $\left.L\right\}$.

Main Theorem

Theorem.

- Σ_{D} generates $\langle X, \phi\rangle$, i.e., D-basis is indeed a basis of this closure system.
- Σ_{D} is a subset of the canonical unit basis.
- Σ_{D} is an ordered direct basis, associated with any order, where the binary part precedes the rest of implications.

Main Theorem

Theorem.

- Σ_{D} generates $\langle X, \phi\rangle$, i.e., D-basis is indeed a basis of this closure system.
- Σ_{D} is a subset of the canonical unit basis.
- Σ_{D} is an ordered direct basis, associated with any order, where the binary part precedes the rest of implications.

Main Theorem

Theorem.

- Σ_{D} generates $\langle X, \phi\rangle$, i.e., D-basis is indeed a basis of this closure system.
- Σ_{D} is a subset of the canonical unit basis.
- Σ_{D} is an ordered direct basis, associated with any order, where the binary part precedes the rest of implications.

Main Theorem

Theorem.

- Σ_{D} generates $\langle X, \phi\rangle$, i.e., D-basis is indeed a basis of this closure system.
- Σ_{D} is a subset of the canonical unit basis.
- Σ_{D} is an ordered direct basis, associated with any order, where the binary part precedes the rest of implications.

Algorithmic aspects

If Σ is a any unit direct basis of $\langle X, \phi\rangle$ of size $s(\Sigma)=S$ with m implications, then

- it takes time $O\left(S^{2}\right)$ to extract D-basis from Σ;
- it takes time $O(m)$ to put extracted D-basis into a proper order.

Algorithmic aspects

If Σ is a any unit direct basis of $\langle X, \phi\rangle$ of size $s(\Sigma)=S$ with m implications, then

- it takes time $O\left(S^{2}\right)$ to extract D-basis from Σ;
- it takes time $O(m)$ to put extracted D-basis into a proper order.

Algorithmic aspects

If Σ is a any unit direct basis of $\langle X, \phi\rangle$ of size $s(\Sigma)=S$ with m implications, then

- it takes time $O\left(S^{2}\right)$ to extract D-basis from Σ;
- it takes time $O(m)$ to put extracted D-basis into a proper order.

Comparison

Unit canonical basis Σ_{U} for $\left\langle J\left(A_{12}\right), \phi\right\rangle$ has 13 implications.
$2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
D-basis has 9 implications.
$2 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,23 \rightarrow 6,15 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Σ_{C}, or canonical basis of Duquenne-Guiques, has 8 implications. $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Comparison

Unit canonical basis Σ_{U} for $\left\langle J\left(A_{12}\right), \phi\right\rangle$ has 13 implications.
$2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
D-basis has 9 implications.
$2 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,23 \rightarrow 6,15 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Σ_{C}, or canonical basis of Duquenne-Guiques, has 8 implications. $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Comparison

Unit canonical basis Σ_{U} for $\left\langle J\left(A_{12}\right), \phi\right\rangle$ has 13 implications. $2 \rightarrow 1,6 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,24 \rightarrow 3,15 \rightarrow 3$, $23 \rightarrow 6,15 \rightarrow 6,25 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
D-basis has 9 implications.
$2 \rightarrow 1,6 \rightarrow 3,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,23 \rightarrow 6,15 \rightarrow 6,24 \rightarrow 5,24 \rightarrow 6$.
Σ_{C}, or canonical basis of Duquenne-Guiques, has 8 implications. $2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5$.

Canonical basis

J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Defined critical subsets of X for any given closure system $\langle X, \phi\rangle$
- Canonical basis Σ_{C} is $\{A \rightarrow B: A$ is critical, $B=\phi(A) \backslash A\}$
- Σ_{C} is the minimum basis among all the bases generating

Canonical basis

J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Defined critical subsets of X for any given closure system $\langle X, \phi\rangle$.
- Canonical basis Σ_{C} is $\{A \rightarrow B: A$ is critical, $B=\phi(A) \backslash A\}$
- Σ_{C} is the minimum basis among all the bases generating $\langle X, \phi\rangle$

Canonical basis

J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Defined critical subsets of X for any given closure system $\langle X, \phi\rangle$.
- Canonical basis Σ_{C} is $\{A \rightarrow B: A$ is critical, $B=\phi(A) \backslash A\}$.
- Σ_{C} is the minimum basis among all the bases generating

Canonical basis

J.L. Guiques, V. Duquenne, Familles minimales d'implications informatives résultant d'une tables de données binares, Math. Sci. Hum. 95 (1986), 5-18.

- Defined critical subsets of X for any given closure system $\langle X, \phi\rangle$.
- Canonical basis Σ_{C} is $\{A \rightarrow B: A$ is critical, $B=\phi(A) \backslash A\}$.
- Σ_{C} is the minimum basis among all the bases generating $\langle X, \phi\rangle$.

Computer testing

Proposition. There is no possibility, in general, to establish the order on canonical basis that would turn it into ordered direct.

Example. Canonical basis of Duquenne-Guigues on 6-element set that cannot be ordered:

$146 \rightarrow 3$.

Computer testing

Proposition. There is no possibility, in general, to establish the order on canonical basis that would turn it into ordered direct.

Example. Canonical basis of Duquenne-Guigues on 6-element set that cannot be ordered:
$4 \rightarrow 1,15 \rightarrow 3,35 \rightarrow 1,25 \rightarrow 6,56 \rightarrow 2,26 \rightarrow 5,36 \rightarrow 14,134 \rightarrow 6$,
$146 \rightarrow 3$.

Computer testing

Proposition. There is no possibility, in general, to establish the order on canonical basis that would turn it into ordered direct.

Example. Canonical basis of Duquenne-Guigues on 6-element set that cannot be ordered:
$4 \rightarrow 1,15 \rightarrow 3,35 \rightarrow 1,25 \rightarrow 6,56 \rightarrow 2,26 \rightarrow 5,36 \rightarrow 14,134 \rightarrow 6$, $146 \rightarrow 3$.

Lattice of the counterexample

Figure: Lattice for D-G non-orderable

Three bases comparison

More results are coming...

- further optimizations of D-basis;
- comparison of existing forward chaining algorithm with ordered direct basis algorithm;
- establishing the connection between E-basis and canonical D-G basis in systems without cycles;
- finding a decent algorithm to build D-basis from any given (still open).

More results are coming...

- further optimizations of D-basis;
- comparison of existing forward chaining algorithm with ordered direct basis algorithm;
- establishing the connection between E-basis and canonical D-G basis in systems without cycles;
- finding a decent algorithm to build D-basis from any given (still open).

More results are coming...

- further optimizations of D-basis;
- comparison of existing forward chaining algorithm with ordered direct basis algorithm;
- establishing the connection between E-basis and canonical D-G basis in systems without cycles;
- finding a decent algorithm to build D-basis from any given (still open).

More results are coming...

- further optimizations of D-basis;
- comparison of existing forward chaining algorithm with ordered direct basis algorithm;
- establishing the connection between E-basis and canonical D-G basis in systems without cycles;
- finding a decent algorithm to build D-basis from any given (still open).

Regards from Yeshiva College, New York

Figure: Yeshiva college graduating students, 2011

Regards from across America: New York-Hawai'i

Figure: Hiking in Catskill mountains, New York State

