Ordered direct basis of a finite closure system joint work with J.B.Nation, University of Hawaii R. Rand, Yeshiva College

K. Adaricheva

Yeshiva University, New York

July 29, 2011 / TACL-2011, Marseille, France

Closure spaces, lattices and implications

- 2 Canonical direct unit basis
- 3 Ordered direct basis
- 4 D-basis: Main Theorem
- 5 Duquenne-Guigues Canonical basis
- 6 Three bases comparison

Closure spaces

$\langle X, \phi \rangle$ is a closure space, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi : B(X) \to B(X)$ with

1)
$$Y \subseteq \phi(Y);$$

(2)
$$Y \subseteq Z$$
 implies $\phi(Y) \subseteq \phi(Z)$;

- (3) $\phi(\phi(Y)) = \phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A = \phi(A)$;
- Lattice of closed sets: $CI(X, \phi)$.

Closure spaces

$\langle X, \phi \rangle$ is a closure space, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi : B(X) \to B(X)$ with

1)
$$Y \subseteq \phi(Y);$$

(2)
$$Y \subseteq Z$$
 implies $\phi(Y) \subseteq \phi(Z)$;

- (3) $\phi(\phi(Y)) = \phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A = \phi(A)$;

• Lattice of closed sets: $CI(X, \phi)$.

Closure spaces

$\langle X, \phi \rangle$ is a closure space, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi : B(X) \to B(X)$ with

1)
$$Y \subseteq \phi(Y);$$

2)
$$Y \subseteq Z$$
 implies $\phi(Y) \subseteq \phi(Z)$;

- (3) $\phi(\phi(Y)) = \phi(Y)$, for all $Y, Z \subseteq X$.
- Closed set: $A = \phi(A)$;
- Lattice of closed sets: $CI(X, \phi)$.

Lattices and closure spaces

Proposition. Every finite lattice *L* is the lattice of closed sets of some closure space $\langle X, \phi \rangle$.

- Take X = J(L), the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j = a \lor b$ implies j = a or j = b;
- define $\phi(Y) = \{j \in J(L) : j \leq \bigvee Y\}, Y \subseteq X.$

Lattices and closure spaces

Proposition. Every finite lattice *L* is the lattice of closed sets of some closure space $\langle X, \phi \rangle$.

- Take X = J(L), the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j = a \lor b$ implies j = a or j = b;
- define $\phi(Y) = \{j \in J(L) : j \leq \bigvee Y\}, Y \subseteq X.$

Lattices and closure spaces

Proposition. Every finite lattice *L* is the lattice of closed sets of some closure space $\langle X, \phi \rangle$.

- Take X = J(L), the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j = a \lor b$ implies j = a or j = b;
- define $\phi(Y) = \{j \in J(L) : j \leq \bigvee Y\}, Y \subseteq X.$

Example: Building a closure space associated with lattice A_{12} . $X = J(A_{12}) = \{1, 2, 3, 4, 5, 6\}$. $\phi(\{4, 6\}) = \{1, 3, 4, 6\}$, $\phi(\{2, 4\}) = X$ etc.

• An implication σ on X: $Y \to Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.

- σ -closed subset *A* of *X*: if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space (X, φ_Σ) defined by set Σ of implications on X: A is closed, if it is σ-closed, for each σ ∈ Σ
- Every closure space ⟨X, φ⟩ can be presented as ⟨X, ψ_Σ⟩, for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- An implication σ on X: $Y \to Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ -closed subset *A* of *X*: if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space (X, φ_Σ) defined by set Σ of implications on X: A is closed, if it is σ-closed, for each σ ∈ Σ
- Every closure space ⟨X, φ⟩ can be presented as ⟨X, ψ_Σ⟩, for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- An implication σ on X: $Y \to Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ -closed subset *A* of *X*: if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space ⟨X, φ_Σ⟩ defined by set Σ of implications on X: A is closed, if it is σ-closed, for each σ ∈ Σ
- Every closure space ⟨X, φ⟩ can be presented as ⟨X, ψ_Σ⟩, for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- An implication σ on X: $Y \to Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ -closed subset *A* of *X*: if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space ⟨X, φ_Σ⟩ defined by set Σ of implications on X: A is closed, if it is σ-closed, for each σ ∈ Σ
- Every closure space (X, φ) can be presented as (X, ψ_Σ), for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- An implication σ on X: $Y \to Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- σ -closed subset *A* of *X*: if $Y \subseteq A$, then $Z \subseteq A$.
- Closure space ⟨X, φ_Σ⟩ defined by set Σ of implications on X: A is closed, if it is σ-closed, for each σ ∈ Σ
- Every closure space (X, φ) can be presented as (X, ψ_Σ), for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

Implications and propositional Horn logic

• Unit implication σ on X: $Y \rightarrow z, Y \subseteq X, z \in X$.

- Every implication Y → Z is equivalent to the set of unit implications {Y → z, z ∈ Z}: unit expansion.
- Logical interpretation of unit implication σ : $X = \{x_1, \ldots, x_n\}, Y = \{x_1, \ldots, x_k\}, z = x_{k+1}$ $\sigma \equiv x_1 \land x_2 \cdots \land x_k \to x_{k+1}.$

Implications and propositional Horn logic

- Unit implication σ on X: $Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication Y → Z is equivalent to the set of unit implications {Y → z, z ∈ Z}: unit expansion.
- Logical interpretation of unit implication σ : $X = \{x_1, \ldots, x_n\}, Y = \{x_1, \ldots, x_k\}, z = x_{k+1}$ $\sigma \equiv x_1 \land x_2 \cdots \land x_k \to x_{k+1}.$

Implications and propositional Horn logic

- Unit implication σ on X: $Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication Y → Z is equivalent to the set of unit implications {Y → z, z ∈ Z}: unit expansion.
- Logical interpretation of unit implication σ : $X = \{x_1, \ldots, x_n\}, Y = \{x_1, \ldots, x_k\}, z = x_{k+1}$ $\sigma \equiv x_1 \land x_2 \cdots \land x_k \to x_{k+1}.$

Summarizing:

Three equivalent ways to look at closure system $\langle X, \phi \rangle$:

- lattice of closed sets $CI(X, \phi)$;
- set of implications Σ(X, φ);
- definite Horn formula $\Sigma_H(X, \phi)$.

Summarizing:

Three equivalent ways to look at closure system $\langle X, \phi \rangle$:

- lattice of closed sets $CI(X, \phi)$;
- set of implications Σ(X, φ);
- definite Horn formula $\Sigma_H(X, \phi)$.

Summarizing:

Three equivalent ways to look at closure system $\langle X, \phi \rangle$:

- lattice of closed sets $CI(X, \phi)$;
- set of implications $\Sigma(X, \phi)$;
- definite Horn formula $\Sigma_H(X, \phi)$.

Closure spaces, lattices and implications

Connections to computer science fields

- Closure operators appear: relational data bases, data-mining, knowledge structures, data analysis etc.
- Horn formulas appear: logic programming.

Closure spaces, lattices and implications

Connections to computer science fields

- Closure operators appear: relational data bases, data-mining, knowledge structures, data analysis etc.
- Horn formulas appear: logic programming.

K.Bertet, B.Monjardet, *The multiple facets of the canonical direct unit implicational basis*, Theoretical Computer Science 411 (2010), 2155-2166.

Given unit basis Σ and $Y \subset X$, define $\pi_{\Sigma}(Y) = Y \cup \bigcup \{b : (A \to b) \in \Sigma, A \subseteq Y\}.$ Then $\phi_{\Sigma}(Y) = \pi_{\Sigma}(Y) \cup \pi_{\Sigma}^{2}(Y) \cup \pi_{\Sigma}^{3}(Y) \cup ...$

K.Bertet, B.Monjardet, *The multiple facets of the canonical direct unit implicational basis*, Theoretical Computer Science 411 (2010), 2155-2166.

Given unit basis Σ and $Y \subset X$, define $\pi_{\Sigma}(Y) = Y \cup \bigcup \{b : (A \to b) \in \Sigma, A \subseteq Y\}.$ Then $\phi_{\Sigma}(Y) = \pi_{\Sigma}(Y) \cup \pi_{\Sigma}^{2}(Y) \cup \pi_{\Sigma}^{3}(Y) \cup ...$

K.Bertet, B.Monjardet, *The multiple facets of the canonical direct unit implicational basis*, Theoretical Computer Science 411 (2010), 2155-2166.

Given unit basis Σ and $Y \subset X$, define $\pi_{\Sigma}(Y) = Y \cup \bigcup \{b : (A \to b) \in \Sigma, A \subseteq Y\}.$ Then $\phi_{\Sigma}(Y) = \pi_{\Sigma}(Y) \cup \pi_{\Sigma}^{2}(Y) \cup \pi_{\Sigma}^{3}(Y) \cup ...$

K.Bertet, B.Monjardet, *The multiple facets of the canonical direct unit implicational basis*, Theoretical Computer Science 411 (2010), 2155-2166.

Given unit basis Σ and $Y \subset X$, define $\pi_{\Sigma}(Y) = Y \cup \bigcup \{b : (A \to b) \in \Sigma, A \subseteq Y\}.$ Then $\phi_{\Sigma}(Y) = \pi_{\Sigma}(Y) \cup \pi_{\Sigma}^{2}(Y) \cup \pi_{\Sigma}^{3}(Y) \cup ...$

Take Σ_C , the basis of 8 implications for $\langle J(A_{12}), \phi \rangle$: 2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5. Consider $Y = \{2,4\}$. Then $\pi(Y) = \{2,4,1\}, \pi^2(Y) = \{2,4,1,3\}, \pi^3(Y) = \{2,4,1,3,6\}, \pi^4(Y) = \{1,2,3,4,5,6\} = \phi(Y)$. This basis is *not* direct.

Take Σ_C , the basis of 8 implications for $\langle J(A_{12}), \phi \rangle$: 2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5. Consider $Y = \{2,4\}$. Then $\pi(Y) = \{2,4,1\}, \pi^2(Y) = \{2,4,1,3\}, \pi^3(Y) = \{2,4,1,3,6\}, \pi^4(Y) = \{1,2,3,4,5,6\} = \phi(Y)$. This basis is *not* direct.

Take Σ_C , the basis of 8 implications for $\langle J(A_{12}), \phi \rangle$: 2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5. Consider Y = {2,4}. Then $\pi(Y) = \{2,4,1\}, \pi^2(Y) = \{2,4,1,3\}, \pi^3(Y) = \{2,4,1,3,6\}, \pi^4(Y) = \{1,2,3,4,5,6\} = \phi(Y)$. This basis is *not* direct.

Take Σ_C , the basis of 8 implications for $\langle J(A_{12}), \phi \rangle$: 2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5. Consider Y = {2,4}. Then $\pi(Y) = \{2,4,1\}, \pi^2(Y) = \{2,4,1,3\}, \pi^3(Y) = \{2,4,1,3,6\}, \pi^4(Y) = \{1,2,3,4,5,6\} = \phi(Y)$. This basis is *not* direct.

Take Σ_C , the basis of 8 implications for $\langle J(A_{12}), \phi \rangle$: 2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5. Consider Y = {2,4}. Then $\pi(Y) = \{2,4,1\}, \pi^2(Y) = \{2,4,1,3\}, \pi^3(Y) = \{2,4,1,3,6\}, \pi^4(Y) = \{1,2,3,4,5,6\} = \phi(Y)$. This basis is *not* direct.

Take Σ_C , the basis of 8 implications for $\langle J(A_{12}), \phi \rangle$: 2 \rightarrow 1,6 \rightarrow 13,3 \rightarrow 1,5 \rightarrow 4,14 \rightarrow 3,123 \rightarrow 6,1345 \rightarrow 6,12346 \rightarrow 5. Consider $Y = \{2,4\}$. Then $\pi(Y) = \{2,4,1\}, \pi^2(Y) = \{2,4,1,3\}, \pi^3(Y) = \{2,4,1,3,6\}, \pi^4(Y) = \{1,2,3,4,5,6\} = \phi(Y)$. This basis is *not* direct.

Take Σ_C , the basis of 8 implications for $\langle J(A_{12}), \phi \rangle$: 2 \rightarrow 1, 6 \rightarrow 13, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 123 \rightarrow 6, 1345 \rightarrow 6, 12346 \rightarrow 5. Consider $Y = \{2,4\}$. Then $\pi(Y) = \{2,4,1\}, \pi^2(Y) = \{2,4,1,3\}, \pi^3(Y) = \{2,4,1,3,6\}, \pi^4(Y) = \{1,2,3,4,5,6\} = \phi(Y)$. This basis is *not* direct.

Canonical direct unit basis

Example: continued

Another set of implications Σ_U for $\langle J(A_{12}), \phi \rangle$: $2 \to 1, 6 \to 1, 6 \to 3, 3 \to 1, 5 \to 4, 14 \to 3, 24 \to 3, 15 \to 3,$ $23 \to 6, 15 \to 6, 25 \to 6, 24 \to 5, 24 \to 6.$ Consider $Y = \{2, 4\}$. Then $\pi(Y) = \{2, 4, 1, 3, 5, 6\} = \phi(Y)$. This basis is direct.

Canonical direct unit basis

Example: continued

Another set of implications Σ_U for $\langle J(A_{12}), \phi \rangle$: $2 \to 1, 6 \to 1, 6 \to 3, 3 \to 1, 5 \to 4, 14 \to 3, 24 \to 3, 15 \to 3,$ $23 \to 6, 15 \to 6, 25 \to 6, 24 \to 5, 24 \to 6.$ Consider $Y = \{2, 4\}$. Then $\pi(Y) = \{2, 4, 1, 3, 5, 6\} = \phi(Y)$. This basis is direct.

Canonical direct unit basis

Example: continued

Another set of implications Σ_U for $\langle J(A_{12}), \phi \rangle$: $2 \to 1, 6 \to 1, 6 \to 3, 3 \to 1, 5 \to 4, 14 \to 3, 24 \to 3, 15 \to 3,$ $23 \to 6, 15 \to 6, 25 \to 6, 24 \to 5, 24 \to 6.$ Consider $Y = \{2, 4\}$. Then $\pi(Y) = \{2, 4, 1, 3, 5, 6\} = \phi(Y)$. This basis is direct.

Canonical direct unit basis

Example: continued

Another set of implications Σ_U for $\langle J(A_{12}), \phi \rangle$: 2 \rightarrow 1, 6 \rightarrow 1, 6 \rightarrow 3, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 24 \rightarrow 3, 15 \rightarrow 3, 23 \rightarrow 6, 15 \rightarrow 6, 25 \rightarrow 6, 24 \rightarrow 5, 24 \rightarrow 6. Consider $Y = \{2, 4\}$. Then $\pi(Y) = \{2, 4, 1, 3, 5, 6\} = \phi(Y)$. This basis is direct.

Figure: A₁₂

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
 and T. Ibaraki, A. Kagan, K. Makina, Art. Intell, 1999;
 - and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
 and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
 and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
 and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
 and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

- Left-minimal basis: D. Maier, The theory of relational databases, 1983
 and T. Ibaraki, A. Kogan, K. Makino, Art. Intell. 1999;
- Dependence relation basis: B. Monjardet, Math. Soc. Sci. 1990;
- Canonical iteration-free basis: M. Wild, Adv. Math. 1994;
- Weak-implication basis: A. Rusch and R. Wille, Data analysis and Information systems, 1995;
- Direct optimal basis: K. Bertet and M. Nebut, DMTCS 2004.

Theorem on unity

Theorem (B-M, 2010). For every finite closure system (X, ϕ) , its

- left-minimal basis,
- dependence relation basis,
- canonical iteration-free basis,
- direct optimal basis and
- weak-implication basis

are the same.

This basis is called *a canonical unit* basis.

Theorem on unity

Theorem (B-M, 2010). For every finite closure system (X, ϕ) , its

- left-minimal basis,
- dependence relation basis,
- canonical iteration-free basis,
- direct optimal basis and
- weak-implication basis

are the same.

This basis is called *a canonical unit* basis.

Minimality

Corollary. Canonical unit basis is

- smallest
- has minimal size

among all unit direct bases for closure system (X, ϕ) , ordered by inclusion.

Suppose the set of implications Σ are put into some linear order:

 $\Sigma = \langle \boldsymbol{s}_1, \boldsymbol{s}_2, \dots, \boldsymbol{s}_n \rangle.$

A mapping $\rho_{\Sigma} : P(X) \to P(X)$ associated with this ordering is called an *ordered iteration* of Σ :

• For any $Y \subseteq S$, let $Y_0 = Y$.

• If Y_k is computed and implication s_{k+1} is $A \rightarrow b$, then

$$Y_{k+1} = \begin{cases} Y_k \cup \{b\}, & \text{if } A \subseteq Y_k, \\ Y_k, & \text{otherwise.} \end{cases}$$

• Finally, $\rho_{\Sigma}(Y) = Y_n$.

Suppose the set of implications Σ are put into some linear order:

$$\Sigma = \langle s_1, s_2, \ldots, s_n \rangle.$$

A mapping $\rho_{\Sigma} : P(X) \to P(X)$ associated with this ordering is called an *ordered iteration* of Σ :

• For any
$$Y \subseteq S$$
, let $Y_0 = Y$.

• If Y_k is computed and implication s_{k+1} is $A \rightarrow b$, then

$$Y_{k+1} = \begin{cases} Y_k \cup \{b\}, & \text{if } A \subseteq Y_k, \\ Y_k, & \text{otherwise.} \end{cases}$$

• Finally, $\rho_{\Sigma}(Y) = Y_n$.

Suppose the set of implications Σ are put into some linear order:

$$\Sigma = \langle s_1, s_2, \ldots, s_n \rangle.$$

A mapping $\rho_{\Sigma} : P(X) \to P(X)$ associated with this ordering is called an *ordered iteration* of Σ :

• For any $Y \subseteq S$, let $Y_0 = Y$.

• If Y_k is computed and implication s_{k+1} is $A \rightarrow b$, then

$$Y_{k+1} = \begin{cases} Y_k \cup \{b\}, & \text{if } A \subseteq Y_k, \\ Y_k, & \text{otherwise.} \end{cases}$$

• Finally, $\rho_{\Sigma}(Y) = Y_n$.

Suppose the set of implications Σ are put into some linear order:

$$\Sigma = \langle s_1, s_2, \ldots, s_n \rangle.$$

A mapping $\rho_{\Sigma} : P(X) \to P(X)$ associated with this ordering is called an *ordered iteration* of Σ :

• For any $Y \subseteq S$, let $Y_0 = Y$.

• If Y_k is computed and implication s_{k+1} is $A \rightarrow b$, then

$$Y_{k+1} = \begin{cases} Y_k \cup \{b\}, & \text{if } A \subseteq Y_k, \\ Y_k, & \text{otherwise.} \end{cases}$$

• Finally, $\rho_{\Sigma}(Y) = Y_n$.

Suppose the set of implications Σ are put into some linear order:

$$\Sigma = \langle s_1, s_2, \ldots, s_n \rangle.$$

A mapping $\rho_{\Sigma} : P(X) \to P(X)$ associated with this ordering is called an *ordered iteration* of Σ :

• For any $Y \subseteq S$, let $Y_0 = Y$.

• If Y_k is computed and implication s_{k+1} is $A \rightarrow b$, then

$$Y_{k+1} = \begin{cases} Y_k \cup \{b\}, & \text{if } A \subseteq Y_k, \\ Y_k, & \text{otherwise.} \end{cases}$$

• Finally, $\rho_{\Sigma}(Y) = Y_n$.

Suppose the set of implications Σ are put into some linear order:

$$\Sigma = \langle s_1, s_2, \ldots, s_n \rangle.$$

A mapping $\rho_{\Sigma} : P(X) \to P(X)$ associated with this ordering is called an *ordered iteration* of Σ :

• For any $Y \subseteq S$, let $Y_0 = Y$.

• If Y_k is computed and implication s_{k+1} is $A \rightarrow b$, then

$$Y_{k+1} = \begin{cases} Y_k \cup \{b\}, & \text{if } A \subseteq Y_k, \\ Y_k, & \text{otherwise.} \end{cases}$$

• Finally, $\rho_{\Sigma}(Y) = Y_n$.

Consider $Y = \{2, 4\}$.

Ordered direct basis

An implicational basis of $\langle X, \phi \rangle$, together with its order: $\Sigma = \langle s_1, \dots, s_n \rangle$ is called *ordered direct*, if $\rho(Y) = \phi(Y)$, for every $Y \subseteq X$.

J.B.Nation *An approach to lattice varieties of finite height*, Algebra Universalis **27** (1990), 521–543.

- partially ordered set of join-irreducible elements $\langle J(L), \leq \rangle$;
- the minimal join-covers of join-irreducible elements.

J.B.Nation *An approach to lattice varieties of finite height*, Algebra Universalis **27** (1990), 521–543.

- partially ordered set of join-irreducible elements $\langle J(L), \leq \rangle$;
- the minimal join-covers of join-irreducible elements.

J.B.Nation *An approach to lattice varieties of finite height*, Algebra Universalis **27** (1990), 521–543.

- partially ordered set of join-irreducible elements $\langle J(L), \leq \rangle$;
- the minimal join-covers of join-irreducible elements.

J.B.Nation *An approach to lattice varieties of finite height*, Algebra Universalis **27** (1990), 521–543.

- partially ordered set of join-irreducible elements $\langle J(L), \leq \rangle$;
- the minimal join-covers of join-irreducible elements.

Example

For lattice A_{12} , the poset of join-irreducible elements is: $\langle J(A_{12}), \leq \rangle = \langle \{1, 2, 3, 4, 5, 6, \}, 1 \leq 2, 1 \leq 3 \leq 6, 4 \leq 5 \rangle.$

We say join-irreducible elements j_1, \ldots, j_k form a *minimal join-cover* for $j \in J(L)$, if

- $j \leq j_1 \vee \cdots \vee j_k$,
- none of j_1, \ldots, j_k can be replaced by smaller join-irreducible or 0 so that the new join is still above j.

For example, $3 \le 1 \lor 4$ is a minimal cover.

We say join-irreducible elements j_1, \ldots, j_k form a *minimal join-cover* for $j \in J(L)$, if

- $j \leq j_1 \vee \cdots \vee j_k$,
- none of j₁,..., j_k can be replaced by smaller join-irreducible or 0 so that the new join is still above j.

For example, $3 \le 1 \lor 4$ is a minimal cover.

We say join-irreducible elements j_1, \ldots, j_k form a *minimal join-cover* for $j \in J(L)$, if

- $j \leq j_1 \vee \cdots \vee j_k$,
- none of j₁,..., j_k can be replaced by smaller join-irreducible or 0 so that the new join is still above j.

For example, $3 \le 1 \lor 4$ is a minimal cover. $6 \le 2 \lor 5$ is not minimal cover, since $4 \le 5$ and $6 \le 2 \lor 4$ is a cover.

We say join-irreducible elements j_1, \ldots, j_k form a *minimal join-cover* for $j \in J(L)$, if

- $j \leq j_1 \vee \cdots \vee j_k$,
- none of j₁,..., j_k can be replaced by smaller join-irreducible or 0 so that the new join is still above j.

For example, $3 \le 1 \lor 4$ is a minimal cover.

We say join-irreducible elements j_1, \ldots, j_k form a *minimal join-cover* for $j \in J(L)$, if

- $j \leq j_1 \vee \cdots \vee j_k$,
- none of j₁,..., j_k can be replaced by smaller join-irreducible or 0 so that the new join is still above j.

For example, $3 \le 1 \lor 4$ is a minimal cover.

We say join-irreducible elements j_1, \ldots, j_k form a *minimal join-cover* for $j \in J(L)$, if

- $j \leq j_1 \vee \cdots \vee j_k$,
- none of j₁,..., j_k can be replaced by smaller join-irreducible or 0 so that the new join is still above j.

For example, $3 \le 1 \lor 4$ is a minimal cover.

We say join-irreducible elements j_1, \ldots, j_k form a *minimal join-cover* for $j \in J(L)$, if

- $j \leq j_1 \vee \cdots \vee j_k$,
- none of j₁,..., j_k can be replaced by smaller join-irreducible or 0 so that the new join is still above j.

For example, $3 \le 1 \lor 4$ is a minimal cover.

Definition. Let $\langle X, \phi \rangle$ be a canonical closure system with $L = Cl(X, \phi)$. The set of implications Σ_D is called a *D*-basis of $\langle X, \phi \rangle$, if it is made of two parts:

- $\{a \rightarrow b : b \in \phi(\{a\})\}$; equivalently, $b \le a$ in $\langle J(L), \le \rangle$. This part is called *a binary part* of the basis.
- $\{j_1 \dots j_k \to j : j \le j_1 \lor \dots \lor j_k \text{ is a minimal join cover in } L\}.$

- **Definition.** Let $\langle X, \phi \rangle$ be a canonical closure system with $L = CI(X, \phi)$. The set of implications Σ_D is called a *D*-basis of $\langle X, \phi \rangle$, if it is made of two parts:
 - $\{a \rightarrow b : b \in \phi(\{a\})\}$; equivalently, $b \le a$ in $\langle J(L), \le \rangle$. This part is called *a binary part* of the basis.
 - $\{j_1 \dots j_k \to j : j \le j_1 \lor \dots \lor j_k \text{ is a minimal join cover in } L\}.$

Definition. Let $\langle X, \phi \rangle$ be a canonical closure system with $L = CI(X, \phi)$. The set of implications Σ_D is called a *D*-basis of $\langle X, \phi \rangle$, if it is made of two parts:

- { $a \rightarrow b : b \in \phi(\{a\})$ }; equivalently, $b \le a$ in $\langle J(L), \le \rangle$. This part is called *a binary part* of the basis.
- $\{j_1 \dots j_k \to j : j \le j_1 \lor \dots \lor j_k \text{ is a minimal join cover in } L\}.$

Definition. Let $\langle X, \phi \rangle$ be a canonical closure system with $L = CI(X, \phi)$. The set of implications Σ_D is called a *D*-basis of $\langle X, \phi \rangle$, if it is made of two parts:

• { $a \rightarrow b : b \in \phi(\{a\})$ }; equivalently, $b \le a$ in $\langle J(L), \le \rangle$. This part is called *a binary part* of the basis.

• $\{j_1 \dots j_k \to j : j \le j_1 \lor \dots \lor j_k \text{ is a minimal join cover in } L\}.$

Definition. Let $\langle X, \phi \rangle$ be a canonical closure system with $L = CI(X, \phi)$. The set of implications Σ_D is called a *D*-basis of $\langle X, \phi \rangle$, if it is made of two parts:

- { $a \rightarrow b : b \in \phi(\{a\})$ }; equivalently, $b \le a$ in $\langle J(L), \le \rangle$. This part is called *a binary part* of the basis.
- $\{j_1 \dots j_k \to j : j \le j_1 \lor \dots \lor j_k \text{ is a minimal join cover in } L\}.$

- Σ_D generates (X, φ), i.e., D-basis is indeed a basis of this closure system.
- Σ_D is a subset of the canonical unit basis.
- Σ_D is an ordered direct basis, associated with any order, where the binary part precedes the rest of implications.

- Σ_D generates (X, φ), i.e., D-basis is indeed a basis of this closure system.
- Σ_D is a subset of the canonical unit basis.
- Σ_D is an ordered direct basis, associated with any order, where the binary part precedes the rest of implications.

- Σ_D generates (X, φ), i.e., D-basis is indeed a basis of this closure system.
- Σ_D is a subset of the canonical unit basis.
- Σ_D is an ordered direct basis, associated with any order, where the binary part precedes the rest of implications.

- Σ_D generates (X, φ), i.e., D-basis is indeed a basis of this closure system.
- Σ_D is a subset of the canonical unit basis.
- Σ_D is an ordered direct basis, associated with any order, where the binary part precedes the rest of implications.

Algorithmic aspects

If Σ is a any unit direct basis of $\langle X, \phi \rangle$ of size $s(\Sigma) = S$ with *m* implications, then

- it takes time $O(S^2)$ to extract *D*-basis from Σ ;
- it takes time O(m) to put extracted *D*-basis into a proper order.

Algorithmic aspects

If Σ is a any unit direct basis of $\langle X, \phi \rangle$ of size $s(\Sigma) = S$ with *m* implications, then

- it takes time $O(S^2)$ to extract *D*-basis from Σ ;
- it takes time O(m) to put extracted *D*-basis into a proper order.

If Σ is a any unit direct basis of $\langle X, \phi \rangle$ of size $s(\Sigma) = S$ with *m* implications, then

- it takes time $O(S^2)$ to extract *D*-basis from Σ ;
- it takes time O(m) to put extracted *D*-basis into a proper order.

Comparison

Unit canonical basis Σ_U for $\langle J(A_{12}), \phi \rangle$ has 13 implications. 2 \rightarrow 1, 6 \rightarrow 1, 6 \rightarrow 3, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 24 \rightarrow 3, 15 \rightarrow 3, 23 \rightarrow 6, 15 \rightarrow 6, 25 \rightarrow 6, 24 \rightarrow 5, 24 \rightarrow 6.

D-basis has 9 implications. $2 \rightarrow 1, 6 \rightarrow 3, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 23 \rightarrow 6, 15 \rightarrow 6, 24 \rightarrow 5, 24 \rightarrow 6.$

 Σ_C , or *canonical basis* of Duquenne-Guiques, has 8 implications. 2 \rightarrow 1, 6 \rightarrow 13, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 123 \rightarrow 6, 1345 \rightarrow 6, 12346 \rightarrow 5. Unit canonical basis Σ_U for $\langle J(A_{12}), \phi \rangle$ has 13 implications. 2 \rightarrow 1, 6 \rightarrow 1, 6 \rightarrow 3, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 24 \rightarrow 3, 15 \rightarrow 3, 23 \rightarrow 6, 15 \rightarrow 6, 25 \rightarrow 6, 24 \rightarrow 5, 24 \rightarrow 6.

 $\begin{array}{l} D-basis has 9 implications. \\ 2 \rightarrow 1, 6 \rightarrow 3, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 23 \rightarrow 6, 15 \rightarrow 6, 24 \rightarrow 5, 24 \rightarrow 6. \end{array}$

 Σ_C , or *canonical basis* of Duquenne-Guiques, has 8 implications. 2 \rightarrow 1, 6 \rightarrow 13, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 123 \rightarrow 6, 1345 \rightarrow 6, 12346 \rightarrow 5. Unit canonical basis Σ_U for $\langle J(A_{12}), \phi \rangle$ has 13 implications. 2 \rightarrow 1, 6 \rightarrow 1, 6 \rightarrow 3, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 24 \rightarrow 3, 15 \rightarrow 3, 23 \rightarrow 6, 15 \rightarrow 6, 25 \rightarrow 6, 24 \rightarrow 5, 24 \rightarrow 6.

 $\begin{array}{l} D-basis has 9 implications.\\ 2\rightarrow 1, 6\rightarrow 3, 3\rightarrow 1, 5\rightarrow 4, 14\rightarrow 3, 23\rightarrow 6, 15\rightarrow 6, 24\rightarrow 5, 24\rightarrow 6. \end{array}$

 Σ_C , or *canonical basis* of Duquenne-Guiques, has 8 implications. 2 \rightarrow 1, 6 \rightarrow 13, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 123 \rightarrow 6, 1345 \rightarrow 6, 12346 \rightarrow 5.

J.L. Guiques, V. Duquenne, *Familles minimales d'implications informatives résultant d'une tables de données binares*, Math. Sci. Hum. **95** (1986), 5–18.

- Defined *critical subsets of X* for any given closure system $\langle X, \phi \rangle$.
- Canonical basis Σ_C is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is the minimum basis among all the bases generating $\langle X, \phi \rangle$.

J.L. Guiques, V. Duquenne, *Familles minimales d'implications informatives résultant d'une tables de données binares*, Math. Sci. Hum. **95** (1986), 5–18.

- Defined *critical subsets of X* for any given closure system $\langle X, \phi \rangle$.
- Canonical basis Σ_C is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is the minimum basis among all the bases generating $\langle X, \phi \rangle$.

J.L. Guiques, V. Duquenne, *Familles minimales d'implications informatives résultant d'une tables de données binares*, Math. Sci. Hum. **95** (1986), 5–18.

- Defined *critical subsets of X* for any given closure system $\langle X, \phi \rangle$.
- Canonical basis $\Sigma_{\mathcal{C}}$ is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.

• Σ_C is the minimum basis among all the bases generating $\langle X, \phi \rangle$.

J.L. Guiques, V. Duquenne, *Familles minimales d'implications informatives résultant d'une tables de données binares*, Math. Sci. Hum. **95** (1986), 5–18.

- Defined *critical subsets of X* for any given closure system $\langle X, \phi \rangle$.
- Canonical basis $\Sigma_{\mathcal{C}}$ is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is the minimum basis among all the bases generating $\langle X, \phi \rangle$.

Computer testing

Proposition. There is no possibility, in general, to establish the order on canonical basis that would turn it into ordered direct.

Example. Canonical basis of Duquenne-Guigues on 6-element set that cannot be ordered: $4 \rightarrow 1, 15 \rightarrow 3, 35 \rightarrow 1, 25 \rightarrow 6, 56 \rightarrow 2, 26 \rightarrow 5, 36 \rightarrow 14, 134 \rightarrow 6,$ $146 \rightarrow 3.$

Computer testing

Proposition. There is no possibility, in general, to establish the order on canonical basis that would turn it into ordered direct.

Example. Canonical basis of Duquenne-Guigues on 6-element set that cannot be ordered:

 $\begin{array}{l} 4\rightarrow1,15\rightarrow3,35\rightarrow1,25\rightarrow6,56\rightarrow2,26\rightarrow5,36\rightarrow14,134\rightarrow6,\\ 146\rightarrow3. \end{array}$

Computer testing

Proposition. There is no possibility, in general, to establish the order on canonical basis that would turn it into ordered direct.

Example. Canonical basis of Duquenne-Guigues on 6-element set that cannot be ordered: $4 \rightarrow 1, 15 \rightarrow 3, 35 \rightarrow 1, 25 \rightarrow 6, 56 \rightarrow 2, 26 \rightarrow 5, 36 \rightarrow 14, 134 \rightarrow 6,$ $146 \rightarrow 3.$ Duquenne-Guigues Canonical basis

Lattice of the counterexample

Figure: Lattice for D-G non-orderable

Three bases comparison

Three bases comparison

• further optimizations of D-basis;

- comparison of existing forward chaining algorithm with ordered direct basis algorithm;
- establishing the connection between *E*-basis and canonical D-G basis in systems without cycles;
- finding a decent algorithm to build *D*-basis from any given (still open).

- further optimizations of *D*-basis;
- comparison of existing forward chaining algorithm with ordered direct basis algorithm;
- establishing the connection between *E*-basis and canonical D-G basis in systems without cycles;
- finding a decent algorithm to build *D*-basis from any given (still open).

- further optimizations of *D*-basis;
- comparison of existing forward chaining algorithm with ordered direct basis algorithm;
- establishing the connection between *E*-basis and canonical D-G basis in systems without cycles;
- finding a decent algorithm to build *D*-basis from any given (still open).

- further optimizations of *D*-basis;
- comparison of existing forward chaining algorithm with ordered direct basis algorithm;
- establishing the connection between *E*-basis and canonical D-G basis in systems without cycles;
- finding a decent algorithm to build *D*-basis from any given (still open).

Three bases comparison

Regards from Yeshiva College, New York

Figure: Yeshiva college graduating students, 2011

Three bases comparison

Regards from across America: New York-Hawai'i

Figure: Hiking in Catskill mountains, New York State