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The question

When should we consider two proofs in the classical sequent
calculus identical

We consider this problem, for the logic with first-order
quantifiers, using categorical proof theory.
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Categorical proof theory

Consider categories of formulae/proofs in a formal system.

objects = formula

morphisms = (equivalence classes of) derivations

Morphism composition: from A → B and B → C infer A → C.

The equivalence classes of morphisms should characterize a
natural notion of equality on proofs.
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Propositional intuitionistic natural deduction

Prawitz: two ND derivations equal if they have the same
βη-normal form.

Equational theory of a cartesian-closed category: ccc’s give the
“model theory” of intuitionistic natural deduction.
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Propositional MLL

Two sequent MLL derivations are identical if (roughly) they have
the same cut-free proof net.

Equational theory of a ∗-autonomous category (or, equivalently,
a symmetric linearly distributive category with negation).
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Propositional Classical logic

Two sequent LK derivations are identical if ?
Here we cannot use cut-elimination to define morphism
equality, since it is essentially nonconfluent — if we identify
derivations before and after cut-elimination, we identify all
derivations.
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From the algebraic side?

A ccc plus a dualizing negation is a poset.

A ∗-autonomous category with natural (co)monoids modelling
the structural rules is a poset.
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Order-enrichment

We cannot model cut-elimination in LK as equality.

Instead, model it as inequality.

In an order-enriched category, the morphisms from A to B form
a partial order.
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Classical categories (Pym, Führmann)

A classical category is an order-enriched category C with
A ∗-autonomous structure (C,∧,>, (−)⊥)

Such that the defining adjunction for (−)⊥ is an
order-isomorphism
Which “has lax comonoids”.
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A ∧ B → C

A → (B ∧ C⊥)⊥
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Classical categories (Pym, Führmann)

A classical category is an order-enriched category C with
A ∗-autonomous structure (C,∧,>, (−)⊥)

Such that the defining adjunction for (−)⊥ is an
order-isomorphism
Which “has lax comonoids”.

∆ : A → A ∧ A 〈〉 : A → a

∆ ◦ f 6 (f ⊗ f) ◦ ∆
〈〉 ◦ f 6 〈〉
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Classical categories (Pym, Führmann)

Classical sequent proofs form a classical category, if we
quotient under:

Linear, local cut-reduction steps as equalities
Nonlinear cut reduction steps (involving structural rules) as
inequalities.

(plus some other simple identities on proofs)
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Classical categories (Pym, Führmann)

There are other non-trivial classical categories, most notably
built from sets and relations.

Interpreting proofs in such categories give notions of identity on
classical proofs.

11 / 22



Hyperdoctrines – from propositional to first-order
logics.

Idea: treat the formulas/proofs over a given set of free variables
as a catgeory.

Substitution/quantifiers are functors between these categories.

Key observation (Lawvere): Quantifiers arise as adjoints:

A ` B

∃x.A ` B
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Hyperdoctrines for classical logic

Clear question: what is the notion of hyperdoctrine for classical
sequent proofs?

Setting ∃x a x∗ a ∀x rules out certain interpretations of the
quantifiers – in particular as infinitary connectives.

Instead, we can use an “adjunction-up-to-adjunction”, or “lax
adjunction”...
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Classical doctrines

A ` x∗B
6

∃x.A ` B

ε : ∃x(x∗A)→ A η : A → x∗(∃xA)

f ◦ ε 6 ε ◦ ∃x(x∗f) and x∗(∃xg) ◦ η 6 η ◦ g.

We call a morphism “strong” if these diagrams commute.

14 / 22



Interpreting the quantifier rules

Γ ,A ` ∆
∃L

Γ , ∃x.A ` ∆

bΓc∧ ∃x. bAc → ∃x.( bx∗Γc∧ bAc )→ ∃x.( bx∗∆c )→ b∆c

Γ ,` B,∆
∃R

Γ ,` ∃x.B,∆

bΓc → bBc∨ b∆c → x∗(∃x. bBc)∨ b∆c
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Classical Doctrines

Definition
A dual doctrine is a functor C : Bop → Cat such that

B has finite products.
C(X) is a classical category, for each X .
For each f a morphism in B, C(f) (= f∗) is strong monoidal
with respect to ∧.
For each projection π in B, there is a right lax adjoint ∀π,
which is a symmetric monoidal functor, such that the
adjunction is symmetric monoidal.
The Beck-Chevally condition
The existence of Prenex strengths
The switch morphism is strong.
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Classical doctrines

Prenex strengths The morphism

Prenex◦ = µA ,x∗B ◦ (id⊗ η) : ∀xA ∨ B → ∀x(A ∨ x∗B)

has a right adjoint Prenex such that

Prenex◦ ◦ Prenex 6 id

and
Prenex ◦ Prenex◦ = id
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Switch

Let A ∨ B be defined as (A⊥ ∧ B⊥)⊥

Then, in every ∗-autonomous category, there is a morphism

A ∧ (B ∨ C)→ (A ∧ B)∨ C

called “weak/linear distributivity” (Cockett/Seely) or “switch”
(Guglielmi, Lamarche, Strassburger).

Plays a key role in interpreting the cut rule. We require it to be
strong.
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Term model, soundness

We can construct a term classical category from sequent
proofs in LK, by interpreting cut elimination as an inequality and
then forming a quotient of proofs by an (unfortunately rather
complicated) equivalence relation.

Theorem
Interpretation of proofs in a classical doctrine is sound w.r.t.
cut-elimination: if Φ cut-reduces to Ψ then

bΦc 6 bΨc
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Duality

An alternative formulation of classical categories takes the
switch as basic rather than the ∗-autonomous structure.
Duality is not built in, so we can axiomatize the duality of the
two quantifiers (not automatic, since the adjunctions are only
“up to adjunction”).
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Further work

Finding concrete examples!
We have non-syntactic example, built from families of sets
and relations using an abstract GoI construction
(Abramsky’s Int construction).
This at least shows the axioms do not imply collapse...
But more would be nice!
In particular, examples where the quantifiers arise as
genuine adjoints.

First-order versions of other notions of model for classical
proofs.
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Fin

Thank you for your attention.
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