Categorically axiomatizing the classical quantifiers

Hyperdoctrines for classical logic

Richard McKinley

University of Bern
TACL 2011

The question

When should we consider two proofs in the classical sequent calculus identical

We consider this problem, for the logic with first-order quantifiers, using categorical proof theory.

The question

When should we consider two proofs in the classical sequent calculus identical

We consider this problem, for the logic with first-order quantifiers, using categorical proof theory.

Categorical proof theory

Consider categories of formulae/proofs in a formal system.
objects $=$ formula
morphisms $=$ (equivalence classes of) derivations
Morphism composition: from $A \rightarrow B$ and $B \rightarrow C$ infer $A \rightarrow C$.
The equivalence classes of morphisms should characterize a natural notion of equality on proofs.

Propositional intuitionistic natural deduction

Prawitz: two ND derivations equal if they have the same $\beta \eta$-normal form.

Equational theory of a cartesian-closed category: ccc's give the "model theory" of intuitionistic natural deduction.

Two sequent MLL derivations are identical if (roughly) they have the same cut-free proof net.

Equational theory of a $*$-autonomous category (or, equivalently, a symmetric linearly distributive category with negation).

Propositional Classical logic

Two sequent LK derivations are identical if
Here we cannot use cut-elimination to define morphism equality, since it is essentially nonconfluent - if we identify derivations before and after cut-elimination, we identify all derivations.

Propositional Classical logic

Two sequent LK derivations are identical if ?
Here we cannot use cut-elimination to define morphism equality, since it is essentially nonconfluent - if we identify derivations before and after cut-elimination, we identify all derivations.

Propositional Classical logic

Two sequent LK derivations are identical if?
Here we cannot use cut-elimination to define morphism equality, since it is essentially nonconfluent - if we identify derivations before and after cut-elimination, we identify all derivations.

From the algebraic side?

A ccc plus a dualizing negation is a poset.
A *-autonomous category with natural (co)monoids modelling the structural rules is a poset.

From the algebraic side?

A ccc plus a dualizing negation is a poset.
A *-autonomous category with natural (co)monoids modelling the structural rules is a poset.

Order-enrichment

We cannot model cut-elimination in LK as equality.

Instead, model it as inequality.

In an order-enriched category, the morphisms from A to B form a partial order.

Order-enrichment

We cannot model cut-elimination in LK as equality.
Instead, model it as inequality.
In an order-enriched category, the morphisms from A to B form a partial order.

Order-enrichment

We cannot model cut-elimination in LK as equality.
Instead, model it as inequality.
In an order-enriched category, the morphisms from A to B form a partial order.

Classical categories (Pym, Führmann)

A classical category is an order-enriched category \mathcal{C} with

- A *-autonomous structure ($\left.\mathrm{C}, \wedge, \mathrm{T},(-)^{\perp}\right)$
- Such that the defining adjunction for $(-)^{\perp}$ is an order-isomorphism
- Which "has lax comonoids".

Classical categories (Pym, Führmann)

A classical category is an order-enriched category \mathcal{C} with

- A *-autonomous structure $\left(\mathcal{C}, \wedge, \top,(-)^{\perp}\right)$
- Such that the defining adjunction for $(-)^{\perp}$ is an order-isomorphism
- Which "has lax comonoids".

$$
\frac{A \wedge B \rightarrow C}{A \rightarrow\left(B \wedge C^{\perp}\right)^{\perp}}
$$

Classical categories (Pym, Führmann)

A classical category is an order-enriched category \mathcal{C} with

- A *-autonomous structure $\left(\mathcal{C}, \wedge, \top,(-)^{\perp}\right)$
- Such that the defining adjunction for $(-)^{\perp}$ is an order-isomorphism
- Which "has lax comonoids".

$$
\begin{gathered}
\Delta: A \rightarrow A \wedge A \quad\langle \rangle: A \rightarrow a \\
\Delta \circ f \leqslant(f \otimes f) \circ \Delta \\
\rangle \circ f \leqslant\langle \rangle
\end{gathered}
$$

Classical categories (Pym, Führmann)

Classical sequent proofs form a classical category, if we quotient under:

- Linear, local cut-reduction steps as equalities
- Nonlinear cut reduction steps (involving structural rules) as inequalities.
(plus some other simple identities on proofs)

Classical categories (Pym, Führmann)

Classical sequent proofs form a classical category, if we quotient under:

- Linear, local cut-reduction steps as equalities
- Nonlinear cut reduction steps (involving structural rules) as inequalities.
(plus some other simple identities on proofs)

Classical categories (Pym, Führmann)

There are other non-trivial classical categories, most notably built from sets and relations.

Interpreting proofs in such categories give notions of identity on classical proofs.

Hyperdoctrines - from propositional to first-order logics.

Idea: treat the formulas/proofs over a given set of free variables as a catgeory.

Substitution/quantifiers are functors between these categories.
Key observation (Lawvere): Quantifiers arise as adjoints:

Hyperdoctrines - from propositional to first-order logics.

Idea: treat the formulas/proofs over a given set of free variables as a catgeory.

Substitution/quantifiers are functors between these categories.
Key observation (Lawvere): Quantifiers arise as adjoints:

Hyperdoctrines - from propositional to first-order logics.

Idea: treat the formulas/proofs over a given set of free variables as a catgeory.

Substitution/quantifiers are functors between these categories.
Key observation (Lawvere): Quantifiers arise as adjoints:

$$
\frac{A \vdash B}{\exists x \cdot A \vdash B}
$$

Hyperdoctrines - from propositional to first-order logics.

Idea: treat the formulas/proofs over a given set of free variables as a catgeory.

Substitution/quantifiers are functors between these categories.
Key observation (Lawvere): Quantifiers arise as adjoints:

$$
\frac{A \vdash x^{*} B}{\exists x \cdot A \vdash B}
$$

Hyperdoctrines for classical logic

Clear question: what is the notion of hyperdoctrine for classical sequent proofs?

Setting $\exists x \dashv x^{*} \dashv \forall x$ rules out certain interpretations of the quantifiers - in particular as infinitary connectives.

Instead, we can use an "adjunction-up-to-adjunction", or "lax adjunction"...

Hyperdoctrines for classical logic

Clear question: what is the notion of hyperdoctrine for classical sequent proofs?

Setting $\exists x \dashv x^{*} \dashv \forall_{x}$ rules out certain interpretations of the quantifiers - in particular as infinitary connectives.

Instead, we can use an "adjunction-up-to-adjunction", or "lax adjunction"...

Hyperdoctrines for classical logic

Clear question: what is the notion of hyperdoctrine for classical sequent proofs?

Setting $\exists x \dashv x^{*} \dashv \forall_{x}$ rules out certain interpretations of the quantifiers - in particular as infinitary connectives.

Instead, we can use an "adjunction-up-to-adjunction", or "lax adjunction"...

Classical doctrines

$$
\begin{gathered}
\frac{A \vdash x^{*} B}{\exists x \cdot A \vdash B} \leqslant \\
\varepsilon: \exists x\left(x^{*} A\right) \rightarrow A \quad \eta: A \rightarrow x^{*}(\exists x A) \\
f \circ \varepsilon \leqslant \varepsilon \circ \exists x\left(x^{*} f\right) \text { and } x^{*}(\exists x g) \circ \eta \leqslant \eta \circ g .
\end{gathered}
$$

We call a morphism "strong" if these diagrams commute.

Interpreting the quantifier rules

$$
\begin{aligned}
& \frac{\Gamma, A \vdash \Delta}{\Gamma, \exists x . A \vdash \Delta} \exists L \\
& \left.\left\lfloor x^{*} \Gamma\right\rfloor \wedge\lfloor A\rfloor\right) \rightarrow \exists x .\left(\left\lfloor x^{*} \Delta\right\rfloor\right.
\end{aligned}
$$

$$
\frac{\Gamma, \vdash B, \Delta}{\Gamma, \vdash \exists x \cdot B, \Delta} \exists R
$$

Interpreting the quantifier rules

$$
\frac{\Gamma, A \vdash \Delta}{\Gamma, \exists x \cdot A \vdash \Delta} \exists L
$$

$$
\lfloor\Gamma\rfloor \wedge \exists x \cdot\lfloor A\rfloor \rightarrow \exists x \cdot\left(\left\lfloor x^{*} \Gamma\right\rfloor \wedge\lfloor A\rfloor\right) \rightarrow \exists x \cdot\left(\left\lfloor x^{*} \Delta\right\rfloor\right) \rightarrow\lfloor\Delta\rfloor
$$

Interpreting the quantifier rules

$$
\begin{gathered}
\frac{\Gamma, A \vdash \Delta}{\Gamma, \exists x \cdot A \vdash \Delta} \exists L \\
\lfloor\Gamma\rfloor \wedge \exists x .\lfloor A\rfloor \rightarrow \exists x .\left(\left\lfloor x^{*} \Gamma\right\rfloor \wedge\lfloor A\rfloor\right) \rightarrow \exists x .\left(\left\lfloor x^{*} \Delta\right\rfloor\right)
\end{gathered}
$$

Interpreting the quantifier rules

$$
\begin{gathered}
\frac{\Gamma, A \vdash \Delta}{\Gamma, \exists x \cdot A \vdash \Delta} \exists L \\
\lfloor\Gamma\rfloor \wedge \exists x .\lfloor A\rfloor \rightarrow \exists x .\left(\left\lfloor x^{*} \Gamma\right\rfloor \wedge\lfloor A\rfloor\right) \rightarrow \exists x .\left(\left\lfloor x^{*} \Delta\right\rfloor\right) \rightarrow\lfloor\Delta\rfloor
\end{gathered}
$$

Interpreting the quantifier rules

$$
\begin{gathered}
\frac{\Gamma, A \vdash \Delta}{\Gamma, \exists x \cdot A \vdash \Delta} \exists L \\
\lfloor\Gamma\rfloor \wedge \exists x .\lfloor A\rfloor \rightarrow \exists x \cdot\left(\left\lfloor x^{*} \Gamma\right\rfloor \wedge\lfloor A\rfloor\right) \rightarrow \exists x \cdot\left(\left\lfloor x^{*} \Delta\right\rfloor\right) \rightarrow\lfloor\Delta\rfloor \\
\frac{\Gamma, \vdash B, \Delta}{\Gamma, \vdash \exists x . B, \Delta} \exists R \\
\lfloor\Gamma\rfloor \rightarrow\lfloor B\rfloor \vee\lfloor\Delta\rfloor \rightarrow x^{*}(\exists x .\lfloor B\rfloor) \vee\lfloor\Delta\rfloor
\end{gathered}
$$

Interpreting the quantifier rules

$$
\begin{gathered}
\frac{\Gamma, A \vdash \Delta}{\Gamma, \exists x \cdot A \vdash \Delta} \exists L \\
\lfloor\Gamma\rfloor \wedge \exists x .\lfloor A\rfloor \rightarrow \exists x \cdot\left(\left\lfloor x^{*} \Gamma\right\rfloor \wedge\lfloor A\rfloor\right) \rightarrow \exists x \cdot\left(\left\lfloor x^{*} \Delta\right\rfloor\right) \rightarrow\lfloor\Delta\rfloor \\
\frac{\Gamma, \vdash B, \Delta}{\Gamma, \vdash \exists x . B, \Delta} \exists R \\
\lfloor\Gamma\rfloor \rightarrow\lfloor B\rfloor \vee\lfloor\Delta\rfloor \rightarrow x^{*}(\exists x .\lfloor B\rfloor) \vee\lfloor\Delta\rfloor
\end{gathered}
$$

Classical Doctrines

Definition

A dual doctrine is a functor $\mathcal{C}: \mathcal{B}^{\circ p} \rightarrow$ Cat such that

- \mathcal{B} has finite products.
- $\mathcal{C}(X)$ is a classical category, for each X.
- For each f a morphism in $B, \mathcal{C}(f)\left(=f^{*}\right)$ is strong monoidal with respect to \wedge.
- For each projection π in \mathcal{B}, there is a right lax adjoint \forall_{π}, which is a symmetric monoidal functor, such that the adjunction is symmetric monoidal.
- The Beck-Chevally condition
- The existence of Prenex strengths
- The switch morphism is strong.

Classical doctrines

Prenex strengths The morphism

$$
\text { Prenex }^{\circ}=\mu_{A, x^{*} B} \circ(\text { id } \otimes \eta): \forall x A \vee B \rightarrow \forall x\left(A \vee x^{*} B\right)
$$

has a right adjoint Prenex such that

$$
\text { Prenex }^{\circ} \circ \text { Prenex } \leqslant \text { id }
$$

and

$$
\text { Prenex } \circ \text { Prenex }^{\circ}=\text { id }
$$

Switch

Let $A \vee B$ be defined as $\left(A^{\perp} \wedge B^{\perp}\right)^{\perp}$
Then, in every *-autonomous category, there is a morphism

$$
A \wedge(B \vee C) \rightarrow(A \wedge B) \vee C
$$

called "weak/linear distributivity" (Cockett/Seely) or "switch" (Guglielmi, Lamarche, Strassburger).

Plays a key role in interpreting the cut rule. We require it to be strong.

Term model, soundness

We can construct a term classical category from sequent proofs in LK, by interpreting cut elimination as an inequality and then forming a quotient of proofs by an (unfortunately rather complicated) equivalence relation.

Theorem

Interpretation of proofs in a classical doctrine is sound w.r.t. cut-elimination: if Φ cut-reduces to Ψ then

$$
\lfloor\Phi\rfloor \leqslant\lfloor\Psi\rfloor
$$

Duality

An alternative formulation of classical categories takes the switch as basic rather than the $*$-autonomous structure.
Duality is not built in, so we can axiomatize the duality of the two quantifiers (not automatic, since the adjunctions are only "up to adjunction").

Further work

Finding concrete examples!

- We have non-syntactic example, built from families of sets and relations using an abstract Gol construction (Abramsky's Int construction).
- This at least shows the axioms do not imply collapse...
- But more would be nice!
- In particular, examples where the quantifiers arise as genuine adjoints.
First-order versions of other notions of model for classical proofs.

Fin

Thank you for your attention.

