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The question

When should we consider two proofs in the classical sequent
calculus identical
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The question

When should we consider two proofs in the classical sequent
calculus identical

We consider this problem, for the logic with first-order
quantifiers, using categorical proof theory.
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Categorical proof theory

Consider categories of formulae/proofs in a formal system.
objects = formula

morphisms = (equivalence classes of) derivations

Morphism composition: from A — B and B — C infer A — C.

The equivalence classes of morphisms should characterize a
natural notion of equality on proofs.
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Propositional intuitionistic natural deduction

Prawitz: two ND derivations equal if they have the same
fn-normal form.

Equational theory of a cartesian-closed category: ccc’s give the
“model theory” of intuitionistic natural deduction.
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Propositional MLL

Two sequent MLL derivations are identical if (roughly) they have
the same cut-free proof net.

Equational theory of a x-autonomous category (or, equivalently,
a symmetric linearly distributive category with negation).
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Propositional Classical logic

Two sequent LK derivations are identical if
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Propositional Classical logic

Two sequent LK derivations are identical if ?

Here we cannot use cut-elimination to define morphism
equality, since it is essentially nonconfluent — if we identify
derivations before and after cut-elimination, we identify all
derivations.
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From the algebraic side?

A ccc plus a dualizing negation is a poset.
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From the algebraic side?

A ccc plus a dualizing negation is a poset.

A x-autonomous category with natural (co)monoids modelling
the structural rules is a poset.
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Order-enrichment

We cannot model cut-elimination in LK as equality.
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Order-enrichment

We cannot model cut-elimination in LK as equality.

Instead, model it as inequality.

In an order-enriched category, the morphisms from A to B form
a partial order.
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Classical categories (Pym, Fihrmann)

A classical category is an order-enriched category € with
@ A x-autonomous structure (G, A, T, (—)1)

@ Such that the defining adjunction for (—)=* is an
order-isomorphism

@ Which “has lax comonoids”.
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Classical categories (Pym, Fihrmann)

Classical sequent proofs form a classical category, if we
quotient under:

@ Linear, local cut-reduction steps as equalities

@ Nonlinear cut reduction steps (involving structural rules) as
inequalities.

10/22



Classical categories (Pym, Fihrmann)

Classical sequent proofs form a classical category, if we
quotient under:

@ Linear, local cut-reduction steps as equalities
@ Nonlinear cut reduction steps (involving structural rules) as
inequalities.
(plus some other simple identities on proofs)

10/22



Classical categories (Pym, Fihrmann)

There are other non-trivial classical categories, most notably
built from sets and relations.

Interpreting proofs in such categories give notions of identity on
classical proofs.
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Hyperdoctrines — from propositional to first-order

logics.

Idea: treat the formulas/proofs over a given set of free variables
as a catgeory.
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Hyperdoctrines — from propositional to first-order

logics.

Idea: treat the formulas/proofs over a given set of free variables
as a catgeory.

Substitution/quantifiers are functors between these categories.

Key observation (Lawvere): Quantifiers arise as adjoints:
Ak x*B
dx.A-B
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Hyperdoctrines for classical logic

Clear question: what is the notion of hyperdoctrine for classical
sequent proofs?
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Hyperdoctrines for classical logic

Clear question: what is the notion of hyperdoctrine for classical
sequent proofs?

Setting 9x - x* -V, rules out certain interpretations of the
quantifiers — in particular as infinitary connectives.

Instead, we can use an “adjunction-up-to-adjunction”, or “lax
adjunction”...
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Classical doctrines

Al x*B
—<
dx.AFB

e:Ix(x*A) = A n:A — x*(3xA)

foe<eodx(x*f) and x*(Ixg)om<nog.

We call a morphism “strong” if these diagrams commute.
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Interpreting the quantifier rules

NAEA
MaxAkFA

IX*TIN[A] — | X*A]
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Interpreting the quantifier rules

NAEA
MaxAkFA

IT]AIxX A = X (X TINA]) = IX([XA]) = [A]

IEB,A

— 3R
I'F3x.B,A

Il — |B]V|A] = x*(3x.|B])V |A]
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Classical Doctrines

A dual doctrine is a functor € : B%° — Cat such that
@ B has finite products.
@ C(X) is a classical category, for each X.

@ For each f a morphism in B, C(f) (= f*) is strong monoidal
with respect to /\.

@ For each projection 7t in B, there is a right lax adjoint V¥,
which is a symmetric monoidal functor, such that the
adjunction is symmetric monoidal.

@ The Beck-Chevally condition
@ The existence of Prenex strengths
@ The switch morphism is strong.
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Classical doctrines

Prenex strengths The morphism
Prenex® =y g o (id®n): VXAV B — Vx(AV x*B)
has a right adjoint Prenex such that
Prenex® o Prenex < id

and
Prenex o Prenex® = id
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Let AV B be defined as (A+ A B+)+
Then, in every x-autonomous category, there is a morphism
ANBVC)— (ANB)VC

called “weak/linear distributivity” (Cockett/Seely) or “switch”
(Guglielmi, Lamarche, Strassburger).

Plays a key role in interpreting the cut rule. We require it to be
strong.
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Term model, soundness

We can construct a term classical category from sequent
proofs in LK, by interpreting cut elimination as an inequality and
then forming a quotient of proofs by an (unfortunately rather
complicated) equivalence relation.

Theorem

Interpretation of proofs in a classical doctrine is sound w.r.t.
cut-elimination: if ® cut-reduces to'V then

(@] < [¥)
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An alternative formulation of classical categories takes the
switch as basic rather than the x-autonomous structure.
Duality is not built in, so we can axiomatize the duality of the

two quantifiers (not automatic, since the adjunctions are only
“up to adjunction”).
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Further work

Finding concrete examples!

@ We have non-syntactic example, built from families of sets
and relations using an abstract Gol construction
(Abramsky’s Int construction).

@ This at least shows the axioms do not imply collapse...
@ But more would be nice!

@ In particular, examples where the quantifiers arise as
genuine adjoints.

First-order versions of other notions of model for classical
proofs.
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Fin

Thank you for your attention.
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