Categorically axiomatizing the classical quantifiers Hyperdoctrines for classical logic

Richard McKinley

University of Bern

TACL 2011

When should we consider two proofs in the classical sequent calculus identical

We consider this problem, for the logic with first-order quantifiers, using *categorical proof theory*.

When should we consider two proofs in the classical sequent calculus identical

We consider this problem, for the logic with first-order quantifiers, using *categorical proof theory*.

Consider categories of formulae/proofs in a formal system.

objects = formula

morphisms = (equivalence classes of) derivations

Morphism composition: from $A \rightarrow B$ and $B \rightarrow C$ infer $A \rightarrow C$.

The equivalence classes of morphisms should characterize a natural notion of equality on proofs.

Prawitz: two ND derivations equal if they have the same $\beta\eta$ -normal form.

Equational theory of a cartesian-closed category: ccc's give the "model theory" of intuitionistic natural deduction.

Two sequent MLL derivations are identical if (roughly) they have the same cut-free proof net.

Equational theory of a *-autonomous category (or, equivalently, a *symmetric linearly distributive category with negation*).

Two sequent LK derivations are identical if ?

Here we cannot use cut-elimination to define morphism equality, since it is essentially nonconfluent — if we identify derivations before and after cut-elimination, we identify *all* derivations.

Two sequent LK derivations are identical if ?

Here we cannot use cut-elimination to define morphism equality, since it is essentially nonconfluent — if we identify derivations before and after cut-elimination, we identify *all* derivations.

Two sequent LK derivations are identical if ? Here we cannot use cut-elimination to define morphism equality, since it is essentially nonconfluent — if we identify derivations before and after cut-elimination, we identify *all* derivations.

A ccc plus a dualizing negation is a poset.

A *-autonomous category with natural (co)monoids modelling the structural rules is a poset.

A ccc plus a dualizing negation is a poset.

A *-autonomous category with natural (co)monoids modelling the structural rules is a poset.

We cannot model cut-elimination in LK as equality.

Instead, model it as *inequality*.

In an order-enriched category, the morphisms from A to B form a partial order.

We cannot model cut-elimination in LK as equality.

Instead, model it as inequality.

In an order-enriched category, the morphisms from A to B form a partial order.

We cannot model cut-elimination in LK as equality.

Instead, model it as *inequality*.

In an *order-enriched* category, the morphisms from A to B form a *partial order*.

A classical category is an order-enriched category C with

- A *-autonomous structure (\mathfrak{C} , \wedge , \top , $(-)^{\perp}$)
- Such that the defining adjunction for $(-)^{\perp}$ is an order-isomorphism
- Which "has lax comonoids".

A classical category is an order-enriched category $\ensuremath{\mathbb{C}}$ with

- A *-autonomous structure (\mathcal{C} , \wedge , \top , $(-)^{\perp}$)
- Such that the defining adjunction for $(-)^{\perp}$ is an order-isomorphism
- Which "has lax comonoids".

$$\frac{\mathsf{A} \land \mathsf{B} \to \mathsf{C}}{\mathsf{A} \to (\mathsf{B} \land \mathsf{C}^{\perp})^{\perp}}$$

Classical categories (Pym, Führmann)

A classical category is an order-enriched category C with

- A *-autonomous structure ($\mathfrak{C}, \wedge, \top, (-)^{\perp}$)
- Such that the defining adjunction for $(-)^{\perp}$ is an order-isomorphism
- Which "has lax comonoids".

$$\begin{array}{ll} \Delta: \textbf{A} \to \textbf{A} \land \textbf{A} & \langle \rangle: \textbf{A} \to \textbf{a} \\ & \Delta \circ f \leqslant (f \otimes f) \circ \Delta \\ & \langle \rangle \circ f \leqslant \langle \rangle \end{array}$$

Classical sequent proofs form a classical category, if we quotient under:

- Linear, local cut-reduction steps as equalities
- Nonlinear cut reduction steps (involving structural rules) as inequalities.

(plus some other simple identities on proofs)

Classical sequent proofs form a classical category, if we quotient under:

- Linear, local cut-reduction steps as equalities
- Nonlinear cut reduction steps (involving structural rules) as inequalities.

(plus some other simple identities on proofs)

There are other non-trivial classical categories, most notably built from sets and relations.

Interpreting proofs in such categories give notions of identity on classical proofs.

Hyperdoctrines – from propositional to first-order logics.

Idea: treat the formulas/proofs over a given set of free variables as a catgeory.

Substitution/quantifiers are functors between these categories.

Key observation (Lawvere): Quantifiers arise as adjoints:

 $\frac{A \vdash B}{\exists x.A \vdash B}$

Hyperdoctrines – from propositional to first-order logics.

Idea: treat the formulas/proofs over a given set of free variables as a catgeory.

Substitution/quantifiers are functors between these categories.

Key observation (Lawvere): Quantifiers arise as adjoints:

 $\frac{A \vdash B}{\exists x.A \vdash B}$

Idea: treat the formulas/proofs over a given set of free variables as a catgeory.

Substitution/quantifiers are functors between these categories.

Key observation (Lawvere): Quantifiers arise as adjoints:

 $\frac{A \vdash B}{\exists x.A \vdash B}$

Idea: treat the formulas/proofs over a given set of free variables as a catgeory.

Substitution/quantifiers are functors between these categories.

Key observation (Lawvere): Quantifiers arise as adjoints:

 $\frac{A \vdash x^*B}{\exists x.A \vdash B}$

Clear question: what is the notion of hyperdoctrine for classical sequent proofs?

Setting $\exists x \dashv x^* \dashv \forall_x$ rules out certain interpretations of the quantifiers – in particular as infinitary connectives.

Instead, we can use an "adjunction-up-to-adjunction", or "lax adjunction"...

Clear question: what is the notion of hyperdoctrine for classical sequent proofs?

Setting $\exists x \dashv x^* \dashv \forall_x$ rules out certain interpretations of the quantifiers – in particular as infinitary connectives.

Instead, we can use an "adjunction-up-to-adjunction", or "lax adjunction"...

Clear question: what is the notion of hyperdoctrine for classical sequent proofs?

Setting $\exists x \dashv x^* \dashv \forall_x$ rules out certain interpretations of the quantifiers – in particular as infinitary connectives.

Instead, we can use an "adjunction-up-to-adjunction", or "lax adjunction"...

$$\frac{A \vdash x^*B}{\exists x.A \vdash B} \leqslant$$

$$\varepsilon: \exists x(x^*A) \to A \qquad \eta: A \to x^*(\exists xA)$$

 $f \circ \varepsilon \leq \varepsilon \circ \exists x(x^*f) \text{ and } x^*(\exists xg) \circ \eta \leq \eta \circ g.$

We call a morphism "strong" if these diagrams commute.

$$\frac{\Gamma, \boldsymbol{A} \vdash \Delta}{\Gamma, \exists \boldsymbol{x}. \boldsymbol{A} \vdash \Delta} \exists \boldsymbol{L}$$

 $[\Gamma] \land \exists x. [A] \to \exists x. ([x^*\Gamma] \land [A]) \to \exists x. ([x^*\Delta]) \to [\Delta]$

 $\frac{\Gamma, \vdash B, \Delta}{\Gamma, \vdash \exists x. B, \Delta} \exists R$

$$\frac{\Gamma, \boldsymbol{A} \vdash \Delta}{\Gamma, \exists \boldsymbol{x}. \boldsymbol{A} \vdash \Delta} \exists \boldsymbol{L}$$

 $[\Gamma] \land \exists x. [A] \to \exists x. ([x^*\Gamma] \land [A]) \to \exists x. ([x^*\Delta]) \to [\Delta]$

 $\frac{\Gamma, \vdash B, \Delta}{\Gamma, \vdash \exists x. B, \Delta} \exists R$

$$\frac{\Gamma, \boldsymbol{A} \vdash \Delta}{\Gamma, \exists \boldsymbol{x}. \boldsymbol{A} \vdash \Delta} \exists \boldsymbol{L}$$

 $\lfloor \Gamma \rfloor \land \exists x. \lfloor A \rfloor \to \exists x. (\lfloor x^* \Gamma \rfloor \land \lfloor A \rfloor) \to \exists x. (\lfloor x^* \Delta \rfloor) \to \lfloor \Delta \rfloor$

 $\frac{\Gamma, \vdash B, \Delta}{\Gamma, \vdash \exists x. B, \Delta} \exists R$

$$\frac{\Gamma, \boldsymbol{A} \vdash \Delta}{\Gamma, \exists \boldsymbol{x}. \boldsymbol{A} \vdash \Delta} \exists \boldsymbol{L}$$

 $\lfloor \Gamma \rfloor \land \exists x. \lfloor A \rfloor \to \exists x. (\lfloor x^* \Gamma \rfloor \land \lfloor A \rfloor) \to \exists x. (\lfloor x^* \Delta \rfloor) \to \lfloor \Delta \rfloor$

 $\frac{\Gamma, \vdash B, \Delta}{\Gamma, \vdash \exists x. B, \Delta} \exists R$

$$\frac{\Gamma, \boldsymbol{A} \vdash \Delta}{\Gamma, \exists \boldsymbol{x}. \boldsymbol{A} \vdash \Delta} \exists \boldsymbol{L}$$

 $\lfloor \Gamma \rfloor \land \exists x. \lfloor A \rfloor \to \exists x. (\lfloor x^* \Gamma \rfloor \land \lfloor A \rfloor) \to \exists x. (\lfloor x^* \Delta \rfloor) \to \lfloor \Delta \rfloor$

$$\frac{\Gamma, \vdash B, \Delta}{\Gamma, \vdash \exists x.B, \Delta} \exists R$$

$$[\Gamma] \to [B] \lor [\Delta] \to x^*(\exists x. [B]) \lor [\Delta]$$

$$\frac{\Gamma, \boldsymbol{A} \vdash \Delta}{\Gamma, \exists \boldsymbol{x}. \boldsymbol{A} \vdash \Delta} \exists \boldsymbol{L}$$

 $\lfloor \Gamma \rfloor \land \exists x. \lfloor A \rfloor \to \exists x. (\lfloor x^* \Gamma \rfloor \land \lfloor A \rfloor) \to \exists x. (\lfloor x^* \Delta \rfloor) \to \lfloor \Delta \rfloor$

$$\frac{\Gamma, \vdash B, \Delta}{\Gamma, \vdash \exists x. B, \Delta} \exists R$$

$$\lfloor \Gamma \rfloor \to \lfloor B \rfloor \lor \lfloor \Delta \rfloor \to x^* (\exists x. \lfloor B \rfloor) \lor \lfloor \Delta \rfloor$$

Classical Doctrines

Definition

A dual doctrine is a functor ${\mathfrak C}:{\mathfrak B}^{\textit{op}}\to Cat$ such that

- B has finite products.
- $\mathcal{C}(X)$ is a classical category, for each X.
- For each *f* a morphism in *B*, C(*f*) (= *f**) is strong monoidal with respect to ∧.
- For each projection π in ℬ, there is a right *lax* adjoint ∀_π, which is a symmetric monoidal functor, such that the adjunction is symmetric monoidal.
- The Beck-Chevally condition
- The existence of Prenex strengths
- The switch morphism is strong.

Prenex strengths The morphism

$$\textbf{Prenex}^{\circ} = \mu_{\textbf{A}, x^{*}\textbf{B}} \circ (\textbf{id} \otimes \eta) : \forall x\textbf{A} \lor \textbf{B} \rightarrow \forall x(\textbf{A} \lor x^{*}\textbf{B})$$

has a right adjoint **Prenex** such that

 $\textbf{Prenex}^{\circ} \circ \textbf{Prenex} \leqslant \textbf{id}$

and

 $\textbf{Prenex} \circ \textbf{Prenex}^\circ = \textbf{id}$

Let $A \lor B$ be defined as $(A^{\perp} \land B^{\perp})^{\perp}$

Then, in every *-autonomous category, there is a morphism

$$\mathbf{A} \land (\mathbf{B} \lor \mathbf{C}) \to (\mathbf{A} \land \mathbf{B}) \lor \mathbf{C}$$

called "weak/linear distributivity" (Cockett/Seely) or "switch" (Guglielmi, Lamarche, Strassburger).

Plays a key role in interpreting the cut rule. We require it to be *strong*.

We can construct a term classical category from sequent proofs in LK, by interpreting cut elimination as an inequality and then forming a quotient of proofs by an (unfortunately rather complicated) equivalence relation.

Theorem

Interpretation of proofs in a classical doctrine is sound w.r.t. cut-elimination: if Φ cut-reduces to Ψ then

 $\lfloor \Phi \rfloor \leqslant \lfloor \Psi \rfloor$

An alternative formulation of classical categories takes the switch as basic rather than the *-autonomous structure. Duality is not built in, so we can axiomatize the duality of the two quantifiers (not automatic, since the adjunctions are only "up to adjunction").

Finding concrete examples!

- We have non-syntactic example, built from families of sets and relations using an abstract Gol construction (Abramsky's Int construction).
- This at least shows the axioms do not imply collapse...
- But more would be nice!
- In particular, examples where the quantifiers arise as genuine adjoints.

First-order versions of other notions of model for classical proofs.

Thank you for your attention.