Continuum of extensions of the fusion of non-tabular and non-maximal modal logics over S4

Maxim Izmaylov

Moscow State University

July 2011, Marseille

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definitions

$S4 = K \oplus \{\Box p \to p, \Box p \to \Box \Box p\}$

Fusion $\Lambda_1 \otimes \Lambda_2$ of two 1-modal logics Λ_1 , Λ_2 is the least 2-modal logic, which contains axioms of Λ_1 for the first modality and axioms of Λ_2 for the second.

Normal modal logic is called tabular, if it is determined with a finite Kripke frame.

Normal modal logic is called maximal, if it is maximal by inclusion consistent logic.

 $NExt(L) = \{\Lambda | L \subseteq \Lambda \text{ and } \Lambda \text{ is normal modal logic}\}$

Theorem

Theorem

For any two logics L_1, L_2 over S4, if L_1 is not tabular and L_2 is not maximal, then the power of $NExt(L_1 \otimes L_2)$ is continuum.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A logic is called pretabular, if it is not tabular, but all its normal proper consistent extensions are tabular.

ション ふゆ アメリア メリア しょうくの

Lemma Any non-tabular logic is contained in a pretabular logic.

Esakia-Meskhi Theorem

Theorem (Esakia, Meskhi)

There are exactly five pretabular logics in NExt(S4). They are determined with the following Kripke frames.

・ロト ・聞ト ・ヨト ・ヨト

Premaximal logics

Lemma

Every non-maximal logic over S4 is contained in one of the following logics: $Log(\rightarrow \circ)$ и $Log(\rightarrow \circ)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Observation

Thus, to prove the theorem, we should consider 10 cases: the combinations of 5 pretabular and 2 non-maximal logics over S4.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Idea of the proof

Consider the case $Log(P_1) \otimes Log(\rightarrow)$

Construct such formulas ϕ_i , $i \in \mathbb{N}$ that:

for logics $\Lambda_I := Log(P_1) \otimes Log(\circ \bullet \circ) + \{\phi_i | i \in I\}$, where $I \subseteq \mathbb{N}$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\Lambda_I \neq \Lambda_J$, when $I \neq J$

Idea of the proof

Consider the case $Log(P_1) \otimes Log(\rightarrow)$

Construct such formulas ϕ_i , $i \in \mathbb{N}$ that:

for logics $\Lambda_I := Log(P_1) \otimes Log(\rightarrow) + \{ \phi_i | i \in I \}$, where $I \subseteq \mathbb{N}$,

ション ふゆ アメリア メリア しょうくの

$$\Lambda_I \neq \Lambda_J$$
, when $I \neq J$

Then the power of $\{\Lambda_I | I \subseteq \mathbb{N}\}$ is continuum.

Table

Dependence of $NExt(L_1 \otimes L_2)$ on $NExt(L_1)$ and $NExt(L_2)$

$NExt(L_1)$	2	Finite	Countable	Continuum
NExt(L ₂)				
2	2	Finite	Countable	Continuum
Finite	Finite	?	Continuum	Continuum
Countable	Countable	Continuum	Continuum	Continuum
Continuum	Continuum	Continuum	Continuum	Continuum

In 1994 Wolter built an injective embedding of NExt(T) into the extensions of $S5 \otimes Log(\rightarrow \circ)$.

This embedding reflected many good properties such as decidability amd FMP.

Corollary: the power of NExt($S5 \otimes Log(\rightarrow \circ)$) is continuum.