Noncommutative spaces and their representation theory

Alessandra Palmigiano (joint work with Riccardo Re)

TACL, 28 July 2011

Stone duality

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

< E

э

< ∃ > < ∃ >

э

・聞き ・ ほき・ ・ ほき

э

同 ト イ ヨ ト イ ヨ ト

• • = • • = •

Stone duality

A B + A B +

∃ → < ∃</p>

< ∃ >

-

伺 ト く ヨ ト く ヨ ト

同 ト イ ヨ ト イ ヨ ト

• Quantales as noncommutative locales;

→ 3 → < 3</p>

- Quantales as noncommutative locales;
- noncommutative extensions of Gelfand-Naimark duality:

< ∃ >

- Quantales as noncommutative locales;
- noncommutative extensions of Gelfand-Naimark duality:
- important instances mediated by (étale) groupoids;

- Quantales as noncommutative locales;
- noncommutative extensions of Gelfand-Naimark duality:
- important instances mediated by (étale) groupoids;
- groupoids as 'noncommutative spaces'.

- Quantales as noncommutative locales;
- noncommutative extensions of Gelfand-Naimark duality:
- important instances mediated by (étale) groupoids;
- groupoids as 'noncommutative spaces'.

• Quantales as models of a geometric logic of binary relations;

- Quantales as noncommutative locales;
- noncommutative extensions of Gelfand-Naimark duality:
- important instances mediated by (étale) groupoids;
- groupoids as 'noncommutative spaces'.
- Quantales as <u>models</u> of a geometric logic of binary relations;
- representability through correspondence with groupoids.

- Quantales as noncommutative locales;
- noncommutative extensions of Gelfand-Naimark duality:
- important instances mediated by (étale) groupoids;
- groupoids as 'noncommutative spaces'.
- Quantales as <u>models</u> of a geometric logic of binary relations;
- representability through correspondence with groupoids.
- Relations as groupoids are not naturally 'étale'.

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

P

- ∢ ≣ ▶

Set groupoids: small categories where every arrow is an iso

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

3

Set groupoids: small categories where every arrow is an iso

Set groupoids are tuples

$$G = (G_0, G_1, m, d, r, u, i)$$

s.t. G_0 and G_1 are sets, and:

+ axioms encoding 'G category' and 'every arrow is iso'.

Set groupoids: small categories where every arrow is an iso

Set groupoids are tuples

$$G = (G_0, G_1, m, d, r, u, i)$$

s.t. G_0 and G_1 are sets, and:

+ axioms encoding 'G category' and 'every arrow is iso'.

Topological/Localic Groupoids: internal groupoids in Top/Loc. Étale Groupoids: structure map d is a local homeomorphism.

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

Local bisections

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

→ 3 → < 3</p>

-

A local bisection of G is a continuous map $s : U \to G_1$ such that • U is an open set of G_0 ;

- ₹ 🖹 🕨

- U is an open set of G_0 ;
- $d \circ s = id_U$, and

- ₹ 🖬 🕨

- U is an open set of G₀;
- $d \circ s = id_U$, and
- $r \circ s : U \to V$ is a partial homeomorphism of G_0 .

-∢ ≣ ▶

- U is an open set of G₀;
- $d \circ s = \mathrm{id}_U$, and
- $r \circ s : U \to V$ is a partial homeomorphism of G_0 .

Remark: Because $d \circ s = id_U$, local bisections are completely determined by their images.

A 3 3 4 4

- U is an open set of G₀;
- $d \circ s = \mathrm{id}_U$, and
- $r \circ s : U \to V$ is a partial homeomorphism of G_0 .

Remark: Because $d \circ s = id_U$, local bisections are completely determined by their images.

Fact: Bisection images naturally form a (unital) inverse semigroup:

- U is an open set of G₀;
- $d \circ s = \mathrm{id}_U$, and
- $r \circ s : U \to V$ is a partial homeomorphism of G_0 .

Remark: Because $d \circ s = id_U$, local bisections are completely determined by their images.

Fact: Bisection images naturally form a (unital) inverse semigroup: • the unit is $u[G_0]$;

• product is composition.

伺 ト イ ヨ ト イ ヨ ト

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

I ≡ →

→ Ξ →

stably supported quantales which are (spatial) frames generated by their partial units:

stably supported quantales which are (spatial) frames generated by their partial units: $a \in Q$ s.t. $aa^* \leq e$ and $a^*a \leq e$ (Jónsson-Tarski's <u>functional invertible elements</u>)

< ∃ >

→ Ξ →

generated by the bisection images of \boldsymbol{G}

Bisection images of $G \iff$ partial units of $\mathcal{Q}(G)$

3 N

3 N

< ∃ >

- ₹ 🖹 🕨

Let $X = (G_0, \Omega(G_0))$ (topology $\Omega(G_0)$ given by down-sets):

Let $X = (G_0, \Omega(G_0))$ (topology $\Omega(G_0)$ given by down-sets):

Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$

Let $X = (G_0, \Omega(G_0))$ (topology $\Omega(G_0)$ given by down-sets):

Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$ X as a groupoid: $G = (G_0, R), R = \Delta \cup \{(p_1, p_2), (p_2, p_1)\}$

Let $X = (G_0, \Omega(G_0))$ (topology $\Omega(G_0)$ given by down-sets):

Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$ X as a groupoid: $G = (G_0, R), R = \Delta \cup \{(p_1, p_2), (p_2, p_1)\}$ S(G): all the restrictions of φ, id_X to opens

Let $X = (G_0, \Omega(G_0))$ (topology $\Omega(G_0)$ given by down-sets):

Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$ X as a groupoid: $G = (G_0, R), R = \Delta \cup \{(p_1, p_2), (p_2, p_1)\}$ S(G): all the restrictions of φ, id_X to opens graphs of φ and id_X coincide over $\{(p_0, p_0)\}$:

Let $X = (G_0, \Omega(G_0))$ (topology $\Omega(G_0)$ given by down-sets):

Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$ X as a groupoid: $G = (G_0, R), R = \Delta \cup \{(p_1, p_2), (p_2, p_1)\}$ S(G): all the restrictions of φ, id_X to opens graphs of φ and id_X coincide over $\{(p_0, p_0)\}$: not a bisect. im. $(\{p_0\} \text{ closed not open})$

Let $X = (G_0, \Omega(G_0))$ (topology $\Omega(G_0)$ given by down-sets):

Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$ X as a groupoid: $G = (G_0, R), R = \Delta \cup \{(p_1, p_2), (p_2, p_1)\}$ S(G): all the restrictions of φ, id_X to opens graphs of φ and id_X coincide over $\{(p_0, p_0)\}$: not a bisect. im. $(\{p_0\} \text{ closed not open})$ hence S(G) not a topological base.

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

▶ < □ ▶ < □</p>

★ Ξ →

Just like IQFs, except not frames:

Just like IQFs, except <u>not</u> frames: frame distributivity replaced with weaker axiom SGF3

Just like IQFs, except <u>not</u> frames: frame distributivity replaced with weaker axiom SGF3 For all partial units f, g and any $h \le e$,

Just like IQFs, except <u>not</u> frames: frame distributivity replaced with weaker axiom SGF3 For all partial units f, g and any $h \le e$, if $f \le h \cdot 1 \lor g$ then $f \le h \cdot f \lor g$

I ≡ ▶ < </p>

 G_0 is a sober space no (a priori) top. on G_1

I ≡ →

 G_0 is a sober space no (a priori) top. on G_1 local bisections are **set** maps $s: U \to G_1$

 G_0 is a sober space no (a priori) top. on G_1 local bisections are **set** maps $s: U \to G_1$ G_1 is covered by bisect. im's

→ Ξ →

< ∃ >

< ∃ →

/□ ▶ < 글 ▶ < 글

э

▶ < □ ▶ < □</p>

同 ト イ ヨ ト イ ヨ ト

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

► < Ξ > <</p>

 Every (spatial) SGF-quantale can be embedded into some discrete groupoid quantale P(G) for some set groupoid G.

- Every (spatial) SGF-quantale can be embedded into some discrete groupoid quantale P(G) for some set groupoid G.
- Discrete groupoid quantales are perfect BA;

- Every (spatial) SGF-quantale can be embedded into some discrete groupoid quantale P(G) for some set groupoid G.
- Discrete groupoid quantales are perfect BA;
- develop the quantale-theoretic counterpart of the representation theory in [Jónsson-Tarski 52]:

- Every (spatial) SGF-quantale can be embedded into some discrete groupoid quantale P(G) for some set groupoid G.
- Discrete groupoid quantales are perfect BA;
- develop the quantale-theoretic counterpart of the representation theory in [Jónsson-Tarski 52]:
- The embedding can be used in the same way as the perfect embedding of relation algebras:

- Every (spatial) SGF-quantale can be embedded into some discrete groupoid quantale P(G) for some set groupoid G.
- Discrete groupoid quantales are perfect BA;
- develop the quantale-theoretic counterpart of the representation theory in [Jónsson-Tarski 52]:
- The embedding can be used in the same way as the perfect embedding of relation algebras:
 - abstractly characterize discrete groupoid quantales (these are the functionally atomic quantales);

- Every (spatial) SGF-quantale can be embedded into some discrete groupoid quantale P(G) for some set groupoid G.
- Discrete groupoid quantales are perfect BA;
- develop the quantale-theoretic counterpart of the representation theory in [Jónsson-Tarski 52]:
- The embedding can be used in the same way as the perfect embedding of relation algebras:
 - abstractly characterize discrete groupoid quantales (these are the functionally atomic quantales);
 - embed them into quantales of the form $\mathcal{P}(R)$ for some equivalence relation R;

/□ ▶ < 글 ▶ < 글

- Every (spatial) SGF-quantale can be embedded into some discrete groupoid quantale P(G) for some set groupoid G.
- Discrete groupoid quantales are perfect BA;
- develop the quantale-theoretic counterpart of the representation theory in [Jónsson-Tarski 52]:
- The embedding can be used in the same way as the perfect embedding of relation algebras:
 - abstractly characterize discrete groupoid quantales (these are the functionally atomic quantales);
 - embed them into quantales of the form $\mathcal{P}(R)$ for some equivalence relation R;
 - compose the two embeddings and obtain:

伺 ト イヨト イヨト

- Every (spatial) SGF-quantale can be embedded into some discrete groupoid quantale P(G) for some set groupoid G.
- Discrete groupoid quantales are perfect BA;
- develop the quantale-theoretic counterpart of the representation theory in [Jónsson-Tarski 52]:
- The embedding can be used in the same way as the perfect embedding of relation algebras:
 - abstractly characterize discrete groupoid quantales (these are the functionally atomic quantales);
 - embed them into quantales of the form $\mathcal{P}(R)$ for some equivalence relation R;
 - compose the two embeddings and obtain:

Every spatial SGF-quantale is a sub-(unital involutive) quantale of one of the form $\mathcal{P}(R)$ for some equivalence relation R.

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Jónsson, B. & Tarski, A. 'Boolean Algebras with Operators, Part II', Amer. J. of Math., 74 2 (1952) 127-162.
- P., A. & Re, R. 'Relational representation of groupoid quantales', Order, to appear, DOI 10.1007/s11083-011-9227-z.
- P., A. & Re, R., 'Groupoid quantales: a non-étale setting', J. of Pure and Applied Algebra, 215: 8 (2011), 1945-1957.
- Resende, P. 'Étale groupoids and their quantales', Adv. Math. 208 (2007) 147-209.

- 4 E 6 4 E 6

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

- ∢ ≣ ▶

э

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$.

→ 3 → 4 3

э

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

- ∢ ≣ ▶

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

 $\mathcal{I} := \{ (p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \leq p \}.$

伺 ト く ヨ ト く ヨ ト

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

$$\mathcal{I} := \{ (p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \not\leq p \}.$$

The incidence relation \sim on \mathcal{I} :

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

$$\mathcal{I} := \{ (p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \not\leq p \}.$$

The <u>incidence relation</u> \sim on \mathcal{I} : $(p, f) \sim (q, g)$ iff

p = q and $h \not\leq p$ and $hf \leq pf \lor g$ for some $h \leq d(f) \land d(g)$.

同 ト イ ヨ ト イ ヨ ト

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

$$\mathcal{I} := \{ (p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \not\leq p \}.$$

The incidence relation \sim on \mathcal{I} : $(p, f) \sim (q, g)$ iff

p = q and $h \not\leq p$ and $hf \leq pf \lor g$ for some $h \leq d(f) \land d(g)$.

For every SGF-quantale Q, G(Q) is defined as follows:

200

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

$$\mathcal{I} := \{ (p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \not\leq p \}.$$

The incidence relation \sim on \mathcal{I} : $(p, f) \sim (q, g)$ iff

p = q and $h \not\leq p$ and $hf \leq pf \lor g$ for some $h \leq d(f) \land d(g)$.

For every SGF-quantale Q, G(Q) is defined as follows:

$$\begin{aligned} G_0 &= \mathcal{P}_e & G_1 = \mathcal{I} / \sim \\ d([p,f]) &= p, \quad r([p,f]) = f[p], \quad u(p) = [p,e], \\ [p,f][q,g] &= [p,fg] \quad \text{only if} \quad q = f[p] \\ [p,f]^{-1} &= [f[p],f^*]. \end{aligned}$$

Noncommutative spaces and their representation theory

Let G be a groupoid and S(G) be the collection of its G-sets.

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory

< ∃ →

I ≡ →

< ∃ → <

A <u>selection base</u> for G is a family S of G-sets s.t.:

• S is a sub unital inverse semigroup of S(G);

- S is a sub unital inverse semigroup of S(G);
- $u[U] \in S$ for every open set U in G_0 ;

- S is a sub unital inverse semigroup of S(G);
- $u[U] \in S$ for every open set U in G_0 ;
- for every $\mathcal{X} \subseteq S$, if $S \cdot T^* \subseteq E$ and $S^* \cdot T \subseteq E$ for every $S, T \in \mathcal{X}$, then $\bigcup \mathcal{X} \in S$.

- S is a sub unital inverse semigroup of S(G);
- $u[U] \in S$ for every open set U in G_0 ;
- for every $\mathcal{X} \subseteq S$, if $S \cdot T^* \subseteq E$ and $S^* \cdot T \subseteq E$ for every $S, T \in \mathcal{X}$, then $\bigcup \mathcal{X} \in S$.
- S covers G_1 .