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Motivations

Quantales as noncommutative locales;

noncommutative extensions of Gelfand-Naimark duality:

important instances mediated by (étale) groupoids;

groupoids as ‘noncommutative spaces’.

Quantales as models of a geometric logic of binary relations;

representability through correspondence with groupoids.

Relations as groupoids are not naturally ‘étale’.
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Groupoids

Set groupoids: small categories where every arrow is an iso

Set groupoids are tuples

G = (G0, G1, m, d , r , u, i)

s.t. G0 and G1 are sets, and:

i d

r

umG1 ×0 G1 G1 G0

+ axioms encoding ‘G category’ and ‘every arrow is iso’.

Topological/Localic Groupoids: internal groupoids in Top/Loc.

Étale Groupoids: structure map d is a local homeomorphism.
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Local bisections

A local bisection of G is a continuous map s : U → G1 such that

U is an open set of G0;

d ◦ s = idU , and

r ◦ s : U → V is a partial homeomorphism of G0.

Remark: Because d ◦ s = idU , local bisections are completely
determined by their images.

Fact: Bisection images naturally form a (unital) inverse semigroup:
• the unit is u[G0];
• product is composition.
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The étale duality (on objects) [Resende 2007]

Inverse
Quantal
Frames

Topological
Étale

Groupoids

stably supported quantales
which are (spatial) frames

generated by their partial units:

a ∈ Q s.t. aa∗ ≤ e and a∗a ≤ e
(Jónsson-Tarski’s functional invertible elements)

G

Top. Étale
Groupoid

Q(G )

Q(G ) := the sub
⋃

-semilattice of P(G )
generated by the bisection images of G

Bisection images of G ! partial units of Q(G )

Q G (Q)

G (Q) = (G0, G1)
G0
∼= e↓,

G1 is the set of germs of the partial units of Q
topology on G1 is Q

partial units of Q! bisections of G (Q)
Bisect. images form a base for the top. Q
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Étale

Groupoids

stably supported quantales
which are (spatial) frames

generated by their partial units:

a ∈ Q s.t. aa∗ ≤ e and a∗a ≤ e
(Jónsson-Tarski’s functional invertible elements)

G

Top. Étale
Groupoid

Q(G )

Q(G ) := the sub
⋃

-semilattice of P(G )
generated by the bisection images of G

Bisection images of G ! partial units of Q(G )

Q G (Q)

G (Q) = (G0, G1)
G0
∼= e↓,

G1 is the set of germs of the partial units of Q
topology on G1 is Q

partial units of Q! bisections of G (Q)
Bisect. images form a base for the top. Q

Alessandra Palmigiano (joint work with Riccardo Re) Noncommutative spaces and their representation theory



The étale duality (on objects) [Resende 2007]

Inverse
Quantal
Frames

Topological
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A groupoid whose bis. im’s are not a base for any top.

Let X = (G0, Ω(G0)) (topology Ω(G0) given by down-sets):

p0

p1 p2 ∅
P1 P2

P0

G0

Group acting on X : G = {ϕ, idX}, where
(ϕ(p0) = p0, ϕ(p1) = p2, ϕ(p2) = p1)
X as a groupoid: G = (G0, R), R = ∆ ∪ {(p1, p2), (p2, p1)}
S(G ): all the restrictions of ϕ, idX to opens
graphs of ϕ and idX coincide over {(p0, p0)}: not a bisect. im.
({p0} closed not open) hence S(G ) not a topological base.
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The non étale duality (on objects) [P. - Re 2011a]

SGF
Quantales

Just like IQFs, except not frames:
frame distributivity replaced with weaker axiom SGF3

For all partial units f , g and any h ≤ e,
if f ≤ h · 1 ∨ g then f ≤ h · f ∨ g

Groupoids
+

Bases

G0 is a sober space
no (a priori) top. on G1

local bisections are set maps s : U → G1

G1 is covered by bisect. im’s

(G , S)

Groupoid
+ Base

Q(G , S)

defined as before, except
using S in place of all bisect. im’s

partial units of Q(G , S) ! S

Q

SGF
+ 2 spatiality axioms

(G (Q), S(Q))

G (Q) = (G0, G1)
G0
∼= e↓,

partial units of Q! S(Q)
G1 is the set of incidence classes of the partial units of Q

incidence classes generalize germs of the partial units of Q
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local bisections are set maps s : U → G1

G1 is covered by bisect. im’s

(G , S)

Groupoid
+ Base

Q(G , S)

defined as before, except
using S in place of all bisect. im’s

partial units of Q(G , S) ! S

Q

SGF
+ 2 spatiality axioms

(G (Q), S(Q))

G (Q) = (G0, G1)
G0
∼= e↓,

partial units of Q! S(Q)
G1 is the set of incidence classes of the partial units of Q

incidence classes generalize germs of the partial units of Q
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Taking stock [P. - Re 2011b]

Every (spatial) SGF-quantale can be embedded into some
discrete groupoid quantale P(G ) for some set groupoid G .

Discrete groupoid quantales are perfect BA;

develop the quantale-theoretic counterpart of the
representation theory in [Jónsson-Tarski 52]:

The embedding can be used in the same way as the perfect
embedding of relation algebras:

abstractly characterize discrete groupoid quantales (these are
the functionally atomic quantales);
embed them into quantales of the form P(R) for some
equivalence relation R;
compose the two embeddings and obtain:

Every spatial SGF-quantale is a sub-(unital involutive) quantale of
one of the form P(R) for some equivalence relation R.
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The groupoid G (Q)

Let Q be an SGF-quantale. For every f ∈ I(Q) let d(f ) = ff ∗.
Let Pe be the set of the prime elements of Qe .

I := {(p, f ) ∈ Pe × I(Q) | d(f ) 6≤ p}.

The incidence relation ∼ on I: (p, f ) ∼ (q, g) iff

p = q and h 6≤ p and hf ≤ pf ∨ g for some h ≤ d(f ) ∧ d(g).

For every SGF-quantale Q, G (Q) is defined as follows:

G0 = Pe G1 = I/ ∼

d([p, f ]) = p, r([p, f ]) = f [p], u(p) = [p, e],

[p, f ][q, g ] = [p, fg ] only if q = f [p]

[p, f ]−1 = [f [p], f ∗].
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Selection base

Let G be a groupoid and S(G ) be the collection of its G -sets.

Assume that G1 =
⋃
S(G ). Let E = u[G0].

A selection base for G is a family S of G -sets s.t.:

S is a sub unital inverse semigroup of S(G );

u[U] ∈ S for every open set U in G0;

for every X ⊆ S, if S · T ∗ ⊆ E and S∗ · T ⊆ E for every
S , T ∈ X , then

⋃
X ∈ S.

S covers G1.
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