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Lindenbaum algebras

Lindenbaum algebra of a theory T :
LT = {sentences of T}/ ∼T , where

ϕ ∼T ψ ⇐⇒ T ` (ϕ↔ ψ)

LT is a boolean algebra with operations ∧, ∨, ¬.
1 = the set of provable sentences of T
0 = the set of refutable sentences of T

For consistent gödelian T all such algebras are countable atomless,
hence pairwise isomorphic.

Kripke, Pour-El: even computably isomorphic



Magari algebras

Emerged in 1970s: Macintyre/Simmons, Magari, Smoryński, . . .

Let T be a gödelian theory (formalizing its own syntax),
Con(T ) = «T is consistent»

Consistency operator 3 : ϕ 7−→ Con(T + ϕ) acting on LT .

(LT ,3) = Magari algebra of T
2ϕ = ¬3¬ϕ = «ϕ is provable in T»

Characteristic of (M,3):
ch(M) = min{k : 3k1 = 0};
ch(M) =∞, if no such k exists.

Remark. If N � T , then ch(LT ) =∞.
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Identities of Magari algebras

K. Gödel (33), M.H. Löb (55): Algebra (LT ,3) satisfies the
following set of identities GL:

boolean identities
30 = 0
3(ϕ ∨ ψ) = (3ϕ ∨3ψ)

3ϕ = 3(ϕ ∧ ¬3ϕ) (Löb’s identity)

GL-algebras = Magari algebras = diagonalizable algebras
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Provability logic

Let A = (A,3) be a boolean algebra with an operator 3, and ϕ(~x)
a term.

Def. Denote
A � ϕ if A � ∀~x (ϕ(~x) = 1);
The logic of A is Log(A) = {ϕ : A � ϕ}.

R. Solovay (76): If ch(LT ) =∞, then Log(LT ,3) = GL.

GL is nice as a modal logic (decidable, Kripke complete, fmp,
Craig, cut-free calculus, . . . )
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n-consistency

Def. A gödelian theory T is n-consistent, if every provable
Σ0

n-sentence of T is true.

n-Con(T ) = «T is n-consistent»

n-consistency operator 〈n〉 : LT → LT

ϕ 7−→ n-Con(T + ϕ).

[n] = ¬〈n〉¬ (n-provability)



The algebra of n-provability

MT = (LT ; 〈0〉, 〈1〉, . . .).

The following identities GLP hold inMT :
GL, for all 〈n〉;
〈n + 1〉ϕ→ 〈n〉ϕ;
〈n〉ϕ→ [n + 1]〈n〉ϕ.

G. Japaridze (86): If N � T , then Log(MT ) = GLP .
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The significance of GLP

GLP is
Useful for proof theory:

Ordinal notations and consistency proof for PA;
Independent combinatorial assertion;
Characterization of provably total computable functions of PA.

Fairly complicated and not so nice modal-logically:
no Kripke completeness, no cut-free calculus;
though it is decidable and has Craig interpolation.

GLPn is GLP in the language with n operators. GLP1 = GL.
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Set-theoretic interpretation

Let X be a nonempty set, P(X ) the b.a. of subsets of X .

Consider any operator δ : P(X )→ P(X ) and the structure
(P(X ), δ).

Question: Can (P(X ), δ) be a GL-algebra and, if yes, when?

Def. Write (X , δ) � ϕ if (P(X ), δ) � ϕ. Also let
Log(X , δ) := Log(P(X ), δ).
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Derived set operators

Let X be a topological space, A ⊆ X .
Derived set d(A) of A is the set of limit points of A:

x ∈ d(A) ⇐⇒ ∀Ux open ∃y 6= x y ∈ Ux ∩ A.

Fact. If (X , δ) � GL then X naturally bears a topology τ for which
δ = dτ , that is, δ : A 7−→ dτ (A), for each A ⊆ X .

In fact, we can define: A is τ -closed iff δ(A) ⊆ A.
Equivalently, c(A) = A ∪ δ(A) is the closure of A.
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Scattered spaces

Definition (Cantor): X is scattered if every nonempty A ⊆ X has an
isolated point.

Cantor-Bendixon sequence:

X0 = X , Xα+1 = d(Xα), Xλ =
⋂
α<λ

Xα, if λ is limit.

Notice that all Xα are closed and X0 ⊃ X1 ⊃ X2 ⊃ . . .

Fact (Cantor): X is scattered ⇐⇒ ∃α : Xα = ∅.



Scattered spaces

Definition (Cantor): X is scattered if every nonempty A ⊆ X has an
isolated point.

Cantor-Bendixon sequence:

X0 = X , Xα+1 = d(Xα), Xλ =
⋂
α<λ

Xα, if λ is limit.

Notice that all Xα are closed and X0 ⊃ X1 ⊃ X2 ⊃ . . .

Fact (Cantor): X is scattered ⇐⇒ ∃α : Xα = ∅.



Scattered spaces

Definition (Cantor): X is scattered if every nonempty A ⊆ X has an
isolated point.

Cantor-Bendixon sequence:

X0 = X , Xα+1 = d(Xα), Xλ =
⋂
α<λ

Xα, if λ is limit.

Notice that all Xα are closed and X0 ⊃ X1 ⊃ X2 ⊃ . . .

Fact (Cantor): X is scattered ⇐⇒ ∃α : Xα = ∅.



Examples

Left topology τ≺ on a strict partial ordering (X ,≺).
A ⊆ X is open iff ∀x , y (y ≺ x ∈ A⇒ y ∈ A).

Fact: (X ,≺) is well-founded iff (X , τ≺) is scattered.

Ordinal Ω with the usual order topology generated by intervals
(α, β), [0, β), (α,Ω) such that α < β.
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Löb’s identity = scatteredness

Simmons 74, Esakia 81

Löb’s identity: 3A = 3(A ∧ ¬3A).

Topological reading:

d(A) = d(A \ d(A)) = d(iso(A)),

where iso(A) = A \ d(A) is the set of isolated points of A.

Fact: The following are equivalent:
X is scattered;
d(A) = d(iso(A)) for any A ⊆ X ;
(X , d) � GL.
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Completeness theorems

Theorem (Esakia 81): There is a scattered X such that
Log(X , d) = GL. In fact, X is the left topology on a countable
well-founded partial ordering.

Theorem (Abashidze/Blass 87/91): Consider Ω ≥ ωω with the
order topology. Then Log(Ω, d) = GL.
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Topological models for GLP

We consider poly-topological spaces (X ; τ0, τ1, . . . ) where modality
〈n〉 corresponds to the derived set operator dn w.r.t. τn.

Definition: X is a GLP-space if
τ0 is scattered;
For each A ⊆ X , dn(A) is τn+1-open;
τn ⊆ τn+1.

Remark: In a GLP-space, all τn are scattered.
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Basic example

Consider a bitopological space (Ω, τ0, τ1), where
Ω is an ordinal;
τ0 is the left topology on Ω;
τ1 is the interval topology on Ω.

Fact (Esakia): (Ω, τ0, τ1) is a model of GLP2, but not an exact
one: linearity axiom holds for 〈0〉, that is,

[0](ϕ→ (ψ ∨ 〈0〉ψ)) ∨ [0](ψ → (ϕ ∨ 〈0〉ϕ)).



Next topology and generated GLP-space

Let (X , τ) be a scattered space.

Fact: There is the coarsest topology τ+ on X such that (X ; τ, τ+)
is a GLP2-space.

The next topology τ+ is generated by τ and {d(A) : A ⊆ X} (as a
subbase).

Thus, any (X , τ) generates a GLP-space (X ; τ0, τ1, . . . ) with
τ0 = τ and τn+1 = τ+n , for each n.
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Completeness for GLP2

GLP2 is complete w.r.t. GLP2-spaces generated from the left
topology on a well-founded partial ordering (with Guram
Bezhanishvili and Thomas Icard).

Theorem: There is a countable GLP2-space X such that
Log(X , d0, d1) = GLP2.

In fact, X has the form (X ; τ≺, τ
+
≺ ) where (X ,≺) is a well-founded

partial ordering.

Aside: This seems to be the first naturally occurring example of a
logic that is topologically complete but not Kripke complete.
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Difficulties

Difficulties for three or more operators.

Fact. If (X , τ) is hausdorff and first-countable (i.e. if each point has
a countable neighborhood base), then (X , τ+) is discrete.

Proof: Each a ∈ X is a unique limit of a countable sequence
A = {an}. Hence, {a} = d(A) is open.



Ordinal GLP-spaces

Let τ0 be the left topology on an ordinal Ω. It generates a
GLP-space (Ω; τ0, τ1, . . . ). What are these topologies?

Fact: τ1 is the order topology on Ω.



Club filter topology

Def. Let α be a limit ordinal.
C ⊆ α is a club in α if C is τ1-closed and unbounded below α.
The filter generated by clubs in α is called the club filter. It is
improper iff α has countable cofinality.

Fact. τ2 is the club filter topology:
τ2-isolated points are ordinals of countable cofinality;
if cf (α) > ω then clubs in α form a neighborhood base of α;
the least non-isolated point is ω1.
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Stationary sets

Def. A ⊆ α is stationary in α if A intersects every club in α.

We have: d2(A) = {α : cf (α) > ω and A ∩ α is stationary}

Remark: Set theorists call d2 Mahlo operation.
Ordinals in d2(Reg), where Reg is the class of regular cardinals, are
called weakly Mahlo cardinals. Their existence implies consistency
of ZFC .



Stationary reflection

Studied by: Solovay, Harrington, Jech, Shelah, Magidor, and many
more.

Def. Ordinal κ is reflecting if whenever A is stationary in κ there is
an α < κ such that A ∩ α is stationary in α.

Def. Ordinal κ is doubly reflecting if whenever A,B are stationary
in κ there is an α < κ such that both A ∩ α and B ∩ α are
stationary in α.

Theorem. κ is τ3-nonisolated iff κ is doubly reflecting.
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Mahlo topology τ3

Fact (characterizing τ3):

If κ is not doubly reflecting, then κ is τ3-isolated;
If κ is doubly reflecting, then the sets d2(A) ∩ κ, i.e.,

{α < κ : cf (α) > ω and A ∩ α is stationary in α},

where A is stationary in κ, form a base of τ3-open punctured
neighborhoods of κ.



Corollaries

Fact.
If κ is weakly compact then κ is doubly reflecting.
(Magidor) If κ is doubly reflecting then κ is weakly compact in
L.

Cor. Assertion “τ3 is non-discrete” is equiconsistent with the
existence of a weakly compact cardinal.

Cor. It is consistent with ZFC that τ3 is discrete and hence that
GLP3 is incomplete w.r.t. any ordinal space.
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Summary

Let θn denote the first limit point of τn.

name θn dn(A)

τ0 left 1 {α : A ∩ α 6= ∅}
τ1 order ω {α ∈ Lim : A ∩ α is unbounded in α}
τ2 club ω1 {α : cf (α) > ω and A ∩ α is stationary in α}
τ3 Mahlo θ3 . . . . . .

θ3 is the first doubly reflecting cardinal.



On the location of the least non-isolated point

Definition. Let θn denote the first non-isolated point of τn (in the
space of all ordinals).

We have: θ0 = 1, θ1 = ω, θ2 = ω1, θ3 =?

ZFC does not know much about the location of θ3:

θ3 is regular, but not a successor of a regular cardinal;
While weakly compact cardinals are non-isolated, θ3 need not
be weakly compact: If infinitely many supercompact cardinals
exist, then there is a model where ℵω+1 is doubly reflecting
(Magidor);
If θ3 is a successor of a singular cardinal, then some very
strong large cardinal hypothesis must be consistent (Woodin
cardinals).



On the location of the least non-isolated point

Definition. Let θn denote the first non-isolated point of τn (in the
space of all ordinals).

We have: θ0 = 1, θ1 = ω, θ2 = ω1, θ3 =?

ZFC does not know much about the location of θ3:

θ3 is regular, but not a successor of a regular cardinal;
While weakly compact cardinals are non-isolated, θ3 need not
be weakly compact: If infinitely many supercompact cardinals
exist, then there is a model where ℵω+1 is doubly reflecting
(Magidor);
If θ3 is a successor of a singular cardinal, then some very
strong large cardinal hypothesis must be consistent (Woodin
cardinals).



On the location of the least non-isolated point

Definition. Let θn denote the first non-isolated point of τn (in the
space of all ordinals).

We have: θ0 = 1, θ1 = ω, θ2 = ω1, θ3 =?

ZFC does not know much about the location of θ3:

θ3 is regular, but not a successor of a regular cardinal;
While weakly compact cardinals are non-isolated, θ3 need not
be weakly compact: If infinitely many supercompact cardinals
exist, then there is a model where ℵω+1 is doubly reflecting
(Magidor);
If θ3 is a successor of a singular cardinal, then some very
strong large cardinal hypothesis must be consistent (Woodin
cardinals).



On the location of the least non-isolated point

Definition. Let θn denote the first non-isolated point of τn (in the
space of all ordinals).

We have: θ0 = 1, θ1 = ω, θ2 = ω1, θ3 =?

ZFC does not know much about the location of θ3:

θ3 is regular, but not a successor of a regular cardinal;
While weakly compact cardinals are non-isolated, θ3 need not
be weakly compact: If infinitely many supercompact cardinals
exist, then there is a model where ℵω+1 is doubly reflecting
(Magidor);
If θ3 is a successor of a singular cardinal, then some very
strong large cardinal hypothesis must be consistent (Woodin
cardinals).



Completeness of GLP2 for Ω

A. Blass (91): 1) If V = L and Ω ≥ ℵω, then GL is complete w.r.t.
(Ω, τ2). (Hence, «GL is complete» is consistent with ZFC .)

2) On the other hand, if there is a weakly Mahlo cardinal, there is a
model of ZFC in which GL is incomplete w.r.t. (Ω, τ2) (for any Ω).

(This is based on a model of Harrington and Shelah in which ℵ2 is
reflecting for stationary sets of ordinals of countable cofinality.)

Тheorem (B., 2009): If V = L and Ω ≥ ℵω, then GLP2 is complete
w.r.t. (Ω; τ1, τ2).
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Further topologies: a conjecture
(for set-theorists)

Theorem (B., Philipp Schlicht): If κ is Π1
n-indescribable, then κ is

non-isolated w.r.t. τn+2. Hence, if Π1
n-indescribable cardinals below

Ω exist for each n, then all topologies τn are non-discrete.

Conjecture: If V = L and Π1
n-indescribable cardinals below Ω exist

for each n, then GLP is complete w.r.t. Ω.
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Topological completeness

GLP is complete w.r.t. (countable, hausdorff) GLP-spaces.

Theorem (B., Gabelaia 10): There is a countable hausdorff
GLP-space X such that Log(X ) = GLP .

In fact, X is ε0 equipped with topologies refining the order
topology, where ε0 = sup{ω, ωω, ωωω

, . . . }.

If GLP complete w.r.t. a GLP-space X , then all topologies of X
have Cantor-Bendixon rank ≥ ε0.
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