Topology, Algebra, and Categories in Logie TACL 2011 Marseilles, France, July 26-30 2011

Formulas of Finite Number Propositional Variables in the Intuitionistic Logic With the Solovay Modality

Leo Esakia and Revaz Grigolia Tbilisi State University, Institute of Cybernetics ["Provability interpretation of modal logics", *Israel Journal of Mathematics*, **25(1976)**, **287-304.**]

Robert Solovay presented a set-theoretical translation of modal formulas by putting $\Box p$ to mean "p is true in every transitive model of Zermelo-Fraenkel Set Theory ZF".

By defining an interpretation as a function *s* sending modal formulas to sentences of ZF which commutes with the Boolean connectives and putting $s(\Box p)$ to be equal to the statement "s(p)is true in every transitive model of ZF", Solovay formulated a modal system, which we call here SOL, and announced its ZF-completeness.

SOL is the classical modal system which results from the Gödel-Löb system GL (alias, the provability logic) by adding the formula $\Box(\Box p \rightarrow \Box q) \lor \Box(\Box q \rightarrow \Box p \land p)$

as a new axiom.

ZF-completeness: For any modal formula p, SOL $\vdash p$ iff ZF $\vdash s(p)$ for any Solovay's interpretation s.

- We introduce a simple system *I.SOL*, which is an Intuitionistic "companion" of *SOL*:
- the composition of the well-known Gödel's modal translation of Heyting Calculus and split-map (= splitting a formula $\Box p$ into the formula $p \land \Box p$) provides the needed embedding of I.SOL into SOL.

The proof-intuitionistic logic KM (=Kuznetsov-Muravitsky ["On superintuitionistic logics as fragments of Proof Logic extensions", Studia *logica*, **45 (1986)**, **77-99**.) is the Heyting propositional calculus *HC* enriched by \Box as *Prov* modality satisfying the following conditions: $p \rightarrow \Box p; \Box p \rightarrow (q \lor (q \rightarrow p)); (\Box p \rightarrow p) \rightarrow p.$

An intuitionistic modal system I.SOL is an extension of the proof-intuitionistic logic KM obtained by postulating the formula

$(\Box p \to \Box q) \lor (\Box q \to p)$

as a new axiom.

A Heyting algebra with an operator \Box is called **Solovay algebra**, if the following conditions are satisfied:

$$p \leq \Box p; \ \Box p \leq q \lor (q \to p); \ \Box p \to p = p;$$
$$(\Box p \to \Box q) \lor (\Box q \to p) = 1.$$

The class of all Solovay algebras forms a variety, which we denote by **SA**.

A finite Heyting algebra *H* is a Boolean cascade, if there exist Boolean lattices $B_1, ..., B_k$ such that

$$H = B_1 + \dots + B_{k'}$$

where each B_i is a convex sublattice of H and B_i+B_{i+1} denotes the ordinal sum of B_i and B_{i+1} in which the Smallest element of B_i and the largest element of B_{i+1} are identified.

- A topological space X with binary relation R is said to be GL-frame if :
- 1) X is a Stone space (i. e. O-dimensional, Hausdorf and compact topological space);
- 2) R(x) and $R^{-1}(x)$ are closed sets for every $x \in X$ and $R^{-1}(A)$ is a clopen for every clopen A of X;
- 3) for every clopen A of X and every element $x \in A$ there is an element $y \in A \setminus R^{-1}(A)$ such that either xRy or $x \in A \setminus R^{-1}(A)$.
 - A map $f: X_1 \rightarrow X_2$ from a GL-frame X_1 to a GLframe X_2 is said to be strongly isotone if

 $f(x)R_2y \Leftrightarrow (\exists z \in X_1)(xR_1z\&f(z) = y).$

Let **G** be the category of *GL*-frames and strongly isotone maps.

The category **G** is dually equivalent to the category **D** of diagonalizable algebras with diagonalizable algebra homomorphisms.

An algebra $(A; \lor, \land, \Diamond, -, 0, 1)$ is said to be diagonalizable algebra if $(A; \lor, \land, -, 0, 1)$ is a Boolean algebra and \Diamond satisfies the following conditions :

$$(1) \diamond (a \lor b) = \diamond (a) \lor \diamond (b),$$
$$(2) \diamond (0) = 0,$$
$$(3) \diamond (a) \leq \diamond (a \lor - \diamond (a)).$$

On every diagonalizable algebra A is defined a unary operator \Box which is dual to $\diamond : \Box(x) = -\diamond - (x)$. The sublattice $H = \{\Box(a) \land a : a \in A\}$ forms a Heyting algebra, where $a \rightarrow b = \Box(-a \lor b) \land (-a \lor b)$. The class of all algebras $(H; \lor, \land, \rightarrow, \Box, 0, 1)$, where $(H; \lor, \land, \rightarrow, 0, 1)$ is a Heyting, forms a variety which we denote by \mathbf{H}_{\Box} .

The variety of Solovay algebras **SA** is a subvariety of \mathbf{H}_{\Box}

A pair (X;R) is said to be S-frame if : 1) (X;R) is GL-frame; 2) (X;R_o) is a poset; 3) for every x; y; z; $u \in X$ if uRx, uRz, xRy and $\neg(xRz)$, then zRy. Let **S** be the category of S-frames and

continuous strongly isotone maps.

The duality between the category of Solovay algebras and the category of *S-frames is obtained by specialization of the duality between the categories* **D** and **G** on the case of Solovay algebras.

For any S-frame (X;R) and U, $V \in SA(X)$ (= the set of all clopen cones of X) define:

$$U \to V = X \setminus (R^{-1}(U \setminus V) \cup (U \setminus V)),$$
$$\Box U = X \setminus R^{-1}(U \setminus V)$$

Then the algebra

 $SA((X;R)) = (SA(X); \cup, \cap, \rightarrow, \Box, 0, 1)$

is a Solovay algebra.

As follows from a duality there is one-to-one correspondence between homomorphic images of a Solovay algebra A and closed cones of S(A), and between subalgebras of a SA-algebra A and correct partitions of S(A), where a correct partition of a (X;R) \in **S** is a such equivalence relation E on X that

- *E* is a closed equivalence relation, *i*. *e*. *E*-saturation of any closed subset is closed;
- E-saturation of any upper cone is an upper cone;
- $(\forall x \in X)(E(x) \cap R^{-1}(E(x)) \neq \emptyset \Longrightarrow E(x) \subset R^{-1}(E(x));$
- there is S-frame (Y;Q) and a strongly isotone map $f: X \rightarrow Y$ such that Kerf = E.

Suppose (X;R) is an S-frame, A = SA((X;R)) and $g_1, ..., g_n \in A$. Now we will present a criterion deciding whether A is generated by $g_1, ..., g_n$. Our criterion extends the analogous one for descriptive intuitionistic frames from to S- frames.

Denote by **n** the set {1, ..., *n*}. Let $G_p = g_1^{\varepsilon_1} \cap ... \cap g_n^{\varepsilon_n}$, where $\varepsilon_i \in \{0, 1\}$, $p = \{i : \varepsilon_i = 1\}$ and $g_i^{\varepsilon_i} = g_i$ if $\varepsilon_i = 1$, and $g_i^{\varepsilon_i} = \neg g_i$ if $\varepsilon_i = 0$.

It is obvious that $\{Gp\}_{p \subset n}$ is a partition of X which we call a colouring of X. A point $x \in G_p$ is said to have the colour p, written as Col(x) = p. Let us remark that $g_i = \bigcup_{i \in p} G_p$. **Lemma 1.** Suppose *E* is a correct partition of *X*. The following two conditions are mutually equivalent:

1) Every g_i is E-saturated, that is $E(g_i) = g_i$ $(1 \le i \le n);$

2) Every class G_p is E-saturated, that is $E(G_p) = G_p (p \subset n)$.

Theorem 2. (Coloring Theorem) A Solovay algebra A is generated by $g_1, ..., g_n$ iff for every non-trivial correct partition E of X (= S(A)), there exists an equivalence class of E containing points of different colors.

(X, R)

Observation 3. The algebra $(Con(X), \Box)$ is a Solovay algebra.

Let $K_0(X)$ be a ring of cones of X obtained from the finite sets $\Box \ ^k \oslash$ (k-storied pyramid of the figure) and the sets $X - R_{\circ}^{-1}(x)$ ($x \in X$) by applying the operations of union and intersection. **Theorem 4.** The ring of cones $K_0(X)$ is closed under the implication \rightarrow and the box-operation \Box of the Solovay algebra (Con(X), \Box). Thus the ring $K_0(X)$ is itself a Solovay algebra.

Denote by *G* the cone $\{g_i \in X : i \in \omega\}(= Trunk)$ and by G_k the cone $\{g_i \in X : i \leq k \in \omega\}$. Denote by K(X) the smallest subring of Con(X) which contains the ring $K_0(X)$ and the cones $\Box {}^kG(k \in \omega)$.

Theorem 5. The ring K(X) is also closed under operations \rightarrow and \Box of the algebra Con(X) and hence is a Solovay algebra, which we denote by H(G).

Theorem 6. The Solovay algebra H(G) is the free cyclic algebra with generator G over the variety **SA**.

Finitely generated free Solovay Algebras

We describe finitely generated free Solovay algebras by means of a description of corresponding frames using the coloring technique. We describe a frame X(n) for $n \ge 1$, corresponding to n-generated free Solovay algebra $F_{SA}(n)$, by levels, i. e. by the elements of fixed depth.

$$\{1,2\} \quad \{1\} \quad \{2\} \quad \emptyset$$

The set of elements of the first level (i. e. the set of elements with depth 1) $X_1(n)$ contains 2^n elements, every of which has a color $p \subset \{1, ..., n\}$ in that way that different elements have different colors.

On $X_1(n)$ define the binary relation $R_1 \subset X_1^2(n)$: xR_1y is false for every $x, y \in X_1(n)$. It is clear that the Solovay algebra $F_{SA1}(n)$ of all subsets of $X_1(n)$ is the free n-generated algebra in SA_1 . Observe, that the algebra $F_{SA1}(n)$ is a diagonalizable algebra.

For every element $a \in X_1(n)$ there are $a_1, ..., a_k \in X_2(n)$ (= the set of all elements of the second level) with $Col(a_i) \subset Col(a)$, i = 1, ..., k, such that ai is covered by only the element a. Further, for every set $\{u_1, ..., u_k\}$ of incomparable elements of $X_1(n)$ there exists an element u_p such that $p = Col(u_p) \subset \bigcap_1^k Col(u_i)$ and u_p is covered by only the elements $u_1, ..., u_k$.

Let $G_i = \{x \in X(n): i \in Col(x)\}, i = 1, ..., n. Observe, that <math>G_i$ is an upper cone of X(n). Let $F_{SA}(n)$ be an algebra generated by the set $\{G_1, ..., G_n\}$ by operations $\cup, \cap, \rightarrow, \Box$, where $\Box Y = -R^{-1} - Y$.

Theorem 7. The algebra $F_{SA}(n)$ is n-generated free Solovay algebra for any positive integer n.

THANK YOU