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Overview

Personal story
Three gracious ladies

Completeness in C-semantics

— Quasiorders as topologies

— Finite connected spaces are inferior images of the real line
— Connected logics

Completeness in d-semantics

— Incompleteness

— Ordinal completeness of GL

— Completeness technigues for wk4 and K4.Grz







Motivations

e Godel's translation
— Bringing infuitionistic reasoning intfo theclassical setting.

e Tarski's impetus towards “algebraization”
— Algebra of Topology, McKinsey and Tarski, 1944.

* Quine’s criticism
— Making Modal Logic meaningful in the rest of mathematics







Three Graces

Topological space (X,1)
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Three Graces

Topological space (X,1)

Closure Algebra
(9 (X), C)

Heyting Algebra
Op(X)

Derivative Algebra
(9(X), d)
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The discourses of the Graces

e Hegemone talks about open subsets.
Un(U=V)cV

TACL'2011 - Marseille, July 26, 2011.



The discourses of the Graces

e Hegemone talks about open subsets.
Un(U=V)cV

e Cleta can talk about everything Hegemone can:
IANI(-IAUIB)c1IB

— and more:
e ACCB subset B is “dense over” A
e CANCB=0 subsets A and B are “apart”
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The discourses of the Graces

e Hegemone talks about open subsets.
Un(U=V)cV

e Cleta can talk about everything Hegemone can:
IANI(-IAUIB)c1IB

— and more;
e ACCB subset B is “dense over” A
e CANCB=0 subsets A and B are “apart”

e Delia can talk about everything Cleta can:
AU dA =CA
— and more:

A < dA A is dense-in-itself (dii)

TACL'2011 - Marseille, July 26, 2011.



Cleta

Closure Algebra
(9(X), C)

Three Graces

Hegemone

Heyting Algebra
Op(X)

Delia

Derivative Algebra
(9(X), d)
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Three Graces

Hegemone [ Heyting identities J
Heyting Algebra /
Op(X)

Cleta ) Delia
Closure Algebra Derivative Algebra
(9 (X), C) ((X), d)
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Cleta

Closure Algebra
(9 (X), C)

A

Kuratowski Axioms
Co=0
C(AuB) =CAuU CB
Ac CA

\CCA= CA j

~

Three Graces

Hegemone [ Heyting identities J

Heyting Algebra /
Op(X)

Delia

Derivative Algebra

((X), d)
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Cleta

Closure Algebra
(9 (X), C)

A

Kuratowski Axioms
Co=¢
C(AuB) =CAU CB
Ac CA

\CCA= CA J

-~

Three Graces

Hegemone [ Heyting identities J

Heyting Algebra /
Op(X)

Delia

Derivative Algebra

($(X), d)

dg =9
d(AuB) =dAU dB
ddAcAUdA

‘WK4 |
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HC

Graceful translations

Gd6del Translation

>

“Box” everything

$4.Grz

S4




Graceful translations

Gdbdel Translation Splitting Translation
W M
Split Boxes

“Box” everything

$4.Grz
K4.Grz

> wk4




Syntax and Semantics

Structures Formulas
Str

Log

[ < Log Str (I
K c Str Log (K)
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Syntax and Semantics

Structures Formulas
4 N, St N
<AE @
\ _/ Log \_ J

K is definable, If
K = Str Log (K)

[ < Log Str (I')

K < Str Log (K)

["I1s complete, If

[' = Log Str (I
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Completeness for Hegemone

Heyting Calculus (HC) is complete wrt the class of

all topological spaces
[Tarski 1938]

HC is also complete wrt the class of finite
topological spaces

HC is also complete wrt the class of finite partial
orders

Is there an intermediate logic that is topologically
iIncomplete?¢ (Kuznetsov's Problem).
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Completeness for Cleta

Kuratowski Axioms Axioms of modal S$4
‘Co=0 A O0=0 R
C(AUB) = CAU CB S(pvq)=<Cp v <q

A C CA po><p=1
CCA=CA y \<><>p =Op y

So S4 is definitely valid on all topological spaces
(soundness). How do we know that nothing extra
goes through (completeness)?
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Kripke semantics for S4

Quasiorders are reflexive-transitive frames.

Just partial orders with clusters.

$4 is the logic of all quasiorders.

Indeed, finite tree-like
quasiorders suffice to
generate $4 (unravelling).
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Intermezzo: GOdel Translation (quasi)orderly

HC |- ¢ Iff S4 |- Tr(op)

p-morphism of

“pinching” clusters
> \/




Intermezzo: Godel Translation (quasi)orderly

?
\ é \ (Por’riol orders \

“pinching” clusters

[

\_ AN N v

embedding

(Qucsiorders




Quasiorder as a partially ordered
sum of clusters

External skeleton
(partial order)

4




Quasiorder as a partially ordered
sum of clusters

External skeleton Internal worlds
(parfial order) (clusters)
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Quasiorder as a partially ordered

External skeleton
(partial order)

4

sum of clusters

Internal worlds
(clusters)
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Quasiorder as a partially ordered
sum of clusters

External skeleton Internal worlds The sum
(parfial order) (clusters)

VAR A

53)




Partially ordered sums

A partial order P
NGlEirela)

1
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A partial order P Family of frames (F.)._»
NGlEirela) indexed by P
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Partially ordered sums

A parfial order P Family of frames (F)_; P-ordered sum of (F)
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Quasiorders as topologies

e Topology is generated by upwards closed sets.
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C-completeness via Kripke
completeness

/Topologiccl spaces \

rQuosiorders )

A complete class
of Kripke
countermodels for
alogic L

All spaces for a
\ logic L /




C-completeness via Kripke
completeness

 Any Kripke complete logic above $§4 is topologically
complete.

 There exist topologically complete logics that are
not Kripke complete [Gerson 1975]
— Even above $4.Grz [Shehtman 1998]

e Stronger completeness result by McKinsey and Tarski
(1944):
— S4is complete wrt any metfric separable dense-in-itself
space.
— In particular, Log(R) = $4.




Log-(R) = S4: Insights

Following: G. Bezhanishvili, M. Gehrke. Completeness of S4 with
respect to the real line: revisited, Annals of Pure and Applied Logic, 131
(2005), pp. 287—301.

Interior (open continuous) (Fini’re Quasitrees \
maps

N
o 0O >




Mapping R onto finite connected quasiorders

o——0
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Mapping R onto finite connected quasiorders
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Mapping R onto finite connected quasiorders
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Mapping R onto finite connected quasiorders

R

4
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Mapping R onto finite connected quasiorders

R 0
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Problems: What if clusters are present?

What if the 3-fork is taken instead of the 2-fork??
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Cantor Space

In the limit — Cantor set.




(0,1) mapped onto the fork

\/




(0,1) mapped onto the fork
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(0,1) mapped onto the fork
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(0,1) mapped onto the fork




(0,1) mapped onto the fork




(0,1) mapped onto the fork

\/




(0,1) mapped onto the fork

\/




Problems solved

e |tis straightforward to generalize this procedure to a
3-fork and, indeed, to any n-fork.

e Clusters are no problem:

— the Cantor set can be decomposed into infinitely many
disjoint subsets which are dense in it.

— Similarly, an open interval (and thus, any open subset of
the reals) can be decomposed into infinitely many disjoint,
dense in it subsets.

e How about increasing the depthe
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lterating the procedure




Connected logics

e What more can a modal logic say about the topology of R in
C-semanticse

e Consider the closure algebra R*= (o (R), C). Which modal
logics can be generated by subalgebras of R*2

Answer:.
[G. Bezhanishvili, Gabelaia 2010]

e More questions like this — e.g. what about homomorphic
iImagese What about logics without fmp?

e Recently Philip Kremer has shown of $4
wrt the real linel




Story of Delia

d-completeness doesn’t straightforwardly follow from Kripke
completeness.

Incompleteness theoremes.

Extensions allow automatic transfer of d-completeness of GL.
Completeness of GL wrt ordinals.

Completeness of wk4

Completeness of K4.Grz

Some other recent resulfts.




Story of Delia (d-semantics)

Axioms for derivation

d(AUB) =dAU dB
ddA C AU dA
\_ _J

wK4 - weak K4

Axioms of wkK4

~O0=0 D
Clpva)=3Cpv<Oq
k<><>p$pv<>p )

wK4-frames are weakly transitive.

[bilisi-Munich-Marsellle is a transit flight,
Thilisi-Munich-Tbilisi Is not really a fransit flight.
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wK4-frames

VXYZ(XRYy A YRZ A X#£Z — XRz)

e Weak quasiorders (delete any reflexive arrows in @
quasiorder).

e Partially ordered sums of weak clusters

gt

clusters with irreflexive points:

@ [ooo%o]




Delia is capricious (d-incompleteness)

* S$4is an extension of wk4 (add reflexivity axiom)
* §$4 has no d-models whatsoeverll
* $4 isincomplete in d-semantics.

Reason: The relation induced by d is always irreflexive:




Caprice exemplified

Topological © non-topological ¢
_AIN——
F — ~— —x
) R ) R
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How capricious is Delia?

Weak partial orders are obtained from
partial orders by delefing (some) reflexive arrows.

e For any class of weak partfial orders of depth <n, if
there is a root-reflexive frame in this class with the
depth exactly n, then the logic of this class is




Gracious Delia

Kripke completeness implies d-completeness for extensions of
GL.

GL is the logic of finite irreflexive frees.

In d-semantics, GL defines the class of scattered topologies
[Esakia 1981]

GL is d-complete wrt to the class of ordinals.

GL is the d-logic of ®®.
[Abashidze 1988, Blass 1990]




Finite irreflexive trees recursively

e |rreflexive pointis an i-tree.
e |rreflexive n-fork is an i-tree.
e Tree sum of i-frees is an I-free.
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Finite irreflexive trees recursively

e |rreflexive pointis an i-free.
e |rreflexive n-fork is an i-tree.
e Tree sum of i-frees is an I-free.

What is @ ¢

Similar to the ordered sum, but only leaves of a tree
can be “blown up” (e.g. substituted by other
trees).




Tree sum exemplified
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Tree sum exemplified
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Tree sum exemplified
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d-maps

f: X—> Yisad-map iff:
— fis open

— fis continuous

— fis pointwise discrete

d-maps preserve d-validity of modal formulas
— so they anfi-preserve (reflect) satisfiability.

One can show that each finite I-free is an image of
an ordinal via a d-map.

This gives ordinal completeness of GL.




@ O

Mapping ordinals to I-trees
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Mapping ordinals to I-trees
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Mapping ordinals to I-trees

® O
=
o
o w

[0] [1]

[0] [1]

\/




Mapping ordinals to I-trees
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Mapping ordinals to I-trees
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Mapping ordinals to I-trees
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Ordinals recursively

* Oisan ordinal
e o+ 1 isan ordinagl
e ordinal sums of ordinals are ordinals
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Ordinals recursively

* 0Ois an ordinal
e o+ 1 isan ordinagl
e ordinal sums of ordinals are ordinals

What is an ¢

Roughly: take an ordinal, take it's isolated points and plug in
other spaces in place of them.

In the sum, a set is open if:
(a)lt's frace on the original ordinal is open (externally).
(b)it’s infersection with each plugged space is open (internally)




d-morphisms

f: X —» Fis a d-morphism if:
(a) f: X — F* is an inferior map.
(b) fisi-discrete (preimages of irreflexive
points are discrete)

(c) fisr-dense (preimages of reflexive
points are dense-in-itself)

e d-morphisms preserve validity.

e We use d-morphisms to obtain d-completeness from
Kripke completeness.




d-completeness for wK4

N
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d-completeness for wK4

@) v d-morphism (\/D

. Substitute each reflexive point with a two-point irreflexive cluster.




d-completeness for K4.Grz
K4.Grz doesn’t admit two-point clusters at all.
Kripke models for K4.Grz are weak partial orders.
Finite weak frees suffice.

How to build a K4.Grz-space that maps d-
morphically onto a given finite weak tree?

Toy (but key) example: single reflexive point




El'kin space

A set E, together with a free ultrafilter U.
nonempty OcA is open iff OcU
E is dense-in-itself

Eis a K4.Grz-space (no subset can be
decomposed into two disjoint dense in it sets)

Pictorial representation:




El'kin space

 AsetE, together with a free ultrafilter U.
e nonempty OcA isopeniff OcU
* Eis dense-in-itself

 Eis a K4.Grz-space (no subset can be
decomposed into two disjoint dense in it sets)

Pictorial representation: @

d-morphism
) =




Building K4.Grz-space preimages

N




Building K4.Grz-space preimages




Building K4.Grz-space preimages




Building K4.Grz-space preimages




Building K4.Grz-space preimages

®

D\/D d-morphism \/D

. Substitute each reflexive point with a copy of Elkin’s Space.




Topo-sums of spaces

A space X
NGlEirela)




Topo-sums of spaces

A space X Family of spaces (Y.)._y
N GlEielg) indexed by X
(Components)

@@
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Topo-sums of spaces

A space X Family of spaces (Y)),_.x | X-ordered sum of (Y
NGlEirela) indexed by X _
(Components) Y=Y,

W (0=
) UU




Topo-sums of spaces

A space X Family of spaces (Y)),_.x | X-ordered sum of (Y
NGlEirela) indexed by X _
(Components) Y=Y,

@@
)

A set LY is open iff it's trace on the skeleton is open
and its traces on all the components are open.




Some results

d-completeness of some extensions of K4.Grz “with o
provability smack”
[Bezhanishvili, Esakia, Gabelaia 2010]

d-logics of maximal, submaximal, nodec spaces.
[Bezhanishvili, Esakia, Gabelaia, Studia 20085]

d-logic of Stone spaces is K4.
[Bezhanishvili, Esakia, Gabelaia, RSL 2010]

d-logic of Spectral spaces.
[Bezhanishvili, Esakia, Gabelaia 2011]

d-definabillity of T, separation axiom.
[Bezhanishvili, Esakia, Gabelaia 2011]

d-completeness of the GLP.
[Beklemishev, Gabelaia 2017]







Quasiorders as topologies

e |Interior is the largest open contained in a set.
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e Closure takes all the points below.
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Interior fields of sets

Some examples of Interior Fields of Sets in R and their logics:
— B(Op(R)) Boolean combinations of opens S4

— C (R) Finite unions of convex sets S4.Grz

— C (OD(R)) Boolean comb. of open dense subsets  S4.Grz.2

— B(C=(R)) Countable unions of convex sets Log (\/)

— All subsets of R with small boundary S4.1

— Nowhere dense and interior dense subsets of R S4.1.2
Question: Which logics arise in this way from R?
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Theorem

Suppose L is an extension of S4 with imp. Then the
following conditions are equivalent:

(1) L arises from a subalgebra of R*.

(2) Lis the logic of a path-connected quasiorder.
(3) Lis the logic of a connected space.

(4) Lis alogic of a connected Closure Algebra.

Corollary: All logics extending S4.1 with the finite model
property arise from a subalgebra of R*.
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Glueing the finite frames

n
Suppose L admits the frame: /

Then L also admits the frame:
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Glueing the finite frames
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Glueing the finite frames
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Glueing the finite frames
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Glueing the finite frames
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Glueing all finite frames
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v v

Glueing all finite frames

F, Fs
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Glueing all finite frames

TACL'2011 - Marseille, July 26, 2011.



Glueing interior maps
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Glueing interior maps

L
T~
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Glueing interior maps
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Going from algebras to topologies

Each closure algebra (A, <) is isomorphic to @
subalgebra of X* for some topological space (X,1).
[IMcKinsey&Tarski, 1944]

Each closure algebra (A, <) is isomorphic to a
subalgebra of (g (X), R') for some quasiorder (X,R).
[Jonsson&Tarski, 1951]

X is a set of Ultrafilters of A and (X, tnty) is a Stone
space of A.
[Bezhanishvili, Mines, Morandi, 2006 ]

TACL'2011 - Marseille, July 26, 2011.



Mapping R onto finite connected quasiorders
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Mapping R onto finite connected quasiorders
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Mapping R onto finite connected quasiorders
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Mapping R onto finite connected quasiorders
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Mapping R onto finite connected quasiorders
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We can use this map to falsify formulas on R.

TACL'2011 - Marseille, July 26, 2011.



Interior fields of sets

B={Y, | Q, R}

Q=0 = g,
OR=R.

d (B,[1) — Interior Algebra
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Interior fields of sets

B={Y, | Q, R}

Q=0 = g,
OR=R.

d (B,[1) — Interior Algebra

Op—O<Cpis valid on B, but not on R.
InR: VA e (R).(CAcICA) X
In B: VA € B.(CAcCICA) Vv
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Interior fields of sets

".'R —_— B={J, I, Q,R}
. : . OQ=01=g,
OR = R.
d (B,J) — Interior Algebra

Op—O<Cpis valid on B, but not on R.
InR: VA e (R).(CAcICA) X
In B: VA € B.(CAcCICA) Vv

Interior field of sets is a Boolean algebra of subsets which is
closed under operators of inferior and closure.

TACL'2011 - Marseille, July 26, 2011.



