Topological Semantics of Modal Logic

David Gabelaia

TACL'2011 - Marseille, July 26, 2011.

Overview

- Personal story
- Three gracious ladies
- Completeness in C-semantics
 - Quasiorders as topologies
 - Finite connected spaces are interior images of the real line
 - Connected logics
- Completeness in d-semantics
 - Incompleteness
 - Ordinal completeness of GL
 - Completeness techniques for wK4 and K4.Grz

Motivations

- Gödel's translation
 - Bringing intuitionistic reasoning into the classical setting.
- Tarski's impetus towards "algebraization"
 Algebra of Topology, McKinsey and Tarski, 1944.
- Quine's criticism
 - Making Modal Logic meaningful in the rest of mathematics

Topological space (X,τ)

Topological space (X,τ)

Heyting Algebra Op(X)

Closure Algebra ($\wp(X), C$)

Derivative Algebra (\wp (X), **d**)

Topological space (X,τ)

The discourses of the Graces

• Hegemone talks about open subsets. $U \cap (U \Rightarrow V) \subseteq V$

The discourses of the Graces

- Hegemone talks about open subsets. $U \cap (U \Rightarrow V) \subseteq V$
- Cleta can talk about everything Hegemone can: $IA \cap I \ (\text{-}IA \cup IB) \subseteq IB$
 - and more:
 - $A \subseteq CB$ subset B is "dense over" A
 - $\mathbf{C}A \cap \mathbf{C}B = \emptyset$

subset B is "dense over" A subsets A and B are "apart"

The discourses of the Graces

- Hegemone talks about open subsets. $U \cap (U \Rightarrow V) \subseteq V$
- Cleta can talk about everything Hegemone can: $IA \cap I \; (\text{-IA} \cup IB) \subseteq IB$
 - and more:
 - $A \subseteq CB$ subset B is "dense over" A
 - $CA \cap CB = \emptyset$ subsets A and B are "apart"
- Delia can talk about everything Cleta can: $A \cup dA = CA$
 - and more:
 - $A \subseteq dA$ A is dense-in-itself (dii)

TACL'2011 - Marseille, July 26, 2011.

TACL'2011 - Marseille, July 26, 2011.

Graceful translations

Graceful translations

Syntax and Semantics

TACL'2011 - Marseille, July 26, 2011.

Syntax and Semantics

TACL'2011 - Marseille, July 26, 2011.

Completeness for Hegemone

 Heyting Calculus (HC) is complete wrt the class of all topological spaces

[Tarski 1938]

- HC is also complete wrt the class of finite topological spaces
- HC is also complete wrt the class of finite partial orders
- Is there an intermediate logic that is topologically incomplete? (Kuznetsov's Problem).

Completeness for Cleta

Axioms of modal S4 $\Diamond 0 = 0$ $\Diamond (p \lor q) = \Diamond p \lor \Diamond q$ $p \rightarrow \Diamond p = 1$ $\Diamond \Diamond p = \Diamond p$

So **S4** is definitely valid on all topological spaces (soundness). How do we know that nothing extra goes through (completeness)?

Kripke semantics for S4

- Quasiorders are **reflexive-transitive frames**.
- Just partial orders with clusters.
- **S4** is the logic of all quasiorders.
- Indeed, finite tree-like quasiorders suffice to generate S4 (unravelling).

Intermezzo: Gödel Translation (quasi)orderly

Intermezzo: Gödel Translation (quasi)orderly

External skeleton (partial order)

External skeleton (partial order) Internal worlds (clusters)

External skeleton (partial order) Internal worlds (clusters)

External skeleton (partial order) Internal worlds (clusters)

The sum

A partial order P (Skeleton)

A partial order P (Skeleton)

Family of frames (F_i)_{i∈P} indexed by P (Components)

P-ordered sum of (F_i) $\bigoplus_{P} F_i$

A partial order P (Skeleton)

Family of frames (F_i)_{i∈P} indexed by P (Components)

P-ordered sum of (F_i) $\bigoplus_{P} F_i$

A partial order P (Skeleton)

Family of frames (F_i)_{i∈P} indexed by P (Components)

P-ordered sum of (F_i) $\bigoplus_{P} F_i$

A partial order P (Skeleton)

Family of frames (F_i)_{i∈P} indexed by P (Components)

P-ordered sum of (F_i) $\bigoplus_{P} F_i$

Quasiorders as topologies

• **Topology** is generated by **upwards closed sets**.

Quasiorders as topologies

• **Topology** is generated by **upwards closed sets**.

Quasiorders as topologies

• **Topology** is generated by **upwards closed sets**.

Quasiorders as topologies

• **Topology** is generated by **upwards closed sets**.

C-completeness via Kripke completeness

C-completeness via Kripke completeness

- Any Kripke complete logic above \$4 is topologically complete.
- There exist topologically complete logics that are not Kripke complete [Gerson 1975]
 – Even above \$4.Grz [Shehtman 1998]
- Stronger completeness result by McKinsey and Tarski (1944):
 - S4 is complete wrt any metric separable dense-in-itself space.

- In particular, $Log_{C}(R) = S4$.

$Log_{C}(R) = S4$: Insights

Following: G. Bezhanishvili, M. Gehrke. *Completeness of S4 with respect to the real line: revisited*, Annals of Pure and Applied Logic, 131 (2005), pp. 287—301.

TACL'2011 - Marseille, July 26, 2011.

TACL'2011 - Marseille, July 26, 2011.

Problems: What if clusters are present?

What if the 3-fork is taken instead of the 2-fork??

TACL'2011 - Marseille, July 26, 2011.

.

It's fractal-like

.

In the limit – Cantor set.

Problems solved

- It is straightforward to generalize this procedure to a 3-fork and, indeed, to any n-fork.
- Clusters are no problem:
 - the Cantor set can be decomposed into infinitely many disjoint subsets which are dense in it.
 - Similarly, an open interval (and thus, any open subset of the reals) can be decomposed into infinitely many disjoint, dense in it subsets.
- How about increasing the depth?

Iterating the procedure

Iterating the procedure

Iterating the procedure

Iterating the procedure

Iterating the procedure

Connected logics

- What more can a modal logic say about the topology of R in C-semantics?
- Consider the closure algebra R⁺ = ((R), C). Which modal logics can be generated by subalgebras of R⁺?

Answer: Any connected modal logic above S4 with fmp. [G. Bezhanishvili, Gabelaia 2010]

- More questions like this e.g. what about homomorphic images? What about logics without fmp?
- Recently Philip Kremer has shown strong completeness of \$4 wrt the real line!

Story of Delia

- d-completeness doesn't straightforwardly follow from Kripke completeness.
- Incompleteness theorems.
- Extensions allow automatic transfer of d-completeness of GL.
- Completeness of **GL** wrt ordinals.
- Completeness of wK4
- Completeness of K4.Grz
- Some other recent results.

Axioms for derivation

 $d \varnothing = \varnothing$ $d(A \cup B) = dA \cup dB$ $ddA \subseteq A \cup dA$

Axioms of wK4

$$\Diamond 0 = 0$$

 $\Diamond (p \lor q) = \Diamond p \lor \Diamond q$
 $\Diamond \Diamond p \le p \lor \Diamond p$

wK4 – weak K4wK4-frames are weakly transitive.

Tbilisi-Munich-Marseilleis a transit flight,Tbilisi-Munich-Tbilisiis not really a transit flight.

Axioms for derivation

 $d\emptyset = \emptyset$ $d(A \cup B) = dA \cup dB$ $ddA \subseteq A \cup dA$

Axioms of wK4

$$\Diamond 0 = 0$$

 $\Diamond (p \lor q) = \Diamond p \lor \Diamond q$
 $\Diamond \Diamond p \le p \lor \Diamond p$

wK4 – weak K4wK4-frames are weakly transitive.

Axioms for derivation

 $d \varnothing = \varnothing$ $d(A \cup B) = dA \cup dB$ $ddA \subseteq A \cup dA$

Axioms of wK4

$$\Diamond 0 = 0$$

 $\Diamond (p \lor q) = \Diamond p \lor \Diamond q$
 $\Diamond \Diamond p \le p \lor \Diamond p$

wK4 – weak K4 wK4-frames are weakly transitive.

Tbilisi-Munich-Marseille is a transit flight,

Axioms for derivation

 $d \varnothing = \varnothing$ $d(A \cup B) = dA \cup dB$ $ddA \subseteq A \cup dA$

Axioms of wK4

$$\Diamond 0 = 0$$

 $\Diamond (p \lor q) = \Diamond p \lor \Diamond q$
 $\Diamond \Diamond p \le p \lor \Diamond p$

wK4 – weak K4wK4-frames are weakly transitive.

Tbilisi-Munich-Marseilleis a transit flight,Tbilisi-Munich-Tbilisiis not really a transit flight.

wK4-frames

$\forall xyz(xRy \land yRz \land x \neq z \rightarrow xRz)$

- Weak quasiorders (delete any reflexive arrows in a quasiorder).
- Partially ordered sums of <u>weak clusters</u>

<u>clusters with irreflexive points</u>:

Delia is capricious (d-incompleteness)

- **S4** is an extension of **wK4** (add reflexivity axiom)
- **S4** has no d-models whatsoever!!
- **S4** is incomplete in d-semantics.

Reason: The relation induced by **d** is always irreflexive:

X∉**d**[X]

Caprice exemplified

How capricious is Delia?

Definition: Weak partial orders are obtained from partial orders by deleting (some) reflexive arrows.

 For any class of weak partial orders of depth ≤n, if there is a root-reflexive frame in this class with the depth exactly n, then the logic of this class is d-incomplete.

Gracious Delia

- Kripke completeness implies d-completeness for extensions of GL.
- **GL** is the logic of finite irreflexive trees.
- In d-semantics, GL defines the class of scattered topologies [Esakia 1981]
- **GL** is d-complete wrt to the class of ordinals.
- **GL** is the d-logic of ω^{ω} .

[Abashidze 1988, Blass 1990]

Finite irreflexive trees recursively

- Irreflexive point is an i-tree.
- Irreflexive n-fork is an i-tree.
- Tree sum of i-trees is an i-tree.

Finite irreflexive trees recursively

- Irreflexive point is an i-tree.
- Irreflexive n-fork is an i-tree.
- Tree sum of i-trees is an i-tree.

What is a tree sum?

Finite irreflexive trees recursively

- Irreflexive point is an i-tree.
- Irreflexive n-fork is an i-tree.
- Tree sum of i-trees is an i-tree.

What is a tree sum?

Similar to the ordered sum, but only leaves of a tree can be "blown up" (e.g. substituted by other trees).

d-maps

- f: $X \rightarrow Y$ is a d-map iff:
 - f is open
 - f is continuous
 - f is pointwise discrete
- d-maps preserve d-validity of modal formulas
 so they anti-preserve (reflect) satisfiability.
- One can show that each finite i-tree is an image of an ordinal via a d-map.
- This gives ordinal completeness of **GL**.

Mapping ordinals to i-trees

Mapping ordinals to i-trees

Ordinals recursively

- 0 is an ordinal
- $\omega + 1$ is an ordinal
- ordinal sums of ordinals are ordinals

Ordinals recursively

- 0 is an ordinal
- $\omega + 1$ is an ordinal
- ordinal sums of ordinals are ordinals

What is an ordinal sum?

Ordinals recursively

- 0 is an ordinal
- $\omega + 1$ is an ordinal
- ordinal sums of ordinals are ordinals

What is an ordinal sum?

Roughly: take an ordinal, take it's isolated points and plug in other spaces in place of them. In the sum, a set is open if: (a) It's trace on the original ordinal is open (externally). (b) it's intersection with each plugged space is open (internally)

d-morphisms

f: X → F is a d-morphism if:
(a) f: X → F⁺ is an interior map.
(b) f is i-discrete (preimages of irreflexive points are discrete)
(c) f is r-dense (preimages of reflexive points are dense-in-itself)

- d-morphisms preserve validity.
- We use d-morphisms to obtain d-completeness from Kripke completeness.

Recipe: Substitute each reflexive point with a two-point irreflexive cluster.

d-completeness for K4.Grz

- K4.Grz doesn't admit two-point clusters at all.
- Kripke models for K4.Grz are weak partial orders.
- Finite weak trees suffice.
- How to build a K4.Grz-space that maps dmorphically onto a given finite weak tree?
- Toy (but key) example: single reflexive point

El'kin space

- A set **E**, together with a free ultrafilter U.
- nonempty O_⊆A is open iff O∈U
- **E** is dense-in-itself
- E is a K4.Grz-space (no subset can be decomposed into two disjoint dense in it sets)

Pictorial representation:

El'kin space

- A set **E**, together with a free ultrafilter U.
- nonempty O_⊆A is open iff O∈U
- **E** is dense-in-itself
- E is a K4.Grz-space (no subset can be decomposed into two disjoint dense in it sets)

Pictorial representation:

Recipe: Substitute each reflexive point with a copy of Elkin's Space.

A space X (Skeleton)	Family of spaces (Y _i) _{i∈X} indexed by X (Components)	X-ordered sum of (Y_i) $Y = \bigoplus_X Y_i$
	$\begin{array}{c} Y_2 \\ Y_2 \\ \hline Y_1 \end{array}$	

A set $U \subseteq Y$ is open iff it's <u>trace on the skeleton</u> is open and its <u>traces on all the components</u> are open.

Some results

 d-completeness of some extensions of K4.Grz "with a provability smack"

[Bezhanishvili, Esakia, Gabelaia 2010]

• d-logics of maximal, submaximal, nodec spaces.

[Bezhanishvili, Esakia, Gabelaia, Studia 2005]

• d-logic of Stone spaces is K4.

[Bezhanishvili, Esakia, Gabelaia, RSL 2010]

• d-logic of Spectral spaces.

[Bezhanishvili, Esakia, Gabelaia 2011]

d-definability of T₀ separation axiom.

[Bezhanishvili, Esakia, Gabelaia 2011]

• d-completeness of the GLP.

[Beklemishev, Gabelaia 201?]

• Interior is the largest open contained in a set.

• Interior is the largest open contained in a set.

• Interior is the largest open contained in a set.

• **Closure** takes all the points below.

• **Closure** takes all the points below.

Interior fields of sets

Some examples of Interior Fields of Sets in **R** and their logics:

 B(Op(R)) Boolean combinations of opens 	S4
 C (R) Finite unions of convex sets 	S4.Grz
 C (OD(R)) Boolean comb. of open dense subsets 	S4.Grz.2
- $B(C^{\infty}(\mathbf{R}))$ Countable unions of convex sets	Log(V)
 All subsets of R with small boundary 	S4.1
 Nowhere dense and interior dense subsets of R 	S4.1.2

Question:

Which logics arise in this way from **R**?

Theorem

Suppose L is an extension of S4 with fmp. Then the following conditions are equivalent:

L arises from a subalgebra of R⁺.
 L is the logic of a path-connected quasiorder.
 L is the logic of a connected space.
 L is a logic of a connected Closure Algebra.

Corollary: All logics extending \$4.1 with the finite model property arise from a subalgebra of R⁺.

Suppose L admits the frame:

Then L also admits the frame:

Glueing all finite frames

Glueing all finite frames

Glueing all finite frames

Glueing interior maps

Glueing interior maps

Glueing interior maps

Going from algebras to topologies

Each closure algebra (A, ◇) is isomorphic to a subalgebra of X⁺ for some topological space (X,τ). [McKinsey&Tarski, 1944]

Each closure algebra (A, ◇) is isomorphic to a subalgebra of (℘(X), R⁻¹) for some quasiorder (X,R). [Jonsson&Tarski, 1951]

X is a set of Ultrafilters of A and (X, $\tau \cap \tau_R$) is a Stone space of A.

[Bezhanishvili, Mines, Morandi, 2006]

We can use this map to falsify formulas on **R**.

Interior fields of sets

 $B = \{\emptyset, I, Q, R\}$ $\Box Q = \Box I = \emptyset,$ $\Box R = R.$ $(B,\Box) - Interior Algebra$

Interior fields of sets

 $B = \{\emptyset, I, Q, R\}$ $\Box Q = \Box I = \emptyset,$ $\Box R = R.$ $(B,\Box) - Interior Algebra$

 $\Diamond p$ →□ $\Diamond p$ is valid on B, but not on R. In R: $\forall A \in \wp(R).(CA \subseteq ICA)$ × In B: $\forall A \in B.(CA \subseteq ICA)$ ✓

Interior fields of sets

 $B = \{\emptyset, I, Q, R\}$ $\Box Q = \Box I = \emptyset,$ $\Box R = R.$ $(B,\Box) - Interior Algebra$

 $\Diamond p \rightarrow \Box \Diamond p$ is valid on B, but not on R. In R: $\forall A \in \wp(R).(CA \subseteq ICA)$ × In B: $\forall A \in B.(CA \subseteq ICA)$ ✓

Interior field of sets is a Boolean algebra of subsets which is closed under operators of interior and closure.