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2x + 3y = 0

−y + z = 0

Gaussian elimination:

x = −
3

2
y

z = y

is an algorithm that yields the most general solution to the

above system of homogenous equations.

As a substitution: x 7→ −3
2
y , y 7→ y , z 7→ y .
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More generally.

F is a set of function symbols | the signature | each

with its own arity, an integer n > 0.

V is a set of variables. To �x ideas: V = {X1,X2, . . .}.

TermV (F ) is the term algebra built from F and V in the

usual manner.

A substitution is a mapping σ : V → TermV (F ) that acts

identically to within a �nite number of exceptions, i.e. is such

that {X ∈ V | σ(X ) 6= X } is a �nite set. Substitutions compose

in the obvious manner.

By an equational theory over the signature F one means a set

E = {(li , ri ) | i ∈ I } of pairs of terms li , ri ∈ TermV (F ), where

I is some index set.

The set of equations E axiomatises the variety of algebras

consisting of the models of the theory E , written VE .
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A uni�cation problem modulo E is a finite set of pairs

E = {(sj , tj ) | sj , tj ∈ TermV (F ) , j ∈ J } ,

for J a �nite index set.

A uni�er for E is a substitution σ such that

E |= σ(sj ) ≈ σ(tj ) ,

for each j ∈ J , i.e. such that the equality σ(sj ) = σ(tj ) holds in

every algebra of the variety VE .

The problem E is uni�able if it admits at least one uni�er.
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The set U (E ) of uni�ers for E can be partially ordered so as to

compare solutions in respect of generality.

Given σ, τ ∈ U (E ), σ is more general than τ, written τ � σ, if
there exists a substitution ρ such that

E |= τ(X ) ≈ (ρ ◦ σ)(X )

holds for every variable X occurring in E .

To say that τ � σ means that τ is an instantiation of σ, but to

within E -equivalence, and only as far as the set of variables

occurring in E is concerned.

The relation � is a preorder. Write 6 for the associated

canonical partial order (mod out pairs that fail antisymmetry).

This yields the poset of (equivalence classes) of unifiers

for E .
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Definition

The unification type of a uni�able problem E is:

unitary, if 6 admits a maximum;

finitary, if 6 admits no maximum, but admits �nitely many maximal

elements such that every uni�er for E lies below one of them;

infinitary, if 6 admits in�nitely many maximal elements such that

every uni�er for E lies below one of them;

nullary or zero, if none of the preceding cases applies.

σ
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Definition

The unification type of the equational theory E is now

de�ned to be the worst uni�cation type occurring among the

uni�cation problems E modulo E .

Variety Unification Type Attribution

Boolean algebras Unitary B�uttner & Simonis, 1987

Distributive lattices Nullary Ghilardi, 1997

Heyting algebras Finitary Ghilardi, 1999

Groups In�nitary Lawrence, 1989

Commutative rings At least in�nitary Burris & Lawrence, 1989

MV-algebras Nullary V.M. & Spada, 2011

Table: Some uni�cation types.

MV-algebras: next talk by L. Spada.

Distributive lattices: talk by L. Cabrer after Co�ee Break.
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Projectives

An object P in a category is projective w.r.t. a class M of

morphisms if for any A� B in M and any P → B , there is P → A

such that the following diagram commutes.

A

BP

M

In categories: M = regular epimorphisms.

In varieties: M = onto homomorphisms = regular epimorphisms.
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It turns out that projectives are closely related to retractions.

An object R in a category is said to be a retract of an object X if

there are arrows s : R ↪→ X and r : X � R such that the following

diagram commutes.

R R

X

1R

s r

r is called a retraction (of s);

s is called a section (of r).

In categories: retractions are regular epimorphisms; sections are

regular monomorphisms.

In varieties: retractions are surjections; sections are injections.
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In varieties: retractions are surjections; sections are injections.
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Easy facts.

In categories:

(Assuming local smallness.) P is projective ⇔ Hom (P ,−)

preserves regular epimorphisms.

Projective objects are closed under co-products.

Projective objects are closed under retractions.

In algebraic categories (in particular, varieties):

P is projective ⇔ Whenever X � P is regular epi (=a quotient

map), it is a retraction.

Projective objects are precisely the retracts of free algebras.

In particular, free algebras are projective.
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Consider again the uni�cation problem E = {(sj , tj )} over X1, . . . ,Xn .

Recall: An algebra A in a variety is finitely presented if it is (∼= to)

a quotient of a free f.g. algebra modulo a f.g. congruence.

Syntax-dependent notion (unlike projectivity).

There is a f.p. algebra in VE obtained by modding out from the free

algebra on X1, . . . ,Xn the congruence generated by the �nite set of

pairs E . Call this algebra A.

The f.p. algebra A is thus an algebraic counterpart to E .

Is there also an algebraic counterpart to a unifier for E ?

Yes: Any homomorphism A → P from A to a �nitely presented

projective algebra P .

σ : Freem → Freem =⇒ σ : A → Freem

Thus σ induces a homomorphism from A to a f.p. projective algebra.

Ghilardi's insight was that there is also a converse: From any such

homomorphism one can extract a uni�er for E .
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Now let

u : A → P , w : A → Q

be two of these \algebraic uni�ers" for A, with P and Q �nitely

presented projectives.

How do we compare u and w w.r.t. generality?

We replace `is an instantiation of' by `factors through'.

We say that u is more general than w , written w � u , if there is a

homomorphism g : P → Q making the following diagram commute.

A

P

Q

u

w

g

The relation � is a pre-order on the set U (A) of algebraic uni�ers for

A. Let 6 be the associated partial order. Then we obtain the poset

of algebraic unifiers for A.
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The algebraic unification type of an \algebraically uni�able" (=

∃A → P) �nitely presented algebra A in the variety VE is now de�ned

exactly as in the symbolic case, using the partial order 6 above.

Similarly, we de�ne the algebraic unification type of the whole

variety VE as before (worst occurring case).

Theorem (S. Ghilardi, 1997)

Consider an equational theory E, a uni�cation problem E , and

the associated f.p. algebra A.

E is uni�able if, and only if, A is algebraically uni�able.

The preordered sets of algebraic uni�ers for A, and of

(symbolic) uni�ers for E , are equivalent as categories.

The partially ordered sets of algebraic uni�ers for A, and of

(symbolic) uni�ers for E , are isomorphic.

In particular, the uni�cation type of E and the algebraic

uni�cation type of VE coincide.
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Unification: The symbolic-algebraic dictionary.

Syntactic Unification. Algebraic Unification.

Uni�cation problem E F.p. algebra A

Uni�er for E A → P , P f.p.p.

E is uni�able ∃A → P

� Factors through

Preordered set of uni�ers Preord. set of alg. uni�ers

Poset of uni�ers Poset of algebraic uni�ers

Uni�cation type Algebraic uni�cation type
...

...

Two advantages of the algebraic approach

1 It is a category-theoretic notion.

2 When dualised, it yields crucial insights on the type of

problems.
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Through the Looking-Glass: Duality

Alice Through the Looking-Glass, Sir J. Tenniel, 1871.
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Duality’s Grandpa

Marshall Stone, 1903{1989.

BoolAlgStoneSpop
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Topological Dualities, I

Stone Duality. Boolean algebras are dually equivalent to compact

Hausdor� zero-dimensional spaces (Stone spaces).

Stone Duality, finite case. Finite Boolean algebras are dually

equivalent to �nite sets.

(Stone-)Priestley Duality. [Cf. S. van Gool's talks.] Distributive

lattices are dually equivalent to compact ordered spaces that are

totally ordered-disconnected (Priestley spaces), with order-preserving

continuous maps.

(Stone-)Priestley Duality, finite case. Finite distributive lattices

are dually equivalent to �nite posets, with order-preserving maps.

Esakia Duality. [Cf. G. Bezhanishvili's talk.] Heyting algebras are
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Dual terminology: Dual of projective=Injective. Let us speak

of co-unifiers for the dual of (algebraic) uni�ers.

Co-uni�ers are compared by factoring morphisms, as uni�ers

are: but note the convention �op=�.
Uni�ers: u is more general than w , written w � u :

A

P

Q

u

w

g

Co-uni�ers: uop is more general than wop, written wop � uop:

A

P

Q

uop

wop

gop
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Exercise

Boolean algebras have unitary uni�cation type.

F.p. Boolean algebras=Finite Boolean algebras, by local

�niteness.

Dual of �nite A: �nite set (the atoms of A).

Dual of free n-generated Freen : the set {1, 2, 3, . . . , 2
n }.

Dual of �nite projective Boolean algebra=�nite injective

set=retract (in Set) of {1, 2, 3, . . . , 2n }=�nite set.

∴ Any �nite Boolean algebra A is projective.

∴ The identity arrow A → A is the mgu.

For distributive lattices things get more interesting.
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First some easy observations.

F.p. distributive lattices=Finite distributive lattices, by local

�niteness.

Dual of �nite A: �nite poset (the set of join-irreducible elements

J (A) with the inherited order).

Dual of free n-generated Freen : the \cube" poset {0, 1}n with the

product (coordinate-wise) ordering inherited from {0, 1}.

Dual of �nite projective distributive lattice=�nite injective

poset=retract (in the category of posets) of {0, 1}n , for some n .

Lemma (R. Balbes, 1967)

A �nite distributive lattice A is projective if, and only if, its dual

poset J (A) is a lattice.

Dual of �nite projective distributive lattice=�nite lattice.
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The non-injective poset G.
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The injective poset P (3).

In general: For each integer n > 1, consider the Boolean lattice

P (n). It is the dual of a projective distributive lattice, by Balbes'

Lemma | well, it is the dual of Freen .
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Order-‐preserving	  map	  

A co-uni�er for G.
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In general: For each integer n > 1, de�ne a (clever) o.p. map

(=co-uni�er) un : P (n) → G .

For each S ∈P (n), let un(S) be:

Lemma (S. Ghilardi, 1997)

(i) The sequence un is an increasing sequence of co-uni�ers for

G. (ii) Any co-uni�er more general than un has domain with > n

elements. (iii) The preorded set of co-uni�ers for G is upward

directed: any two co-uni�ers have a common upper bound. (iv)

The type of the dual of G is either unitary of zero. (v) It is zero,

because by the foreoging a most general co-uni�er for G would

have to use in�nitely many variables.
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We now turn to quite a di�erent case study, at �rst sight quite a

crazy one from the standpoint of classical uni�cation.

We set out to determine the co-unification type of

the category of compact Hausdorff spaces, KHaus.

I say co-uni�cation because we suspect to be on the dual, topological

side of the looking-glass. Thus we are thinking of compact Hausdor�

spaces as models of some theory in some (possibly non-equational,

or even higher-order) language.

But does the problem statement even make sense?

1 \Projective object" makes sense in any category.

2 \Finitely presented object" does, too, as we now explain.
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Gabriel-Ulmer

What could it mean for an object in an arbitrary category | not

necessarily a variety | to be �nitely presented?

One answer was given by P. Gabriel and F. Ulmer in Lokal

pr�asentierbare Kategorien, LNM Vol. 221, 1971.

Definition (Gabriel-Ulmer, 1971)

Let C be a locally small category. An object F of C is �nitely

presentable if the covariant hom-functor Hom (F , ·) preserves �ltered
colimits (equivalently, directed colimits).

I will use directed colimits; the di�erence with �ltered colimits is

immaterial. Unraveling the de�nition yields the following.
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F is finitely presentable:

F
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Examples.

In Set, �nitely presentable=�nite set.

In the category of posets and order-preserving maps, �nitely

presentable=�nite poset.

A lattice L is algebraic if it is complete, and every element of L

is the join of the compact elements below it. An element k ∈ L
is compact if whenever k 6

∨
S for some S ⊆ L, then k 6

∨
F

for a �nite F ⊆ S . Regarding L as a category, we have: finitely

presentable element=compact element.

The lattice of congruences of any algebra in any variety is

algebraic. Compact element=�nitely generated congruence.

Hence: �nitely presentable congruence=�nitely generated

congruence.

Finitely presentable topological space=�nite and discrete

topological space.
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Theorem (Gabriel-Ulmer, 1971)

In any variety of algebras, Gabriel-Ulmer �nitely

presentable object = �nitely presented algebra.

Caution. This theorem is a minimal justi�cation for accepting

the Gabriel-Ulmer generalisation: it just says that we are

abstracting one property of f.p. algebras.
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This is a factorisation property of F w.r.t. inverse limits of

spaces: if ci is mono, g is an extension of f .
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Compact Hausdorff spaces

1 What do injective compact Hausdorff spaces look like?

2 What do finitely co-presentable compact Hausdorff

spaces look like?

There is no hope to understand the co-uni�cation type of

KHaus if we do not address these questions.
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Injectives are easy, or at least classical.

Regular monos in

KHaus are just injections. So we are looking for spaces I such

that whenever ι : A ↪→ B is an injective map, and f : B → I is

any map, there is e : A → I such that the following diagram

commutes.
A

BI

ι

f

e

Here, e is just an extension of f from the subspace B to the

subspace A.



Prologue Projectives Duality Gabriel-Ulmer KHaus C∗-algebras Epilogue

Injectives are easy, or at least classical. Regular monos in

KHaus are just injections.

So we are looking for spaces I such

that whenever ι : A ↪→ B is an injective map, and f : B → I is

any map, there is e : A → I such that the following diagram

commutes.
A

BI

ι

f

e

Here, e is just an extension of f from the subspace B to the

subspace A.



Prologue Projectives Duality Gabriel-Ulmer KHaus C∗-algebras Epilogue

Injectives are easy, or at least classical. Regular monos in

KHaus are just injections. So we are looking for spaces I such

that whenever ι : A ↪→ B is an injective map, and f : B → I is

any map, there is e : A → I such that the following diagram

commutes.
A

BI

ι

f

e

Here, e is just an extension of f from the subspace B to the

subspace A.



Prologue Projectives Duality Gabriel-Ulmer KHaus C∗-algebras Epilogue

Injectives are easy, or at least classical. Regular monos in

KHaus are just injections. So we are looking for spaces I such

that whenever ι : A ↪→ B is an injective map, and f : B → I is

any map, there is e : A → I such that the following diagram

commutes.
A

BI

ι

f

e

Here, e is just an extension of f from the subspace B to the

subspace A.



Prologue Projectives Duality Gabriel-Ulmer KHaus C∗-algebras Epilogue

The Tietze Extension Theorem

For any cardinal κ, the Tychono� cube [−1, 1]κ is an injective

object in KHaus.

The following generalisation of the Tietze Extension Theorem is

essentially due to Borsuk:

Injectives in KHaus
The injective objects in KHaus are precisely the retracts of

Tychono� cubes.

Finitely co-presentable compact Hausdor� spaces are not quite

as polite. We need to introduce polyhedra, as a preliminary.
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A polytope in Rn is any subset that may be written as the convex

hull of �nitely many points. In particular, a polytope is convex:

along with any two points, it contains the segment joining them.

A polytope in R2.
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Another such polytope, a good old triangle.

A compact convex set that is not a polytope.
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A compact, Euclidean polyhedron in Rn is a union of �nitely many

polytopes in Rn .

A compact, Euclidean polyhedron in R2.

Definition

By a polyhedron we mean a topological space that is homeomorphic

to some compact, Euclidean polyhedron in Rn , for some integer

n > 1.

Any polyhedron is of course a compact Hausdor� space.
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Lemma (V.M., unpublished)

If a compact Hausdor� space is �nitely co-presentable, then

it is a retract of a polyhedron.

Note

This means that if you stare long enough at KHaus | a purely

topological construct | you will eventually perceive in the

landscape the remnants of a simplicial structure.

I suspect that the converse of the Lemma holds, too | but do

not have a proof of this.
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Are finite-dimensional Tychonoff cubes finitely

co-presentable?

The Tychono� square [−1, 1]2.
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Is the unit circle finitely co-presentable?

x

y

The unit circle S1 = {(x , y) ∈ R2 | x 2 + y2 = 1} in the plane.
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I can prove the following by an indirect argument.

Lemma

Each Tychono� cube [0, 1]n , for n > 1 an integer, is a �nitely

co-presentable object in KHaus.

I believe I have (�nally) proved the following by a long, direct

argument, but I still need to check several details. (There is no

chance to adapt the indirect argument for cubes.)

Assumption/Lemma

The unit circle S1 is a �nitely co-presentable object in KHaus.

If this latter statement were false, the Gabriel-Ulmer de�nition

could be seriously questioned | more on this later.
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The co-unification type of S1 is zero.

Co-uni�er for S1 : Map χ : I → S1, with I a �nitely

co-presentable compact Hausdor� space.

Now consider p : R → S1 given by

t 7→ (cos 2πt , sin 2πt) .

For each i > 1, let pi be the restriction of p to the interval

I ∼= [−i , i ] ⊆ R.
Then each pi is a co-uni�er for S1.
Using the inclusion map [−i , i ] ⊆ [−(i + 1), i + 1], we see that

pi � pi+1.

Hence pi is a weakly increasing sequence of co-uni�ers. So

what?
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The key point is that p is a covering map of S1 | cf. S. Awodey's

talk.

To explain: A covering space of a space X is a space ~X together

with a surjective continuous map p : ~X � X , called a covering map,

such that the following holds.

There is an open covering {Oi } of X such that, for each i , the inverse

image p−1(Oi ) is a disjoint union of open sets in ~X , each of which is

mapped homeomorphically by p onto Oi .

A covering space of S1.
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We see that p : R → S1 is a covering map upon embedding R into R3

as a helix via t 7→ (cos 2πt , sin 2πt , t).

The universal cover of the circle.

Now p acts on the helix simply as the orthogonal projection onto S1
along the z -axis. So p indeed is a covering map.
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The Lifting Lemma

Suppose p : ~X → X is any covering map, and f : Y → X is a

continuous map. If Y is a retract of [−1, 1]n , then there exists a

lift of f to ~X .

X

~X

Y

p

f

lift

A

P

Q

uop

wop

gop
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Let now χ : I → S1 be any co-uni�er for S1.

Then I is a retract of [−1, 1]n , because it is injective in KHaus.
By the lifting lemma, there is a factoring map through the

covering map p : R → S1:

S1

R

I

p

χ

~f lift

But ~f (I ) = interval (compact+Heine-Borel+connected), so is

contained in [−i , i ] ⊆ R.

So f factors through one of the pi 's, hence pi is co-final.

Similar (easier) argument: pi ≺ pi+1, hence type 0. Q.E.D.
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C∗-algebras: Through the Looking-Glass, again

.1781 ,leinneT _J riS ,ssalG-gnikooL eht hguorhT ecilA
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Is there anything like a syntax for KHaus?

In other words: Does KHausop have an \algebraic" nature?

If X is a compact Hausdor� space, the set

C (X ) = { f : X → R , f continuous }

is a ring (=commutative ring with unit), because R is.

Operations are de�ned pointwise:

f + g is given by (f + g)(x ) = f (x ) + g(x ) for all x ∈ X .

fg is given by (fg)(x ) = f (x )g(x ) for all X ∈ X .

1 is given by 1(x ) = 1 for all x ∈ X .

0 is given by 0(x ) = 0 for all x ∈ X .

A (real) C∗-algebra is any commutative ring with unit that is

isomorphic to one of the form C (X ), for some compact

Hausdor� space X .
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C∗-algebras can be axiomatized at higher order.

A commutative ring (C ,+, ·, 0, 1) with unit 1 is C∗-algebra if, and

only if, the following hold.

1 The Abelian group (C ,+, 0) is divisible and torsion free (=a

Q-algebra).

2 There exists a partial order on C making it a partially ordered

ring in which squares are positive.

3 Some multiple of the unit 1 is larger than any given element.

4 The order is Archimedean (=no in�nitesimals): if 1 > nx for all

positive integers n , then x 6 0.

5 C is complete in the norm given by

‖x‖ = inf {q ∈ Q | q · 1 > x and q · 1 > −x }.

We will consider C∗-algebras as a full subcategory of commutative

rings with unit: their morphisms are just ring homomorphisms.
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Grandpa Stone strikes again.

Topological Dualities, II

Stone-Gelfand Duality. C∗-algebras are dually

equivalent to compact Hausdor� spaces.

Yosida-Kakutani Duality. Norm-complete

lattice-ordered real vector spaces with an order unit are

dually equivalent to compact Hausdor� spaces.

Kaplanski-Banaschewski Duality. There is an

(awkwardly described, non-full) subcategory of

distributive lattices that is dually equivalent to compact

Hausdor� spaces.

. . .

Sadly, C∗-algebras as just de�ned are not just sets with

operations: think of the norm-completeness condition.
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Algebraic Category

For the universal algebraist: Just like a variety of algebras,

except that algebras are allowed to have operations of

arbitrary in�nite arity, and homomorphisms commute with

all operations.

For the category theorist: A category that is monadic over

Set. (Cf. D. Coumans' talk.)

References.

E. Manes, Algebraic Theories, Springer 1976.

J. Ad�amek, J. Rosick�y, E. Vitale, Algebraic Theories, CUP 2010.
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C (X ) is algebraic (Duskin, 1969; Negrepontis, 1971)

C∗-algebras are an algebraic category. (Therefore, KHausop

is.)

In particular, the unit-ball forgetful functor to Set that
maps {x ∈ C (X ) | ‖x‖ 6 1} to its underlying set has a left

adjoint Free .

If S is any set, and κ = |S |, then Free(S) = C ([−1, 1]κ).

What the theorem says is that our chosen presentation of

KHausop is not phrased in terms of operations merely because

we are not using the right, algebraic language.
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And now, enter Isbell.

Generating the theory of C (X ) (Isbell, 1982)

The algebraic theory of C∗-algebras is generated by a �nite

number of �nitary operations, plus a single operation of

arity ℵ0.

Finitary operations: the ring operations (+, ·, 0, 1), along
with pointwise meet and join (∧,∨).

In�nitary operation: ι(x1, x2, . . .) =
∑∞

i=1 2
−ixi .

Isbell's result amounts to the following.

Let f : [−1, 1]κ → [−1, 1] be any continuous function. Then f

can be obtained by a finite number of applications of the

Isbell operations, starting form the projection functions

πα( (xα)α<κ ) = xα.
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Intuition. Choose functions fi : [−1, 1]
κ → [−1, 1]. The series

ι(f1, f2, . . .) converges to a function, and that function is

continuous because the series is in fact uniformly convergent.

(Remember we interpret over [−1, 1].)

We can now construct Isbell terms out of these operations,

and we have indeed obtain a syntax for KHaus.

To say that Isbell terms s and t are equal (up to the theory of

C∗-algebras) means that they evaluate to the same thing when

interpreted over [−1, 1] in all possible ways.

Uni�cation problems, substitutions, uni�ers, uni�cation type

etc. are now de�ned as before.
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Consider the (very simple) Isbell term

s(x , y) = x ∨ (1− x )∨ y ∨ (1− y)

Just like in varieties, there is a unique X in KHaus such that

C (X ) is presented by the 2-generator relation s(x , y) = 1.

Since the solution set of s(x , y) = 1 in [−1, 1]2 is the boundary

of the square, we have X ∼= S1. Remark. If S1 (and all other

spaces with such super-�nite presentations) were not �nitely

co-presentable in KHaus, then we should not buy the

Gabriel-Ulmer de�nition.

Type zero for C (X ) (V.M., unpublished).

The uni�cation problem s(x , y) = 1 has type zero: in fact,

modulo the algebraic theory of C (X ), any uni�er can be

obtained from another, strictly more general uni�er, by

instantiation. (That is, no uni�er is maximally general.)
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Epilogue

Here are three �nal thoughts, surely of varying depth | or

shallowness, if you prefer.

Duality theory is everywhere: The contravariant

syntax-semantics adjunction is fundamental to logic

broadly construed, and to much of mathematics.

Uni�cation beyond equational theories is almost entirely

unexplored. Why not remedy that.

More generally: Although �rst order has its celebrated

merits, there is much mathematics at higher order that

awaits our attention of logicians and algebraists. (Cf. O.

Caramello's talk.)
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To Leo Esakia, In Memoriam.

Thank you for your attention.
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