

Through the Looking-Glass: Unification, Projectivity, and Duality.

Vincenzo Marra

vincenzo.marra@unimi.it

Dipartimento di Informatica e Comunicazione Università degli Studi di Milano Italy

5th International Conference Topology, Algebra and Categories in Logic Dedicated to the memory of Leo Esakia (1934–2010) Marseille, 28 July 2011

Jacques Herbrand, 1908-1931.

Diophantus' Arithmetica, III century AD. G. Bachet's edition, 1621.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

$$2x + 3y = 0$$
$$-y + z = 0$$

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

$$\begin{array}{rcl} 2x+3y & = & 0 \\ -y+z & = & 0 \end{array}$$

Gaussian elimination:

$$egin{array}{ll} x=-rac{3}{2}y\ z=y \end{array}$$

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

$$2x + 3y = 0$$
$$-y + z = 0$$

Gaussian elimination:

$$egin{array}{ll} x=-rac{3}{2}y\ z=y \end{array}$$

is an algorithm that yields the most general solution to the above system of homogenous equations.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

$$2x + 3y = 0$$
$$-y + z = 0$$

Gaussian elimination:

$$egin{array}{ll} x=-rac{3}{2}y\ z=y \end{array}$$

is an algorithm that yields the most general solution to the above system of homogenous equations. As a substitution: $x \mapsto -\frac{3}{2}y, y \mapsto y, z \mapsto y$.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

More generally.

More generally.

• \mathscr{F} is a set of function symbols — the signature — each with its own arity, an integer $n \ge 0$.

- \mathscr{F} is a set of function symbols the signature each with its own arity, an integer $n \ge 0$.
- \mathscr{V} is a set of *variables*. To fix ideas: $\mathscr{V} = \{X_1, X_2, \ldots\}$.

- *F* is a set of function symbols the signature each with its own arity, an integer n ≥ 0.
- \mathscr{V} is a set of *variables*. To fix ideas: $\mathscr{V} = \{X_1, X_2, \ldots\}$.
- Term $_{\mathscr{V}}(\mathscr{F})$ is the *term algebra* built from \mathscr{F} and \mathscr{V} in the usual manner.

- \mathscr{F} is a set of function symbols the signature each with its own arity, an integer $n \ge 0$.
- \mathscr{V} is a set of *variables*. To fix ideas: $\mathscr{V} = \{X_1, X_2, \ldots\}$.
- Term $_{\mathscr{V}}(\mathscr{F})$ is the *term algebra* built from \mathscr{F} and \mathscr{V} in the usual manner.

A substitution is a mapping $\sigma: \mathscr{V} \to \operatorname{Term}_{\mathscr{V}}(\mathscr{F})$ that acts identically to within a finite number of exceptions, *i.e.* is such that $\{X \in \mathscr{V} \mid \sigma(X) \neq X\}$ is a finite set.

- \mathscr{F} is a set of function symbols the signature each with its own arity, an integer $n \ge 0$.
- \mathscr{V} is a set of *variables*. To fix ideas: $\mathscr{V} = \{X_1, X_2, \ldots\}$.
- Term $_{\mathscr{V}}(\mathscr{F})$ is the *term algebra* built from \mathscr{F} and \mathscr{V} in the usual manner.

A substitution is a mapping $\sigma: \mathscr{V} \to \operatorname{Term}_{\mathscr{V}}(\mathscr{F})$ that acts identically to within a finite number of exceptions, *i.e.* is such that $\{X \in \mathscr{V} \mid \sigma(X) \neq X\}$ is a finite set. Substitutions compose in the obvious manner.

- \mathscr{F} is a set of function symbols the signature each with its own arity, an integer $n \ge 0$.
- \mathscr{V} is a set of *variables*. To fix ideas: $\mathscr{V} = \{X_1, X_2, \ldots\}$.
- $\operatorname{Term}_{\mathscr{V}}(\mathscr{F})$ is the *term algebra* built from \mathscr{F} and \mathscr{V} in the usual manner.

A substitution is a mapping $\sigma: \mathscr{V} \to \operatorname{Term}_{\mathscr{V}}(\mathscr{F})$ that acts identically to within a finite number of exceptions, *i.e.* is such that $\{X \in \mathscr{V} \mid \sigma(X) \neq X\}$ is a finite set. Substitutions compose in the obvious manner.

By an equational theory over the signature \mathscr{F} one means a set $E = \{(l_i, r_i) \mid i \in I\}$ of pairs of terms $l_i, r_i \in \text{Term}_{\mathscr{V}}(\mathscr{F})$, where I is some index set.

- \mathscr{F} is a set of function symbols the signature each with its own arity, an integer $n \ge 0$.
- \mathscr{V} is a set of *variables*. To fix ideas: $\mathscr{V} = \{X_1, X_2, \ldots\}$.
- $\operatorname{Term}_{\mathscr{V}}(\mathscr{F})$ is the *term algebra* built from \mathscr{F} and \mathscr{V} in the usual manner.

A substitution is a mapping $\sigma: \mathscr{V} \to \operatorname{Term}_{\mathscr{V}}(\mathscr{F})$ that acts identically to within a finite number of exceptions, *i.e.* is such that $\{X \in \mathscr{V} \mid \sigma(X) \neq X\}$ is a finite set. Substitutions compose in the obvious manner.

By an equational theory over the signature \mathscr{F} one means a set $E = \{(l_i, r_i) \mid i \in I\}$ of pairs of terms $l_i, r_i \in \text{Term}_{\mathscr{V}}(\mathscr{F})$, where I is some index set.

The set of equations E axiomatises the variety of algebras consisting of the models of the theory E, written \mathbb{V}_E .

A unification problem modulo E is a finite set of pairs

 $\mathscr{E} = \{(s_j, t_j) \mid s_j, t_j \in \mathsf{Term}_\mathscr{V}(\mathscr{F}) \ , \ j \in J\},\$

for J a finite index set.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

A unification problem modulo E is a finite set of pairs

$$\mathscr{E} = \{(s_j, t_j) \mid s_j, t_j \in \mathsf{Term}_{\mathscr{V}}(\mathscr{F}) \ , \ j \in J\},\$$

for J a finite index set.

A unifier for \mathscr{E} is a substitution σ such that

$$E\models\sigma(s_j)\approx\sigma(t_j)\,,$$

for each $j \in J$, *i.e.* such that the equality $\sigma(s_j) = \sigma(t_j)$ holds in every algebra of the variety \mathbb{V}_E .

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

A unification problem modulo E is a finite set of pairs

$$\mathscr{E} = \{(s_j, t_j) \mid s_j, t_j \in \mathsf{Term}_{\mathscr{V}}(\mathscr{F}) \ , \ j \in J\},\$$

for J a finite index set.

A unifier for \mathscr{E} is a substitution σ such that

$$E\models\sigma(s_j)\approx\sigma(t_j)\,,$$

for each $j \in J$, *i.e.* such that the equality $\sigma(s_j) = \sigma(t_j)$ holds in every algebra of the variety \mathbb{V}_E .

The problem \mathscr{E} is *unifiable* if it admits at least one unifier.

The set $U(\mathscr{E})$ of unifiers for \mathscr{E} can be partially ordered so as to compare solutions in respect of generality.

The set $U(\mathscr{E})$ of unifiers for \mathscr{E} can be partially ordered so as to compare solutions in respect of generality.

Given $\sigma, \tau \in U(\mathscr{E})$, σ is more general than τ , written $\tau \preceq \sigma$, if there exists a substitution ρ such that

$$E \models \tau(X) \approx (\rho \circ \sigma)(X)$$

holds for every variable X occurring in \mathscr{E} .

The set $U(\mathscr{E})$ of unifiers for \mathscr{E} can be partially ordered so as to compare solutions in respect of generality.

Given $\sigma, \tau \in U(\mathscr{E})$, σ is more general than τ , written $\tau \preceq \sigma$, if there exists a substitution ρ such that

$$E \models \tau(X) \approx (\rho \circ \sigma)(X)$$

holds for every variable X occurring in \mathscr{E} .

To say that $\tau \leq \sigma$ means that τ is an instantiation of σ , but to within *E*-equivalence, and only as far as the set of variables occurring in \mathscr{E} is concerned.

The set $U(\mathscr{E})$ of unifiers for \mathscr{E} can be partially ordered so as to compare solutions in respect of generality.

Given $\sigma, \tau \in U(\mathscr{E})$, σ is more general than τ , written $\tau \preceq \sigma$, if there exists a substitution ρ such that

$$E \models \tau(X) \approx (\rho \circ \sigma)(X)$$

holds for every variable X occurring in \mathscr{E} .

To say that $\tau \leq \sigma$ means that τ is an instantiation of σ , but to within *E*-equivalence, and only as far as the set of variables occurring in \mathscr{E} is concerned.

```
The relation \leq is a preorder.
```

The set $U(\mathscr{E})$ of unifiers for \mathscr{E} can be partially ordered so as to compare solutions in respect of generality.

Given $\sigma, \tau \in U(\mathscr{E})$, σ is more general than τ , written $\tau \preceq \sigma$, if there exists a substitution ρ such that

$$E \models \tau(X) \approx (\rho \circ \sigma)(X)$$

holds for every variable X occurring in \mathscr{E} .

To say that $\tau \leq \sigma$ means that τ is an instantiation of σ , but to within *E*-equivalence, and only as far as the set of variables occurring in \mathscr{E} is concerned.

The relation \leq is a preorder. Write \leq for the associated canonical partial order (mod out pairs that fail antisymmetry).

The set $U(\mathscr{E})$ of unifiers for \mathscr{E} can be partially ordered so as to compare solutions in respect of generality.

Given $\sigma, \tau \in U(\mathscr{E})$, σ is more general than τ , written $\tau \preceq \sigma$, if there exists a substitution ρ such that

$$E \models \tau(X) \approx (\rho \circ \sigma)(X)$$

holds for every variable X occurring in \mathscr{E} .

To say that $\tau \leq \sigma$ means that τ is an instantiation of σ , but to within *E*-equivalence, and only as far as the set of variables occurring in \mathscr{E} is concerned.

The relation \leq is a preorder. Write \leq for the associated canonical partial order (mod out pairs that fail antisymmetry). This yields the poset of (equivalence classes) of unifiers for \mathscr{E} .

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

The unification type of a <u>unifiable</u> problem \mathscr{E} is:

- unitary, if \leq admits a maximum;
- finitary, if ≤ admits no maximum, but admits finitely many maximal elements such that every unifier for & lies below one of them;
- infinitary, if ≤ admits infinitely many maximal elements such that every unifier for & lies below one of them;
- nullary or zero, if none of the preceding cases applies.

Prol	ogue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
	Defi	nition					
	The T	unification t	ype of a <u>ur</u>	<u>ifiable</u> problem a	s is:		
	•	unitary, if \leqslant	admits a r				
	•	finitary. if ≤	admits no	maximum, but a	dmits fini	telv manv max	imal

- elements such that every unifier for \mathscr{E} lies below one of them;
- infinitary, if ≤ admits infinitely many maximal elements such that every unifier for & lies below one of them;
- nullary or zero, if none of the preceding cases applies.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

The unification type of a <u>unifiable</u> problem \mathscr{E} is:

- unitary, if \leq admits a maximum;
- finitary, if ≤ admits no maximum, but admits finitely many maximal elements such that every unifier for & lies below one of them;
- infinitary, if ≤ admits infinitely many maximal elements such that every unifier for & lies below one of them;
- nullary or zero, if none of the preceding cases applies.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogı

The unification type of a <u>unifiable</u> problem \mathscr{E} is:

- unitary, if \leq admits a maximum;
- finitary, if ≤ admits no maximum, but admits finitely many maximal elements such that every unifier for & lies below one of them;
- infinitary, if ≤ admits infinitely many maximal elements such that every unifier for & lies below one of them;
- nullary or zero, if none of the preceding cases applies.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

The unification type of a <u>unifiable</u> problem \mathscr{E} is:

- unitary, if \leq admits a maximum;
- finitary, if ≤ admits no maximum, but admits finitely many maximal elements such that every unifier for & lies below one of them;
- infinitary, if ≤ admits infinitely many maximal elements such that every unifier for & lies below one of them;
- nullary or zero, if none of the preceding cases applies.

- Unitary: There is a most general unifier (mgu): the set of its lower bouds is the whole poset.
- Finitary: There are finitely many maximally general unifiers (mgu's) whose lower bounds are the whole poset.
- Infinitary: There are infinitely many maximally general unifiers whose lower bounds are the whole poset.
- Nullary: There is no set of maximally general unifiers whose lower bounds are the whole poset.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

The unification type of a <u>unifiable</u> problem \mathscr{E} is:

- unitary, if \leq admits a maximum;
- finitary, if ≤ admits no maximum, but admits finitely many maximal elements such that every unifier for & lies below one of them;
- infinitary, if ≤ admits infinitely many maximal elements such that every unifier for & lies below one of them;
- nullary or zero, if none of the preceding cases applies.

- Unitary: There is a most general unifier (mgu): the set of its lower bouds is the whole poset.
- Finitary: There are finitely many maximally general unifiers (mgu's) whose lower bounds are the whole poset.
- Infinitary: There are infinitely many maximally general unifiers whose lower bounds are the whole poset.
- Nullary: There is no set of maximally general unifiers whose lower bounds are the whole poset.

logue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
_						
Defin	ition					
The u	nification t	ype of a <u>ur</u>	<u>ifiable</u> problem a	g is:		
ο ι	$\mathbf{initary}, \text{ if } \leqslant$	admits a n				
● f €	$\mathbf{finitary}, \ \mathrm{if} \leqslant \mathbf{f}$	admits no that every	maximum, but a unifier for $\mathscr E$ lies	dmits fin: s below or	itely many max ne of them;	cimal
• i	nfinitary, if every unifier :	\leqslant admits if for $\mathscr E$ lies be	nfinitely many n elow one of them	naximal el .;	ements such th	nat
		1.6	of the proceeding			

- Unitary: There is a most general unifier (mgu): the set of its lower bouds is the whole poset.
- Finitary: There are finitely many maximally general unifiers (mgu's) whose lower bounds are the whole poset.
- Infinitary: There are infinitely many maximally general unifiers whose lower bounds are the whole poset.
- Nullary: There is no set of maximally general unifiers whose lower bounds are the whole poset.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
D	efinition					
T	he unification t	vpe of a ur	uifiable problem a	6 is:		

- unitary, if \leq admits a maximum;
- finitary, if ≤ admits no maximum, but admits finitely many maximal elements such that every unifier for & lies below one of them;
- infinitary, if ≤ admits infinitely many maximal elements such that every unifier for & lies below one of them;
- nullary or zero, if none of the preceding cases applies.

- Unitary: There is a most general unifier (mgu): the set of its lower bouds is the whole poset.
- Finitary: There are finitely many maximally general unifiers (*mgu*'s) whose lower bounds are the whole poset.
- Infinitary: There are infinitely many maximally general unifiers whose lower bounds are the whole poset.
- Nullary: There is no set of maximally general unifiers whose lower bounds are the whole poset.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

The unification type of a unifiable problem \mathscr{E} is:

- unitary, if \leq admits a maximum;
- finitary, if ≤ admits no maximum, but admits finitely many maximal elements such that every unifier for & lies below one of them;
- infinitary, if ≤ admits infinitely many maximal elements such that every unifier for & lies below one of them;
- nullary or zero, if none of the preceding cases applies.

- Unitary: There is a most general unifier (mgu): the set of its lower bouds is the whole poset.
- Finitary: There are finitely many maximally general unifiers (mgu's) whose lower bounds are the whole poset.
- Infinitary: There are infinitely many maximally general unifiers whose lower bounds are the whole poset.
- Nullary: There is no set of maximally general unifiers whose lower bounds are the whole poset.

The unification type of the equational theory E is now defined to be the worst unification type occurring among the unification problems \mathscr{E} modulo E.

Epilogue

Definition

The unification type of the equational theory E is now defined to be the worst unification type occurring among the unification problems \mathscr{E} modulo E.

Variety	Unification Type	Attribution	
Boolean algebras	Unitary	Büttner & Simonis, 1987	
Distributive lattices	Nullary	Ghilardi, 1997	
Heyting algebras	Finitary	Ghilardi, 1999	
Groups	Infinitary	Lawrence, 1989	
Commutative rings	At least infinitary	Burris & Lawrence, 1989	
MV-algebras	Nullary	V.M. & Spada, 2011	

Table: Some unification types.

Gabriel-Ulmer

KHaus

Definition

The unification type of the equational theory E is now defined to be the worst unification type occurring among the unification problems \mathscr{E} modulo E.

Variety	Unification Type	Attribution	
Boolean algebras	Unitary	Büttner & Simonis, 1987	
Distributive lattices	Nullary	Ghilardi, 1997	
Heyting algebras	Finitary	Ghilardi, 1999	
Groups	Infinitary	Lawrence, 1989	
Commutative rings	At least infinitary	Burris & Lawrence, 1989	
MV-algebras	Nullary	V.M. & Spada, 2011	

Table: Some unification types.

MV-algebras: next talk by L. Spada.

Distributive lattices: talk by L. Cabrer after Coffee Break.
Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
			Projectives			

An object P in a category is **projective** w.r.t. a class \mathscr{M} of morphisms if for any $A \twoheadrightarrow B$ in \mathscr{M} and any $P \to B$, there is $P \to A$ such that the following diagram commutes.

An object P in a category is **projective** w.r.t. a class \mathscr{M} of morphisms if for any $A \twoheadrightarrow B$ in \mathscr{M} and any $P \to B$, there is $P \to A$ such that the following diagram commutes.

In categories: \mathcal{M} = regular epimorphisms.

An object P in a category is **projective** w.r.t. a class \mathscr{M} of morphisms if for any $A \twoheadrightarrow B$ in \mathscr{M} and any $P \to B$, there is $P \to A$ such that the following diagram commutes.

In categories: $\mathcal{M} =$ regular epimorphisms. In varieties: $\mathcal{M} =$ <u>onto homomorphisms</u> = regular epimorphisms.

An object R in a category is said to be a **retract** of an object X if there are arrows $s: R \hookrightarrow X$ and $r: X \twoheadrightarrow R$ such that the following diagram commutes.

An object R in a category is said to be a **retract** of an object X if there are arrows $s: R \hookrightarrow X$ and $r: X \twoheadrightarrow R$ such that the following diagram commutes.

• r is called a retraction (of s);

An object R in a category is said to be a **retract** of an object X if there are arrows $s: R \hookrightarrow X$ and $r: X \twoheadrightarrow R$ such that the following diagram commutes.

- r is called a retraction (of s);
- s is called a section (of r).

An object R in a category is said to be a **retract** of an object X if there are arrows $s: R \hookrightarrow X$ and $r: X \twoheadrightarrow R$ such that the following diagram commutes.

- r is called a retraction (of s);
- s is called a section (of r).

In categories: retractions are regular epimorphisms; sections are regular monomorphisms.

An object R in a category is said to be a **retract** of an object X if there are arrows $s: R \hookrightarrow X$ and $r: X \twoheadrightarrow R$ such that the following diagram commutes.

- r is called a retraction (of s);
- s is called a section (of r).

In categories: retractions are regular epimorphisms; sections are regular monomorphisms.

In varieties: retractions are surjections; sections are injections.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

In categories:

 (Assuming local smallness.) P is projective ⇔ Hom (P, -) preserves regular epimorphisms.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

In categories:

- (Assuming local smallness.) P is projective \Leftrightarrow Hom(P, -) preserves regular epimorphisms.
- Projective objects are closed under co-products.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

In categories:

- (Assuming local smallness.) P is projective \Leftrightarrow Hom(P, -) preserves regular epimorphisms.
- Projective objects are closed under co-products.
- Projective objects are closed under retractions.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

In categories:

- (Assuming local smallness.) P is projective \Leftrightarrow Hom(P, -) preserves regular epimorphisms.
- Projective objects are closed under co-products.
- Projective objects are closed under retractions.

In algebraic categories (in particular, varieties):

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

In categories:

- (Assuming local smallness.) P is projective \Leftrightarrow Hom(P, -) preserves regular epimorphisms.
- Projective objects are closed under co-products.
- Projective objects are closed under retractions.

In algebraic categories (in particular, varieties):

P is projective ⇔ Whenever X → P is regular epi (=a quotient map), it is a retraction.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

In categories:

- (Assuming local smallness.) P is projective \Leftrightarrow Hom(P, -) preserves regular epimorphisms.
- Projective objects are closed under co-products.
- Projective objects are closed under retractions.

In algebraic categories (in particular, varieties):

- P is projective ⇔ Whenever X → P is regular epi (=a quotient map), it is a retraction.
- Projective objects are precisely the retracts of free algebras.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

In categories:

- (Assuming local smallness.) P is projective \Leftrightarrow Hom(P, -) preserves regular epimorphisms.
- Projective objects are closed under co-products.
- Projective objects are closed under retractions.

In algebraic categories (in particular, varieties):

- P is projective ⇔ Whenever X → P is regular epi (=a quotient map), it is a retraction.
- Projective objects are precisely the retracts of free algebras.
- In particular, free algebras are projective.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

Consider again the unification problem $\mathscr{E} = \{(s_j, t_j)\}$ over X_1, \ldots, X_n .

There is a f.p. algebra in \mathbb{V}_E obtained by modding out from the free algebra on X_1, \ldots, X_n the congruence generated by the finite set of pairs \mathscr{E} . Call this algebra A.

There is a f.p. algebra in \mathbb{V}_E obtained by modding out from the free algebra on X_1, \ldots, X_n the congruence generated by the finite set of pairs \mathscr{E} . Call this algebra A.

The f.p. algebra A is thus an algebraic counterpart to \mathscr{E} .

There is a f.p. algebra in \mathbb{V}_E obtained by modding out from the free algebra on X_1, \ldots, X_n the congruence generated by the finite set of pairs \mathscr{E} . Call this algebra A.

The f.p. algebra A is thus an algebraic counterpart to \mathscr{E} . Is there also an algebraic counterpart to a unifier for \mathscr{E} ?

There is a f.p. algebra in \mathbb{V}_E obtained by modding out from the free algebra on X_1, \ldots, X_n the congruence generated by the finite set of pairs \mathscr{E} . Call this algebra A.

The f.p. algebra A is thus an algebraic counterpart to \mathscr{E} . Is there also an algebraic counterpart to a unifier for \mathscr{E} ?

Yes: Any homomorphism $A \rightarrow P$ from A to a finitely presented projective algebra P.

There is a f.p. algebra in \mathbb{V}_E obtained by modding out from the free algebra on X_1, \ldots, X_n the congruence generated by the finite set of pairs \mathscr{E} . Call this algebra A.

The f.p. algebra A is thus an algebraic counterpart to \mathscr{E} . Is there also an algebraic counterpart to a unifier for \mathscr{E} ?

Yes: Any homomorphism $A \rightarrow P$ from A to a finitely presented projective algebra P.

$$\sigma \colon \mathit{Free}_m \to \mathit{Free}_m \quad \Longrightarrow \quad \sigma \colon A \to \mathit{Free}_m$$

There is a f.p. algebra in \mathbb{V}_E obtained by modding out from the free algebra on X_1, \ldots, X_n the congruence generated by the finite set of pairs \mathscr{E} . Call this algebra A.

The f.p. algebra A is thus an algebraic counterpart to \mathscr{E} . Is there also an algebraic counterpart to a unifier for \mathscr{E} ?

Yes: Any homomorphism $A \rightarrow P$ from A to a finitely presented projective algebra P.

$$\sigma: Free_m \to Free_m \implies \sigma: A \to Free_m$$

Thus σ induces a homomorphism from A to a f.p. projective algebra. Ghilardi's insight was that there is also a converse: From any such homomorphism one can extract a unifier for \mathscr{E} .

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
Now	let					

```
u\colon A	o P\;,\;w\colon A	o Q
```

be two of these "algebraic unifiers" for A, with P and Q finitely presented projectives.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
Now	let					

$$u\colon A o P\,\,,\,\,w\colon A o Q$$

be two of these "algebraic unifiers" for A, with P and Q finitely presented projectives.

How do we compare u and w w.r.t. generality?

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

 $u\colon A o P$, $w\colon A o Q$

be two of these "algebraic unifiers" for A, with P and Q finitely presented projectives.

How do we compare u and w w.r.t. generality?

We replace 'is an instantiation of' by 'factors through'.

Prologue Projectives Duality Gabriel-Ulmer KHaus	C [*] -algebras	Epilogue

 $u\colon A o P$, $w\colon A o Q$

be two of these "algebraic unifiers" for A, with P and Q finitely presented projectives.

How do we compare u and w w.r.t. generality?

We replace 'is an instantiation of' by 'factors through'.

We say that u is more general than w, written $w \leq u$, if there is a homomorphism $g: P \to Q$ making the following diagram commute.

$$A \bigvee_{w'}^{u} \bigvee_{Q}^{P}$$

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

 $u\colon A o P$, $w\colon A o Q$

be two of these "algebraic unifiers" for A, with P and Q finitely presented projectives.

How do we compare u and w w.r.t. generality?

We replace 'is an instantiation of' by 'factors through'.

We say that u is more general than w, written $w \leq u$, if there is a homomorphism $g: P \to Q$ making the following diagram commute.

$$A \bigvee_{w}^{u} \bigvee_{Q}^{P}$$

The relation \leq is a pre-order on the set U(A) of algebraic unifiers for A.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

 $u\colon A o P$, $w\colon A o Q$

be two of these "algebraic unifiers" for A, with P and Q finitely presented projectives.

How do we compare u and w w.r.t. generality?

We replace 'is an instantiation of' by 'factors through'.

We say that u is more general than w, written $w \leq u$, if there is a homomorphism $g: P \to Q$ making the following diagram commute.

The relation \leq is a pre-order on the set U(A) of algebraic unifiers for A. Let \leq be the associated partial order. Then we obtain the **poset** of algebraic unifiers for A.

The algebraic unification type of an "algebraically unifiable" (= $\exists A \to P$) finitely presented algebra A in the variety \mathbb{V}_E is now defined exactly as in the symbolic case, using the partial order \leq above.

The algebraic unification type of an "algebraically unifiable" (= $\exists A \to P$) finitely presented algebra A in the variety \mathbb{V}_E is now defined exactly as in the symbolic case, using the partial order \leq above. Similarly, we define the algebraic unification type of the whole variety \mathbb{V}_E as before (worst occurring case). The algebraic unification type of an "algebraically unifiable" (= $\exists A \to P$) finitely presented algebra A in the variety \mathbb{V}_E is now defined exactly as in the symbolic case, using the partial order \leq above. Similarly, we define the algebraic unification type of the whole variety \mathbb{V}_E as before (worst occurring case).

Theorem (S. Ghilardi, 1997)

Consider an equational theory E, a unification problem \mathscr{E} , and the associated f.p. algebra A.

The algebraic unification type of an "algebraically unifiable" (= $\exists A \to P$) finitely presented algebra A in the variety \mathbb{V}_E is now defined exactly as in the symbolic case, using the partial order \leq above. Similarly, we define the algebraic unification type of the whole variety \mathbb{V}_E as before (worst occurring case).

Theorem (S. Ghilardi, 1997)

Consider an equational theory E, a unification problem \mathscr{E} , and the associated f.p. algebra A.

• \mathcal{E} is unifiable if, and only if, A is algebraically unifiable.
The algebraic unification type of an "algebraically unifiable" (= $\exists A \to P$) finitely presented algebra A in the variety \mathbb{V}_E is now defined exactly as in the symbolic case, using the partial order \leq above. Similarly, we define the algebraic unification type of the whole variety \mathbb{V}_E as before (worst occurring case).

Theorem (S. Ghilardi, 1997)

Consider an equational theory E, a unification problem \mathscr{E} , and the associated f.p. algebra A.

- \mathcal{E} is unifiable if, and only if, A is algebraically unifiable.
- The preordered sets of algebraic unifiers for A, and of (symbolic) unifiers for E, are equivalent as categories.

The algebraic unification type of an "algebraically unifiable" (= $\exists A \to P$) finitely presented algebra A in the variety \mathbb{V}_E is now defined exactly as in the symbolic case, using the partial order \leq above. Similarly, we define the algebraic unification type of the whole variety \mathbb{V}_E as before (worst occurring case).

Theorem (S. Ghilardi, 1997)

Consider an equational theory E, a unification problem \mathscr{E} , and the associated f.p. algebra A.

- \mathcal{E} is unifiable if, and only if, A is algebraically unifiable.
- The preordered sets of algebraic unifiers for A, and of (symbolic) unifiers for E, are equivalent as categories.
- The partially ordered sets of algebraic unifiers for A, and of (symbolic) unifiers for \mathscr{E} , are isomorphic.

The algebraic unification type of an "algebraically unifiable" (= $\exists A \to P$) finitely presented algebra A in the variety \mathbb{V}_E is now defined exactly as in the symbolic case, using the partial order \leq above. Similarly, we define the algebraic unification type of the whole variety \mathbb{V}_E as before (worst occurring case).

Theorem (S. Ghilardi, 1997)

Consider an equational theory E, a unification problem \mathscr{E} , and the associated f.p. algebra A.

- \bullet \mathscr{E} is unifiable if, and only if, A is algebraically unifiable.
- The preordered sets of algebraic unifiers for A, and of (symbolic) unifiers for E, are equivalent as categories.
- The partially ordered sets of algebraic unifiers for A, and of (symbolic) unifiers for E, are isomorphic.
- In particular, the unification type of E and the algebraic unification type of V_E coincide.

C*-algebras

Unification: The symbolic-algebraic dictionary.

Syntactic Unification.	Algebraic Unification.			
Unification problem ${\mathscr E}$	F.p. algebra A			
Unifier for ${\mathscr E}$	A ightarrow P, P f.p.p.			
${\mathscr E}$ is unifiable	$\exists A \to P$			
\preceq	Factors through			
Preordered set of unifiers	Preord. set of alg. unifiers			
Poset of unifiers	Poset of algebraic unifiers			
Unification type	Algebraic unification type			
÷				

Two advantages of the algebraic approach

It is a category-theoretic notion.

C*-algebras

Unification: The symbolic-algebraic dictionary.

Syntactic Unification.	Algebraic Unification.
Unification problem ${\mathscr E}$	F.p. algebra A
Unifier for ${\mathscr E}$	A ightarrow P, P f.p.p.
${\mathscr E}$ is unifiable	$\exists A \to P$
\preceq	Factors through
Preordered set of unifiers	Preord. set of alg. unifiers
Poset of unifiers	Poset of algebraic unifiers
Unification type	Algebraic unification type
÷	

Two advantages of the algebraic approach

- It is a category-theoretic notion.
- 2 When dualised, it yields crucial insights on the type of problems.

Through the Looking-Glass: Duality

Alice Through the Looking-Glass, Sir J. Tenniel, 1871.

Marshall Stone, 1903-1989.

StoneSp^{op} ← → BoolAlg

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
-						
Тор	ological Dua	lities, I				

• Stone Duality. Boolean algebras are dually equivalent to compact Hausdorff zero-dimensional spaces (*Stone spaces*).

- Stone Duality. Boolean algebras are dually equivalent to compact Hausdorff zero-dimensional spaces (*Stone spaces*).
- Stone Duality, finite case. Finite Boolean algebras are dually equivalent to finite sets.

- Stone Duality. Boolean algebras are dually equivalent to compact Hausdorff zero-dimensional spaces (*Stone spaces*).
- Stone Duality, finite case. Finite Boolean algebras are dually equivalent to finite sets.
- (Stone-)Priestley Duality. [Cf. S. van Gool's talks.] Distributive lattices are dually equivalent to compact ordered spaces that are totally ordered-disconnected (*Priestley spaces*), with order-preserving continuous maps.

- Stone Duality. Boolean algebras are dually equivalent to compact Hausdorff zero-dimensional spaces (*Stone spaces*).
- Stone Duality, finite case. Finite Boolean algebras are dually equivalent to finite sets.
- (Stone-)Priestley Duality. [Cf. S. van Gool's talks.] Distributive lattices are dually equivalent to compact ordered spaces that are totally ordered-disconnected (*Priestley spaces*), with order-preserving continuous maps.
- (Stone-)Priestley Duality, finite case. Finite distributive lattices are dually equivalent to finite posets, with order-preserving maps.

- Stone Duality. Boolean algebras are dually equivalent to compact Hausdorff zero-dimensional spaces (*Stone spaces*).
- Stone Duality, finite case. Finite Boolean algebras are dually equivalent to finite sets.
- (Stone-)Priestley Duality. [Cf. S. van Gool's talks.] Distributive lattices are dually equivalent to compact ordered spaces that are totally ordered-disconnected (*Priestley spaces*), with order-preserving continuous maps.
- (Stone-)Priestley Duality, finite case. Finite distributive lattices are dually equivalent to finite posets, with order-preserving maps.
- Esakia Duality. [Cf. G. Bezhanishvili's talk.] Heyting algebras are dually equivalent to Priestley spaces such that the lower set of each clopen set is again clopen (*partially ordered Esakia spaces*), with continuous bounded (=inverse image commutes with lower-set operator) order-preserving maps.

- Stone Duality. Boolean algebras are dually equivalent to compact Hausdorff zero-dimensional spaces (*Stone spaces*).
- Stone Duality, finite case. Finite Boolean algebras are dually equivalent to finite sets.
- (Stone-)Priestley Duality. [Cf. S. van Gool's talks.] Distributive lattices are dually equivalent to compact ordered spaces that are totally ordered-disconnected (*Priestley spaces*), with order-preserving continuous maps.
- (Stone-)Priestley Duality, finite case. Finite distributive lattices are dually equivalent to finite posets, with order-preserving maps.
- Esakia Duality. [Cf. G. Bezhanishvili's talk.] Heyting algebras are dually equivalent to Priestley spaces such that the lower set of each clopen set is again clopen (*partially ordered Esakia spaces*), with continuous bounded (=inverse image commutes with lower-set operator) order-preserving maps.
- Esakia Duality, finite case. Finite Heyting algebras are dually equivalent to finite posets, with bounded order-preserving maps.

Dual terminology: Dual of projective=Injective. Let us speak of co-unifiers for the dual of (algebraic) unifiers.

PrologueProjectivesDualityGabriel-UlmerKHausC*-algebrasEpilogueDual terminology:Dual of projective=Injective.Let us speakof co-unifiers for the dual of (algebraic) unifiers.Co-unifiers are compared by factoring morphisms, as unifiersare:but note the convention $\prec^{op} = \prec$.

PrologueProjectivesDualityGabriel-UlmerKHausC*-algebrasEpilogueDual terminology:Dual of projective=Injective.Let us speakof co-unifiers for the dual of (algebraic) unifiers.Co-unifiers are compared by factoring morphisms, as unifiersare:but note the convention $\prec^{op} = \prec$.

Unifiers: u is more general than w, written $w \leq u$:

PrologueProjectivesDualityGabriel-UlmerKHausC*-algebrasEpilogueDual terminology:Dual of projective=Injective.Let us speakof co-unifiers for the dual of (algebraic) unifiers.Co-unifiers are compared by factoring morphisms, as unifiersare:but note the convention $\prec^{op} = \prec$.

Unifiers: u is more general than w, written $w \leq u$:

Co-unifiers: u^{op} is more general than w^{op} , written $w^{\text{op}} \leq u^{\text{op}}$:

Prolog	gue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
	Exerci	se					

Pr	ologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
	Exe	rcise					
	Bool	ean algebras	have unita	ry unification t	ype.		
	_						

• F.p. Boolean algebras=Finite Boolean algebras, by local finiteness.

Prolo	ogue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
	Exer	cise					
	Boole	an algebras	have unita	ry unification t	уре.		

- F.p. Boolean algebras=Finite Boolean algebras, by local finiteness.
- Dual of finite A: finite set (the atoms of A).

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue
Exe	ercise					

- F.p. Boolean algebras=Finite Boolean algebras, by local finiteness.
- Dual of finite A: finite set (the atoms of A).
- Dual of free *n*-generated $Free_n$: the set $\{1, 2, 3, \ldots, 2^n\}$.

Prolo	gue Pro	jectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

- F.p. Boolean algebras=Finite Boolean algebras, by local finiteness.
- Dual of finite A: finite set (the atoms of A).
- Dual of free *n*-generated $Free_n$: the set $\{1, 2, 3, \ldots, 2^n\}$.
- Dual of finite projective Boolean algebra=finite injective set=retract (in Set) of {1,2,3,...,2ⁿ}=finite set.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

- F.p. Boolean algebras=Finite Boolean algebras, by local finiteness.
- Dual of finite A: finite set (the atoms of A).
- Dual of free *n*-generated $Free_n$: the set $\{1, 2, 3, \ldots, 2^n\}$.
- Dual of finite projective Boolean algebra=finite injective set=retract (in Set) of {1,2,3,...,2ⁿ}=finite set.
- \therefore Any finite Boolean algebra A is projective.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

- F.p. Boolean algebras=Finite Boolean algebras, by local finiteness.
- Dual of finite A: finite set (the atoms of A).
- Dual of free *n*-generated $Free_n$: the set $\{1, 2, 3, \ldots, 2^n\}$.
- Dual of finite projective Boolean algebra=finite injective set=retract (in Set) of {1,2,3,...,2ⁿ}=finite set.
- \therefore Any finite Boolean algebra A is projective.
- \therefore The identity arrow $A \to A$ is the mgu.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

Boolean algebras have unitary unification type.

- F.p. Boolean algebras=Finite Boolean algebras, by local finiteness.
- Dual of finite A: finite set (the atoms of A).
- Dual of free *n*-generated $Free_n$: the set $\{1, 2, 3, \ldots, 2^n\}$.
- Dual of finite projective Boolean algebra=finite injective set=retract (in Set) of {1,2,3,...,2ⁿ}=finite set.
- \therefore Any finite Boolean algebra A is projective.
- \therefore The identity arrow $A \rightarrow A$ is the mgu.

For distributive lattices things get more interesting.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

• F.p. distributive lattices=Finite distributive lattices, by local finiteness.

- F.p. distributive lattices=Finite distributive lattices, by local finiteness.
- Dual of finite A: finite poset (the set of join-irreducible elements *f* (A) with the inherited order).

- F.p. distributive lattices=Finite distributive lattices, by local finiteness.
- Dual of finite A: finite poset (the set of join-irreducible elements *J* (A) with the inherited order).
- Dual of free n-generated Freen: the "cube" poset {0,1}ⁿ with the product (coordinate-wise) ordering inherited from {0,1}.

- F.p. distributive lattices=Finite distributive lattices, by local finiteness.
- Dual of finite A: finite poset (the set of join-irreducible elements *J* (A) with the inherited order).
- Dual of free n-generated Freen: the "cube" poset {0,1}ⁿ with the product (coordinate-wise) ordering inherited from {0,1}.
- Dual of finite projective distributive lattice=finite injective poset=retract (in the category of posets) of {0, 1}ⁿ, for some n.

- F.p. distributive lattices=Finite distributive lattices, by local finiteness.
- Dual of finite A: finite poset (the set of join-irreducible elements *J* (A) with the inherited order).
- Dual of free n-generated Freen: the "cube" poset {0,1}ⁿ with the product (coordinate-wise) ordering inherited from {0,1}.
- Dual of finite projective distributive lattice=finite injective poset=retract (in the category of posets) of {0, 1}ⁿ, for some n.

Lemma (R. Balbes, 1967)

A finite distributive lattice A is projective if, and only if, its dual poset $\mathcal{J}(A)$ is a lattice.

- F.p. distributive lattices=Finite distributive lattices, by local finiteness.
- Dual of finite A: finite poset (the set of join-irreducible elements *J* (A) with the inherited order).
- Dual of free n-generated Freen: the "cube" poset {0,1}ⁿ with the product (coordinate-wise) ordering inherited from {0,1}.
- Dual of finite projective distributive lattice=finite injective poset=retract (in the category of posets) of {0, 1}ⁿ, for some n.

Lemma (R. Balbes, 1967)

A finite distributive lattice A is projective if, and only if, its dual poset $\mathcal{J}(A)$ is a lattice.

• Dual of finite projective distributive lattice=finite lattice.

The injective poset $\mathscr{P}(\underline{3})$.

In general: For each integer $n \ge 1$, consider the Boolean lattice $\mathscr{P}(\underline{n})$. It is the dual of a projective distributive lattice, by Balbes' Lemma — well, it is the dual of $Free_n$.

- \bot , if S is empty;
- T, if S has at least three elements or if it has two elements which are both odd or even;
- g, if S has two elements, say i and j, such that i is odd, j is even and i > j;
- *l*, if S has two elements, say *i* and *j*, such that *i* is odd, *j* is even and i < j;
- e, if S contains only one element, which is even;
- o, if S contains only one element, which is odd.

- \bot , if S is empty;
- T, if S has at least three elements or if it has two elements which are both odd or even;
- g, if S has two elements, say i and j, such that i is odd, j is even and i > j;
- l, if S has two elements, say i and j, such that i is odd, j is even and i < j;
- e, if S contains only one element, which is even;
- o, if S contains only one element, which is odd.

(i) The sequence u_n is an increasing sequence of co-unifiers for G.

- \bot , if S is empty;
- T, if S has at least three elements or if it has two elements which are both odd or even;
- g, if S has two elements, say i and j, such that i is odd, j is even and i > j;
- l, if S has two elements, say i and j, such that i is odd, j is even and i < j;
- e, if S contains only one element, which is even;
- o, if S contains only one element, which is odd.

(i) The sequence u_n is an increasing sequence of co-unifiers for G. (ii) Any co-unifier more general than u_n has domain with $\ge n$ elements.

- \bot , if S is empty;
- T, if S has at least three elements or if it has two elements which are both odd or even;
- g, if S has two elements, say i and j, such that i is odd, j is even and i > j;
- l, if S has two elements, say i and j, such that i is odd, j is even and i < j;
- e, if S contains only one element, which is even;
- o, if S contains only one element, which is odd.

(i) The sequence u_n is an increasing sequence of co-unifiers for G. (ii) Any co-unifier more general than u_n has domain with $\ge n$ elements. (iii) The preorded set of co-unifiers for G is upward directed: any two co-unifiers have a common upper bound.

- \bot , if S is empty;
- T, if S has at least three elements or if it has two elements which are both odd or even;
- g, if S has two elements, say i and j, such that i is odd, j is even and i > j;
- l, if S has two elements, say i and j, such that i is odd, j is even and i < j;
- e, if S contains only one element, which is even;
- o, if S contains only one element, which is odd.

(i) The sequence u_n is an increasing sequence of co-unifiers for G. (ii) Any co-unifier more general than u_n has domain with $\ge n$ elements. (iii) The preorded set of co-unifiers for G is upward directed: any two co-unifiers have a common upper bound. (iv) The type of the dual of G is either unitary of zero.

- T, if S has at least three elements or if it has two elements which are both odd or even;
- g, if S has two elements, say i and j, such that i is odd, j is even and i > j;
- *l*, if S has two elements, say *i* and *j*, such that *i* is odd, *j* is even and i < j;
- e, if S contains only one element, which is even;
- o, if S contains only one element, which is odd.

(i) The sequence u_n is an increasing sequence of co-unifiers for G. (ii) Any co-unifier more general than u_n has domain with $\ge n$ elements. (iii) The preorded set of co-unifiers for G is upward directed: any two co-unifiers have a common upper bound. (iv) The type of the dual of G is either unitary of zero. (v) It is zero, because by the foreoging a most general co-unifier for G would have to use infinitely many variables.

We set out to determine the co-unification type of the category of compact Hausdorff spaces, KHaus.

We set out to determine the co-unification type of the category of compact Hausdorff spaces, KHaus.

I say **co**-unification because we suspect to be on the dual, topological side of the looking-glass.

We set out to determine the co-unification type of the category of compact Hausdorff spaces, KHaus.

I say co-unification because we suspect to be on the dual, topological side of the looking-glass. Thus we are thinking of compact Hausdorff spaces as models of some theory in some (possibly non-equational, or even higher-order) language.

We set out to determine the co-unification type of the category of compact Hausdorff spaces, KHaus.

I say co-unification because we suspect to be on the dual, topological side of the looking-glass. Thus we are thinking of compact Hausdorff spaces as models of some theory in some (possibly non-equational, or even higher-order) language.

But does the problem statement even make sense?

We set out to determine the co-unification type of the category of compact Hausdorff spaces, KHaus.

I say **co**-unification because we suspect to be on the dual, topological side of the looking-glass. Thus we are thinking of compact Hausdorff spaces as models of some theory in some (possibly non-equational, or even higher-order) language.

But does the problem statement even make sense?

Projective object" makes sense in any category.

We set out to determine the co-unification type of the category of compact Hausdorff spaces, KHaus.

I say **co**-unification because we suspect to be on the dual, topological side of the looking-glass. Thus we are thinking of compact Hausdorff spaces as **models** of **some** theory in **some** (possibly non-equational, or even higher-order) language.

But does the problem statement even make sense?

- Projective object" makes sense in any category.
- 2 "Finitely presented object" does, too, as we now explain.

What could it mean for an object in an **arbitrary category** — not necessarily a variety — to be finitely presented?

What could it mean for an object in an **arbitrary category** — not necessarily a variety — to be finitely presented? One answer was given by P. Gabriel and F. Ulmer in *Lokal präsentierbare Kategorien*, LNM Vol. 221, 1971.

What could it mean for an object in an **arbitrary category** — not necessarily a variety — to be finitely presented? One answer was given by P. Gabriel and F. Ulmer in *Lokal präsentierbare Kategorien*, LNM Vol. 221, 1971.

Definition (Gabriel-Ulmer, 1971)

Let C be a locally small category. An object F of C is finitely presentable if the covariant hom-functor $Hom(F, \cdot)$ preserves filtered colimits (equivalently, directed colimits).

What could it mean for an object in an **arbitrary category** — not necessarily a variety — to be finitely presented? One answer was given by P. Gabriel and F. Ulmer in *Lokal präsentierbare Kategorien*, LNM Vol. 221, 1971.

Definition (Gabriel-Ulmer, 1971)

Let C be a locally small category. An object F of C is finitely presentable if the covariant hom-functor $Hom(F, \cdot)$ preserves filtered colimits (equivalently, directed colimits).

I will use directed colimits; the difference with filtered colimits is immaterial. Unraveling the definition yields the following.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

• In Set, finitely presentable=finite set.

- In Set, finitely presentable=finite set.
- In the category of posets and order-preserving maps, finitely presentable=finite poset.

- In Set, finitely presentable=finite set.
- In the category of posets and order-preserving maps, finitely presentable=finite poset.
- A lattice L is algebraic if it is complete, and every element of L is the join of the compact elements below it. An element $k \in L$ is compact if whenever $k \leq \bigvee S$ for some $S \subseteq L$, then $k \leq \bigvee F$ for a finite $F \subseteq S$. Regarding L as a category, we have: finitely presentable element=compact element.

- In Set, finitely presentable=finite set.
- In the category of posets and order-preserving maps, finitely presentable=finite poset.
- A lattice L is algebraic if it is complete, and every element of L is the join of the compact elements below it. An element $k \in L$ is compact if whenever $k \leq \bigvee S$ for some $S \subseteq L$, then $k \leq \bigvee F$ for a finite $F \subseteq S$. Regarding L as a category, we have: finitely presentable element=compact element.
- The lattice of congruences of any algebra in any variety is algebraic. Compact element=finitely generated congruence. Hence: finitely presentable congruence=finitely generated congruence.

- In Set, finitely presentable=finite set.
- In the category of posets and order-preserving maps, finitely presentable=finite poset.
- A lattice L is algebraic if it is complete, and every element of L is the join of the compact elements below it. An element $k \in L$ is compact if whenever $k \leq \bigvee S$ for some $S \subseteq L$, then $k \leq \bigvee F$ for a finite $F \subseteq S$. Regarding L as a category, we have: finitely presentable element=compact element.
- The lattice of congruences of any algebra in any variety is algebraic. Compact element=finitely generated congruence. Hence: finitely presentable congruence=finitely generated congruence.
- Finitely presentable topological space=finite and discrete topological space.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

Theorem (Gabriel-Ulmer, 1971)

In any variety of algebras, Gabriel-Ulmer finitely presentable object = finitely presented algebra.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

Theorem (Gabriel-Ulmer, 1971)

In any variety of algebras, Gabriel-Ulmer finitely presentable object = finitely presented algebra.

Caution. This theorem is a minimal justification for accepting the Gabriel-Ulmer generalisation: it just says that we are abstracting one property of f.p. algebras.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

This is a factorisation property of F w.r.t. inverse limits of spaces: if c_i is mono, g is an extension of f.

This is a factorisation property of F w.r.t. inverse limits of spaces: if c_i is mono, g is an extension of f.

F

This is a factorisation property of F w.r.t. inverse limits of spaces: if c_i is mono, g is an extension of f.

F is finitely co-presentable:

This is a factorisation property of F w.r.t. inverse limits of spaces: if c_i is mono, g is an extension of f.

- What do injective compact Hausdorff spaces look like?
- What do finitely co-presentable compact Hausdorff spaces look like?

- What do injective compact Hausdorff spaces look like?
- What do finitely co-presentable compact Hausdorff spaces look like?

There is no hope to understand the co-unification type of KHaus if we do not address these questions.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

Injectives are easy, or at least classical.

Injectives are easy, or at least classical. Regular monos in KHaus are just injections.

Prologue Projectives Duality Gabriel-Ulmer **KHaus** C*-algebras Epilogue

Injectives are easy, or at least classical. Regular monos in KHaus are just injections. So we are looking for spaces I such that whenever $\iota: A \hookrightarrow B$ is an injective map, and $f: B \to I$ is any map, there is $e: A \to I$ such that the following diagram commutes.

Prologue Projectives Duality Gabriel-Ulmer **KHaus** C*-algebras Epilogue

Injectives are easy, or at least classical. Regular monos in KHaus are just injections. So we are looking for spaces I such that whenever $\iota: A \hookrightarrow B$ is an injective map, and $f: B \to I$ is any map, there is $e: A \to I$ such that the following diagram commutes.

$$I \stackrel{e}{\leftarrow} f B$$

.

Here, e is just an extension of f from the subspace B to the subspace A.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

The Tietze Extension Theorem

For any cardinal $\kappa,$ the Tychonoff cube $[-1,1]^\kappa$ is an injective object in KHaus.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

The Tietze Extension Theorem

For any cardinal $\kappa,$ the Tychonoff cube $[-1,1]^\kappa$ is an injective object in KHaus.

The following generalisation of the Tietze Extension Theorem is essentially due to Borsuk:

Injectives in KHaus

The injective objects in KHaus are precisely the retracts of Tychonoff cubes.

Finitely co-presentable compact Hausdorff spaces are not quite as polite. We need to introduce polyhedra, as a preliminary.

A polytope in \mathbb{R}^n is any subset that may be written as the convex hull of finitely many points. In particular, a polytope is *convex*: along with any two points, it contains the segment joining them.

A polytope in \mathbb{R}^n is any subset that may be written as the convex hull of <u>finitely many</u> points. In particular, a polytope is *convex*: along with any two points, it contains the segment joining them.

A polytope in \mathbb{R}^2 .

Another such polytope, a good old triangle.

A compact convex set that is not a polytope.

A compact, Euclidean polyhedron in \mathbb{R}^2 .

A compact, Euclidean polyhedron in \mathbb{R}^2 .

Definition

By a **polyhedron** we mean a topological space that is homeomorphic to some compact, Euclidean polyhedron in \mathbb{R}^n , for some integer $n \ge 1$.

A compact, Euclidean polyhedron in \mathbb{R}^2 .

Definition

By a **polyhedron** we mean a topological space that is homeomorphic to some compact, Euclidean polyhedron in \mathbb{R}^n , for some integer $n \ge 1$.

Any polyhedron is of course a compact Hausdorff space.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

Lemma (V.M., unpublished)

If a compact Hausdorff space is finitely co-presentable, then it is a retract of a polyhedron.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

Lemma (V.M., unpublished)

If a compact Hausdorff space is finitely co-presentable, then it is a retract of a polyhedron.

Note

This means that if you stare long enough at KHaus — a purely topological construct — you will eventually perceive in the landscape the remnants of a simplicial structure.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C*-algebras	Epilogue

Lemma (V.M., unpublished)

If a compact Hausdorff space is finitely co-presentable, then it is a retract of a polyhedron.

Note

This means that if you stare long enough at KHaus — a purely topological construct — you will eventually perceive in the landscape the remnants of a simplicial structure.

I suspect that the converse of the Lemma holds, too — but do not have a proof of this.

Are finite-dimensional Tychonoff cubes finitely co-presentable?

The Tychonoff square $[-1,1]^2$.

Is the unit circle finitely co-presentable?

The unit circle $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ in the plane.

I can prove the following by an indirect argument.

I can prove the following by an indirect argument.

Lemma

Each Tychonoff cube $[0, 1]^n$, for $n \ge 1$ an integer, is a finitely co-presentable object in KHaus.

Prologue

I can prove the following by an indirect argument.

Lemma

Each Tychonoff cube $[0, 1]^n$, for $n \ge 1$ an integer, is a finitely co-presentable object in KHaus.

I believe I have (finally) proved the following by a long, direct argument, but I still need to check several details. (There is no chance to adapt the indirect argument for cubes.)

KHaus

I can prove the following by an indirect argument.

Lemma

Each Tychonoff cube $[0, 1]^n$, for $n \ge 1$ an integer, is a finitely co-presentable object in KHaus.

I believe I have (finally) proved the following by a long, direct argument, but I still need to check several details. (There is no chance to adapt the indirect argument for cubes.)

Assumption/Lemma

The unit circle \mathbb{S}^1 is a finitely co-presentable object in KHaus.

KHaus

I can prove the following by an indirect argument.

Lemma

Each Tychonoff cube $[0, 1]^n$, for $n \ge 1$ an integer, is a finitely co-presentable object in KHaus.

I believe I have (finally) proved the following by a long, direct argument, but I still need to check several details. (There is no chance to adapt the indirect argument for cubes.)

Assumption/Lemma

The unit circle \mathbb{S}^1 is a finitely co-presentable object in KHaus.

If this latter statement were *false*, the Gabriel-Ulmer definition could be seriously questioned — more on this later.

Co-unifier for \mathbb{S}^1 : Map $\chi: I \to \mathbb{S}^1$, with I a finitely co-presentable compact Hausdorff space.

Co-unifier for \mathbb{S}^1 : Map $\chi: I \to \mathbb{S}^1$, with I a finitely co-presentable compact Hausdorff space. Now consider $p: \mathbb{R} \to \mathbb{S}^1$ given by

 $t\mapsto (\cos 2\pi t,\sin 2\pi t)$.

Co-unifier for \mathbb{S}^1 : Map $\chi: I \to \mathbb{S}^1$, with I a finitely co-presentable compact Hausdorff space. Now consider $p: \mathbb{R} \to \mathbb{S}^1$ given by

 $t \mapsto (\cos 2\pi t, \sin 2\pi t)$.

For each $i \ge 1$, let p_i be the restriction of p to the interval $I \cong [-i, i] \subseteq \mathbb{R}$.

Co-unifier for \mathbb{S}^1 : Map $\chi: I \to \mathbb{S}^1$, with I a finitely co-presentable compact Hausdorff space. Now consider $p: \mathbb{R} \to \mathbb{S}^1$ given by

 $t \mapsto (\cos 2\pi t, \sin 2\pi t)$.

For each $i \ge 1$, let p_i be the restriction of p to the interval $I \cong [-i, i] \subseteq \mathbb{R}$. Then each p_i is a co-unifier for \mathbb{S}^1 .

Co-unifier for \mathbb{S}^1 : Map $\chi: I \to \mathbb{S}^1$, with I a finitely co-presentable compact Hausdorff space. Now consider $p: \mathbb{R} \to \mathbb{S}^1$ given by

 $t \mapsto (\cos 2\pi t, \sin 2\pi t)$.

For each $i \ge 1$, let p_i be the restriction of p to the interval $I \cong [-i, i] \subseteq \mathbb{R}$. Then each p_i is a co-unifier for \mathbb{S}^1 . Using the inclusion map $[-i, i] \subseteq [-(i+1), i+1]$, we see that $p_i \preceq p_{i+1}$.

Co-unifier for \mathbb{S}^1 : Map $\chi: I \to \mathbb{S}^1$, with I a finitely co-presentable compact Hausdorff space. Now consider $p: \mathbb{R} \to \mathbb{S}^1$ given by

 $t \mapsto (\cos 2\pi t, \sin 2\pi t)$.

For each $i \ge 1$, let p_i be the restriction of p to the interval $I \cong [-i, i] \subseteq \mathbb{R}$. Then each p_i is a co-unifier for \mathbb{S}^1 . Using the inclusion map $[-i, i] \subseteq [-(i+1), i+1]$, we see that $p_i \preceq p_{i+1}$.

Hence p_i is a weakly increasing sequence of co-unifiers. So what?

talk.

The key point is that p is a covering map of \mathbb{S}^1 — cf. S. Awodey's talk.

To explain: A covering space of a space X is a space \tilde{X} together with a surjective continuous map $p: \tilde{X} \to X$, called a covering map, such that the following holds. Prologue Projectives Duality Gabriel-Ulmer **KHaus** C*-algebras Epilogue

The key point is that p is a covering map of \mathbb{S}^1 — cf. S. Awodey's talk.

To explain: A covering space of a space X is a space \tilde{X} together with a surjective continuous map $p: \tilde{X} \to X$, called a covering map, such that the following holds.

There is an open covering $\{O_i\}$ of X such that, for each *i*, the inverse image $p^{-1}(O_i)$ is a disjoint union of open sets in \tilde{X} , each of which is mapped homeomorphically by p onto O_i .

A covering space of \mathbb{S}^1 .

We see that $p: \mathbb{R} \to \mathbb{S}^1$ is a covering map upon embedding \mathbb{R} into \mathbb{R}^3 as a helix via $t \mapsto (\cos 2\pi t, \sin 2\pi t, t)$.

The universal cover of the circle.

We see that $p: \mathbb{R} \to \mathbb{S}^1$ is a covering map upon embedding \mathbb{R} into \mathbb{R}^3 as a helix via $t \mapsto (\cos 2\pi t, \sin 2\pi t, t)$.

$$\bigcup_{\nu} \longrightarrow \bigcup_{\nu}$$

The universal cover of the circle.

Now p acts on the helix simply as the orthogonal projection onto \mathbb{S}^1 along the z-axis. So p indeed is a covering map.

Let now $\chi \colon I \to \mathbb{S}^1$ be any co-unifier for \mathbb{S}^1 .

Prologue Projectives Duality Gabriel-Ulmer **KHaus** C*-algebras Epilogue

Let now $\chi \colon I \to \mathbb{S}^1$ be any co-unifier for \mathbb{S}^1 .

Then I is a retract of $[-1, 1]^n$, because it is injective in KHaus.

Prologue Projectives Duality Gabriel-Ulmer **KHaus** C*-algebras Epilogue

Let now $\chi: I \to \mathbb{S}^1$ be any co-unifier for \mathbb{S}^1 .

Then I is a retract of $[-1, 1]^n$, because it is injective in KHaus. By the lifting lemma, there is a factoring map through the covering map $p: \mathbb{R} \to \mathbb{S}^1$:

Prologue Projectives Duality Gabriel-Ulmer **KHaus** C*-algebras Epilogue

Let now $\chi \colon I \to \mathbb{S}^1$ be any co-unifier for \mathbb{S}^1 .

Then I is a retract of $[-1, 1]^n$, because it is injective in KHaus. By the lifting lemma, there is a factoring map through the covering map $p: \mathbb{R} \to \mathbb{S}^1$:

But $\tilde{f}(I) = \text{interval}$ (compact+Heine-Borel+connected), so is contained in $[-i, i] \subseteq \mathbb{R}$.

Let now $\chi: I \to \mathbb{S}^1$ be any co-unifier for \mathbb{S}^1 . Then I is a retract of $[-1, 1]^n$, because it is injective in KHaus. By the lifting lemma, there is a factoring map through the

covering map $p: \mathbb{R} \to \mathbb{S}^1$:

But $\tilde{f}(I) = \text{interval}$ (compact+Heine-Borel+connected), so is contained in $[-i, i] \subseteq \mathbb{R}$.

So f factors through one of the p_i 's, hence p_i is co-final.

Let now $\chi \colon I \to \mathbb{S}^1$ be any co-unifier for \mathbb{S}^1 .

Then I is a retract of $[-1, 1]^n$, because it is injective in KHaus. By the lifting lemma, there is a factoring map through the covering map $p: \mathbb{R} \to \mathbb{S}^1$:

But $\tilde{f}(I) = \text{interval}$ (compact+Heine-Borel+connected), so is contained in $[-i, i] \subseteq \mathbb{R}$.

So f factors through one of the p_i 's, hence p_i is co-final. Similar (easier) argument: $p_i \prec p_{i+1}$, hence type 0. Q.E.D. Prologue

Gabriel-Ulmer

KHaus

 C^* -algebras

Epilogue

$\mathbf{C}^*\text{-algebras:}$ Through the Looking-Glass, again

.1781 ,leinneT \dot{J} riS ,ssalG-gnikooL eht hguorhT ecilA

Is there anything like a syntax for KHaus?

KHaus

Is there anything like a syntax for KHaus? In other words: Does KHaus^{op} have an "algebraic" nature?

KHaus

Is there anything like a syntax for KHaus? In other words: Does KHaus^{op} have an "algebraic" nature? If X is a compact Hausdorff space, the set

 $\mathrm{C}\left(X
ight)=\left\{f\colon X
ightarrow\mathbb{R}\;,\;\;f\; ext{continuous}
ight\}$

is a ring (=commutative ring with unit), because $\mathbb R$ is.

Is there anything like a syntax for KHaus? In other words: Does KHaus^{op} have an "algebraic" nature? If X is a compact Hausdorff space, the set

 $C(X) = \{f \colon X \to \mathbb{R}, f \text{ continuous } \}$

is a ring (=commutative ring with unit), because \mathbb{R} is. Operations are defined pointwise:

- f + q is given by (f + q)(x) = f(x) + q(x) for all $x \in X$.
- fq is given by (fq)(x) = f(x)q(x) for all $X \in X$.
- 1 is given by 1(x) = 1 for all $x \in X$.
- 0 is given by 0(x) = 0 for all $x \in X$.

Is there anything like a syntax for KHaus? In other words: Does KHaus^{op} have an "algebraic" nature? If X is a compact Hausdorff space, the set

 $\mathrm{C}\left(X
ight)=\left\{f\colon X
ightarrow\mathbb{R}\;,\;\;f\; ext{continuous}
ight\}$

is a ring (=commutative ring with unit), because \mathbb{R} is. Operations are defined pointwise:

- f + g is given by (f + g)(x) = f(x) + g(x) for all $x \in X$.
- fg is given by (fg)(x) = f(x)g(x) for all $X \in X$.
- 1 is given by 1(x) = 1 for all $x \in X$.
- 0 is given by 0(x) = 0 for all $x \in X$.

A (real) C^{*}-algebra is any commutative ring with unit that is isomorphic to one of the form C(X), for some compact Hausdorff space X.

 $\mathbf{C}^*\text{-algebras}$ can be axiomatized at higher order.

A commutative ring $(C, +, \cdot, 0, 1)$ with unit 1 is C*-algebra if, and only if, the following hold.

- The Abelian group (C, +, 0) is divisible and torsion free (=a \mathbb{Q} -algebra).
- 2 There exists a partial order on C making it a partially ordered ring in which squares are positive.
- 3 Some multiple of the unit 1 is larger than any given element.
- **3** The order is Archimedean (=no infinitesimals): if $1 \ge nx$ for all positive integers n, then $x \le 0$.

$$\begin{array}{l} \textcircled{0} \quad C \text{ is complete in the norm given by} \\ \|x\| = \inf \left\{ q \in \mathbb{Q} \mid q \cdot 1 \geqslant x \text{ and } q \cdot 1 \geqslant -x \right\}. \end{array}$$

 $\mathbf{C}^*\text{-algebras}$ can be axiomatized at higher order.

A commutative ring $(C, +, \cdot, 0, 1)$ with unit 1 is C*-algebra if, and only if, the following hold.

- The Abelian group (C, +, 0) is divisible and torsion free (=a \mathbb{Q} -algebra).
- 2 There exists a partial order on C making it a partially ordered ring in which squares are positive.
- 3 Some multiple of the unit 1 is larger than any given element.
- The order is Archimedean (=no infinitesimals): if $1 \ge nx$ for all positive integers n, then $x \le 0$.

$$\begin{array}{l} \textcircled{0} \quad C \ \text{is complete in the norm given by} \\ \|x\| = \inf \left\{ q \in \mathbb{Q} \mid q \cdot 1 \geqslant x \text{ and } q \cdot 1 \geqslant -x \right\}. \end{array}$$

We will consider C^{*}-algebras as a full subcategory of commutative rings with unit: their morphisms are just ring homomorphisms.

Grandpa Stone strikes again.

Topological Dualities, **II**

Grandpa Stone strikes again.

Topological Dualities, II

• Stone-Gelfand Duality. C*-algebras are dually equivalent to compact Hausdorff spaces.

Prologue Projectives Duality Gabriel-Ulmer KHaus $oldsymbol{C}^*$ -algebras Epilogue

Grandpa Stone strikes again.

Topological Dualities, II

- Stone-Gelfand Duality. C*-algebras are dually equivalent to compact Hausdorff spaces.
- Yosida-Kakutani Duality. Norm-complete lattice-ordered real vector spaces with an order unit are dually equivalent to compact Hausdorff spaces.

Prologue Projectives Duality Gabriel-Ulmer KHaus $\mathbf{C}^* extsf{-algebras}$ Epilogue

Grandpa Stone strikes again.

Topological Dualities, **II**

- Stone-Gelfand Duality. C*-algebras are dually equivalent to compact Hausdorff spaces.
- Yosida-Kakutani Duality. Norm-complete lattice-ordered real vector spaces with an order unit are dually equivalent to compact Hausdorff spaces.
- Kaplanski-Banaschewski Duality. There is an (awkwardly described, non-full) subcategory of distributive lattices that is dually equivalent to compact Hausdorff spaces.

Prologue Projectives Duality Gabriel-Ulmer KHaus $\mathbf{C}^* extsf{-algebras}$ Epilogue

Grandpa Stone strikes again.

Topological Dualities, **II**

- Stone-Gelfand Duality. C*-algebras are dually equivalent to compact Hausdorff spaces.
- Yosida-Kakutani Duality. Norm-complete lattice-ordered real vector spaces with an order unit are dually equivalent to compact Hausdorff spaces.
- Kaplanski-Banaschewski Duality. There is an (awkwardly described, non-full) subcategory of distributive lattices that is dually equivalent to compact Hausdorff spaces.

• ...

Prologue Projectives Duality Gabriel-Ulmer KHaus $\mathbf{C}^* extsf{-algebras}$ Epilogue

Grandpa Stone strikes again.

Topological Dualities, **II**

- Stone-Gelfand Duality. C*-algebras are dually equivalent to compact Hausdorff spaces.
- Yosida-Kakutani Duality. Norm-complete lattice-ordered real vector spaces with an order unit are dually equivalent to compact Hausdorff spaces.
- Kaplanski-Banaschewski Duality. There is an (awkwardly described, non-full) subcategory of distributive lattices that is dually equivalent to compact Hausdorff spaces.

• . . .

Sadly, C*-algebras as just defined are **not** just sets with operations: think of the norm-completeness condition.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

• For the universal algebraist: Just like a variety of algebras, except that algebras are allowed to have operations of arbitrary infinite arity, and homomorphisms commute with all operations.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

- For the universal algebraist: Just like a variety of algebras, except that algebras are allowed to have operations of arbitrary infinite arity, and homomorphisms commute with all operations.
- For the category theorist: A category that is monadic over Set. (Cf. D. Coumans' talk.)

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

- For the universal algebraist: Just like a variety of algebras, except that algebras are allowed to have operations of arbitrary infinite arity, and homomorphisms commute with all operations.
- For the category theorist: A category that is monadic over Set. (Cf. D. Coumans' talk.)

References.

E. Manes, Algebraic Theories, Springer 1976.

J. Adámek, J. Rosický, E. Vitale, Algebraic Theories, CUP 2010.

• C*-algebras are an algebraic category. (Therefore, KHaus^{op} is.)

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

- C*-algebras are an algebraic category. (Therefore, KHaus^{op} is.)
- In particular, the unit-ball forgetful functor to Set that maps $\{x \in C(X) \mid ||x|| \leq 1\}$ to its underlying set has a left adjoint *Free*.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

- C*-algebras are an algebraic category. (Therefore, KHaus^{op} is.)
- In particular, the unit-ball forgetful functor to Set that maps $\{x \in C(X) \mid ||x|| \leq 1\}$ to its underlying set has a left adjoint *Free*.
- If S is any set, and $\kappa = |S|$, then $Free(S) = C([-1, 1]^{\kappa})$.

Prologue	Projectives	Duality	Gabriel-Ulmer	KHaus	C^* -algebras	Epilogue

- C*-algebras are an algebraic category. (Therefore, KHaus^{op} is.)
- In particular, the unit-ball forgetful functor to Set that maps $\{x \in C(X) \mid ||x|| \leq 1\}$ to its underlying set has a left adjoint *Free*.
- If S is any set, and $\kappa = |S|$, then $Free(S) = C([-1, 1]^{\kappa})$.

What the theorem says is that our chosen presentation of KHaus^{op} is not phrased in terms of operations merely because we are not using the right, algebraic language.

Generating the theory of C(X) (Isbell, 1982)

 The algebraic theory of C*-algebras is generated by a finite number of finitary operations, plus a single operation of arity N₀.

Generating the theory of C(X) (Isbell, 1982)

- The algebraic theory of C*-algebras is generated by a finite number of finitary operations, plus a single operation of arity ℵ₀.
- Finitary operations: the ring operations (+, ⋅, 0, 1), along with pointwise meet and join (∧, ∨).

Generating the theory of C(X) (Isbell, 1982)

- The algebraic theory of C*-algebras is generated by a finite number of finitary operations, plus a single operation of arity ℵ₀.
- Finitary operations: the ring operations (+, ⋅, 0, 1), along with pointwise meet and join (∧, ∨).
- Infinitary operation: $\iota(x_1, x_2, \ldots) = \sum_{i=1}^{\infty} 2^{-i} x_i$.

Generating the theory of C(X) (Isbell, 1982)

- The algebraic theory of C*-algebras is generated by a finite number of finitary operations, plus a single operation of arity ℵ₀.
- Finitary operations: the ring operations (+, ⋅, 0, 1), along with pointwise meet and join (∧, ∨).
- Infinitary operation: $\iota(x_1, x_2, \ldots) = \sum_{i=1}^{\infty} 2^{-i} x_i$.

Isbell's result amounts to the following.

And now, enter Isbell.

Generating the theory of C(X) (Isbell, 1982)

- The algebraic theory of C*-algebras is generated by a finite number of finitary operations, plus a single operation of arity N₀.
- Finitary operations: the ring operations (+, ⋅, 0, 1), along with pointwise meet and join (∧, ∨).
- Infinitary operation: $\iota(x_1, x_2, \ldots) = \sum_{i=1}^{\infty} 2^{-i} x_i$.

Isbell's result amounts to the following.

Let $f: [-1,1]^{\kappa} \to [-1,1]$ be any continuous function. Then f can be obtained by a **finite number** of applications of the Isbell operations, starting form the projection functions $\pi_{\alpha}((x_{\alpha})_{\alpha<\kappa}) = x_{\alpha}.$

Prologue Projectives Duality Gabriel-Ulmer KHaus $oldsymbol{C^*}$ -algebras Epilogue

Intuition. Choose functions $f_i: [-1,1]^{\kappa} \to [-1,1]$. The series $\iota(f_1, f_2, \ldots)$ converges to a function, and that function is continuous because the series is in fact *uniformly* convergent. (Remember we interpret over [-1,1].)

Prologue Projectives Duality Gabriel-Ulmer KHaus C*-algebras Epilogue Intuition. Choose functions $f_i \colon [-1, 1]^{\kappa} \to [-1, 1]$. The series

Intuition. Choose functions $f_i: [-1, 1]^n \to [-1, 1]$. The series $\iota(f_1, f_2, \ldots)$ converges to a function, and that function is continuous because the series is in fact *uniformly* convergent. (Remember we interpret over [-1, 1].)

We can now construct Isbell terms out of these operations, and we have indeed obtain a syntax for KHaus.

Prologue Projectives Duality Gabriel-Ulmer KHaus **C*-algebras** Epilogue

Intuition. Choose functions $f_i: [-1,1]^{\kappa} \to [-1,1]$. The series $\iota(f_1, f_2, \ldots)$ converges to a function, and that function is continuous because the series is in fact *uniformly* convergent. (Remember we interpret over [-1,1].)

We can now construct Isbell terms out of these operations, and we have indeed obtain a syntax for KHaus.

To say that Isbell terms s and t are equal (up to the theory of C^{*}-algebras) means that they evaluate to the same thing when interpreted over [-1, 1] in all possible ways.

Prologue Projectives Duality Gabriel-Ulmer KHaus **C*-algebras** Epilogue

Intuition. Choose functions $f_i: [-1,1]^{\kappa} \to [-1,1]$. The series $\iota(f_1, f_2, \ldots)$ converges to a function, and that function is continuous because the series is in fact *uniformly* convergent. (Remember we interpret over [-1,1].)

We can now construct Isbell terms out of these operations, and we have indeed obtain a syntax for KHaus.

To say that Isbell terms s and t are equal (up to the theory of C^{*}-algebras) means that they evaluate to the same thing when interpreted over [-1, 1] in all possible ways.

Unification problems, substitutions, unifiers, unification type etc. are now defined as before.

$$s(x,y) = x \lor (1-x) \lor y \lor (1-y)$$

$$s(x,y) = x \lor (1-x) \lor y \lor (1-y)$$

Just like in varieties, there is a unique X in KHaus such that C(X) is presented by the 2-generator relation s(x, y) = 1.

$$s(x,y) = x \lor (1-x) \lor y \lor (1-y)$$

Just like in varieties, there is a unique X in KHaus such that C(X) is presented by the 2-generator relation s(x, y) = 1. Since the solution set of s(x, y) = 1 in $[-1, 1]^2$ is the boundary of the square, we have $X \cong \mathbb{S}^1$.

$$s(x,y) = x \lor (1-x) \lor y \lor (1-y)$$

Just like in varieties, there is a unique X in KHaus such that C(X) is **presented** by the 2-generator relation s(x, y) = 1. Since the solution set of s(x, y) = 1 in $[-1, 1]^2$ is the boundary of the square, we have $X \cong \mathbb{S}^1$. **Remark.** If \mathbb{S}^1 (and all other spaces with such super-finite presentations) were not finitely co-presentable in KHaus, then we should <u>not</u> buy the Gabriel-Ulmer definition.

$$s(x,y) = x \lor (1-x) \lor y \lor (1-y)$$

Just like in varieties, there is a unique X in KHaus such that C(X) is **presented** by the 2-generator relation s(x, y) = 1. Since the solution set of s(x, y) = 1 in $[-1, 1]^2$ is the boundary of the square, we have $X \cong \mathbb{S}^1$. **Remark.** If \mathbb{S}^1 (and all other spaces with such super-finite presentations) were not finitely co-presentable in KHaus, then we should <u>not</u> buy the Gabriel-Ulmer definition.

Type zero for C(X) (V.M., unpublished).

The unification problem s(x, y) = 1 has type zero: in fact, modulo the algebraic theory of C(X), any unifier can be obtained from another, strictly more general unifier, by instantiation. (That is, no unifier is maximally general.)

• Duality theory is everywhere: The contravariant syntax-semantics adjunction is fundamental to logic broadly construed, and to much of mathematics.

- Duality theory is everywhere: The contravariant syntax-semantics adjunction is fundamental to logic broadly construed, and to much of mathematics.
- Unification beyond equational theories is almost entirely unexplored. Why not remedy that.

- Duality theory is everywhere: The contravariant syntax-semantics adjunction is fundamental to logic broadly construed, and to much of mathematics.
- Unification beyond equational theories is almost entirely unexplored. Why not remedy that.
- More generally: Although first order has its celebrated merits, there is much mathematics at higher order that awaits our attention of logicians and algebraists. (Cf. O. Caramello's talk.)

Prologue

Projectives Duality

y Gabri

Gabriel-Ulmer

KHaus

 C^* -algebras

Epilogue

To Leo Esakia, In Memoriam.

Thank you for your attention.