
Krivine’s Classical Realizability

from a Categorical Perspective

Thomas Streicher (TU Darmstadt)

July 2011

The Scenario

Krivine’s Classical Realizability will turn out as a generalization of

forcing as known from set theory.

Following Hyland with every partial combinatory algebra (pca) A

one associates a realizability topos RT(A). However,

RT(A) Groth. topos or boolean ⇒ A trivial pca

thus classical realizability is not given by a pca.

However, the order pca’s of J. van Oosten and P. Hofstra provide a

common generalization of realizability and Heyting valued models.

1

Classical Realizability (1)

The collection of (possibly open) terms is given by the grammar

t ::= x | λx.t | ts | cc t | kπ

where π ranges over stacks (i.e. lists) of closed terms. We write Λ

for the set of closed terms and Π for the set of stacks of closed terms.

A process is a pair t ∗ π with t ∈ Λ and π ∈ Π.

The operational semantics of Λ is given by the relation � (head

reduction) on processes defined inductively by the clauses

(pop) λx.t ∗ s.π � t[s/x] ∗ π

(push) ts ∗ π � t ∗ s.π

(store) cc t ∗ π � t ∗ kπ.π

(restore) kπ ∗ t.π′ � t ∗ π

2

Classical Realizability (2)

This language has a natural interpretation within the recursive domain

D ∼= ΣList(D) ∼=
∏

n∈ω
ΣDn

We have D ∼= Σ ×DD. Thus DD is a retract of D and, accordingly,

D is a model for λβ-calculus. The interpretation of Λ is given by

JxK̺ = ̺(x) JtsK̺ k = JtK ̺〈JsK̺ , k〉
Jλx.tK̺ 〈〉 = ⊤ Jλx.tK̺ 〈d, k〉 = JtK̺[d/x] k
Jcc tK̺ k = JtK̺ 〈ret(k), k〉 JkπK̺ = ret(JπK̺)

where

ret(k)〈〉 = ⊤ ret(k)〈d, k′〉 = d(k)

J〈〉K ̺ = 〈〉 Jt.πK̺ = 〈JtK̺ , JπK̺〉

3

Classical Realizability (3)

A set ⊥⊥ of processes is called saturated iff q ∈ ⊥⊥ whenever q� p ∈⊥⊥.

We write t ⊥ π for t ∗ π ∈⊥⊥. For X ⊆ Π and Y ⊆ Λ we put

X⊥ = {t ∈ Λ | ∀π ∈ X. t ⊥ π} Y ⊥ = {π ∈ Π | ∀t ∈ Y. t ⊥ π}

Obviously (−)⊥ is antitonic and Z ⊆ Z⊥⊥ and thus Z⊥ = Z⊥⊥⊥.

For a saturated set ⊥⊥ of processes second order logic over a set M

of individuals is interpreted as follows: n-ary predicate variables range

over functions Mn → P(Π) and formulas A are interpreted as ||A|| ⊆ Π

||X(t1, . . . , tn)||̺ = ̺(X)([[t1]]̺, . . . , [[t1]]̺)

||A→B||̺ = |A|̺.||B||̺

||∀xA(x)|| =
⋃

a∈M ||A(a)||

||∀XA[X]||̺ =
⋃

R∈P(Π)M
n ||A||̺[R/X]

where |A|̺ = ||A||⊥̺ .

4

Classical Realizability (4)

We have |∀XA| =
⋂

R∈P(Π)M
n
|A[R/X]|.

In general |A→B| is a proper subset of

|A|→|B| = {t∈Λ | ∀s∈|A| ts ∈ |B|}

unless ts ∗ π ∈ ⊥⊥ ⇒ t ∗ s.π ∈ ⊥⊥

But for every t ∈ |A|→|B| its η-expansion λx.tx ∈ |A→B| and, of

course, we have |A→B| = |A|→|B| whenever ⊥⊥ is also closed under

head reduction, i.e. ⊥⊥∋ p� q implies q ∈ ⊥⊥.

One may even assume that ⊥⊥ is stable w.r.t. the semantic equality

=D induced by the model D. However, there are interesting situations

where one has to go beyond such a framework.

5

Classical Realizability (5)

For realizing the Countable Axiom of Choice CAC Krivine introduced

a new language construct χ∗ with the reduction rule

χ∗ ∗ t.π � t ∗ nt.π

where nt is the Church numeral representation of a Gödel number for

t, c.f. quote(t) of LISP.

NB quote is in conflict with β-reduction!

NB The term χ∗ realizes Krivine’s Axiom

∃S∀x
(

∀nIntZ(x, Sx,n) → ∀XZ(x,X)
)

which entails CAC.

6

Axiomatic Classical Realizability (1)
Instead of the usual pca’s we now consider the following axiomatic

framework which we call Abstract Krivine Structure (AKS) :

• a set Λ of “terms” together with a binary application operation

(written as juxtaposition) and distinguished elements K, S, cc ∈ Λ

• a set Π of “stacks” together with a push operation (push) from

Λ×Π to Π (written t.π) and a unary operation k : Π → Λ

• a subset ⊥⊥ of Λ×Π which is saturated in the sense that

(S1) ts ⋆ π ∈⊥⊥ whenever t ⋆ s.π ∈⊥⊥

(S2) K ⋆ t.s.π ∈⊥⊥ whenever t ⋆ π ∈⊥⊥

(S3) S ⋆ t.s.u.π ∈⊥⊥ whenever tu(su) ⋆ π ∈⊥⊥

(S4) cc ⋆ t.π ∈⊥⊥ whenever t ⋆ kπ.π in ⊥⊥

(S5) kπ ⋆ t.π′ ∈⊥⊥ whenever t ⋆ π ∈⊥⊥.

7

Axiomatic Classical Realizability (2)

A proposition A is given by a subset ||A|| ⊆ Π. Its set of realizers is

|A| = ||A||⊥ = {t ∈ Λ | ∀π ∈ ||A|| t ⋆ π ∈ ⊥⊥}

and logic is interpreted as follows

||R(~t)|| = R
(q
~t
y)

||A→B|| = |A|.||B|| = {t.π | t ∈ |A|, π ∈ ||B||}

||∀xA(x)|| =
⋃

a∈M

||A(a)||

||∀XA(X)|| =
⋃

R∈P(Π)M
n

||A(R)||

where M is the underlying set of the model.

8

Axiomatic Classical Realizability (3)

One could define propositions more restrictively as

P⊥⊥(Π) = {X ∈ P(Π) | X = X⊥⊥}

without changing the meaning of |A| for closed formulas.

Notice that P⊥⊥(Π) is in 1-1-correspondence with

P⊥⊥(Λ) = {X ∈ P(Λ) | X = X⊥⊥}

via (−)⊥.

In case (S1) holds as an equivalence, i.e. we have

(SS1) ts ⋆ π in ⊥⊥ iff t ⋆ s.π in ⊥⊥

one may define | · | directly as

9

Axiomatic Class Realiz. (4)

|R(~t)| = R
(q
~t
y)

|A→B| = |A|→|B| = {t ∈ L | ∀s ∈ |A| ts ∈ |B|}

|∀xA(x)| =
⋂

a∈M

|A(a)|

|∀XA(X)| =
⋂

R∈P⊥⊥(Λ)
Mn

|A(R)|

and it coincides with the previous definition for closed formulas.

Abstract Krivine structures validating the reasonable assumption (SS1)

are called strong abstract Krivine structures (SAKSs).

10

Axiomatic Class Realiz. (5)

Obviously, for A,B ∈ P⊥⊥(Λ) we have

|A→B| ⊆ |A|→|B| = {t ∈ Λ | ∀s ∈ |A| ts ∈ |B|}

But for any t ∈ |A| → |B| we have

Et ∈ |A→B|

where E = S(KI) with I = SKK.

11

Axiomatic Class Realiz. (5a)

Proof. One easily checks that

I ∗ t.π ∈ ⊥⊥ ⇐ t ∗ π ∈ ⊥⊥

and thus we have

Et ∗ s.π ∈ ⊥⊥ ⇐ ts ∗ π ∈ ⊥⊥

because

Et ∗ s.π ∈ ⊥⊥ ⇐ KIs(ts).π ∈ ⊥⊥ ⇐ I ∗ ts.π ∈ ⊥⊥ ⇐ ts ∗ π ∈ ⊥⊥

Then for s ∈ |A|, π ∈ ||B|| we have Et ∗ s.π ∈ ⊥⊥

because ts ∗ π ∈ ⊥⊥ since t ∈ |A| → |B|.

Thus Et ∈ |A→B| as desired.

12

Forcing as an Instance (1)

Let P a ∧-semilattice (with top element 1) and D a downward closed

subset of P. Such a situation gives rise to a SAKS where

- Λ = Π = P

- application and the push operation are interpreted as ∧ in P

- k is the identity on P and constants K, S and cc are interpreted as 1

- ⊥⊥ = {(p, q) ∈ P
2 | p ∧ q ∈ D}.

We write p ⊥ q for p ∗ q ∈ ⊥⊥, i.e. p ∧ q ∈ D.

NB This is not a pca since application ∧ is commutative and asso-

ciative and thus a = kab = kba = b.

13

Forcing as an Instance (2)

For X ⊆ P we have

X⊥ = {p ∈ P | ∀q ∈ X p ∧ q ∈ D}

which is downward closed and contains D as a subset.

For such X we have

X⊥ = {p ∈ P | ∀q ≤ p (q ∈ X ⇒ q ∈ D)}

Thus, for arbitrary X ⊆ P we have

X⊥⊥ = {p ∈ P | ∀q ≤ p (q ∈ X⊥ ⇒ q ∈ D)}

= {p ∈ P | ∀q ≤ p (q /∈ D ⇒ q /∈ X⊥)}

= {p ∈ P | ∀q ≤ p (q /∈ D ⇒ ∃r ≤ q (r /∈ D ∧ r ∈ X))}

as familiar from Cohen forcing.

14

Forcing as an Instance (3)

Accordingly, we define propositions as A ⊆ P with A = A⊥⊥.

In case D = {0} then P
↑ = P \ {0} is a conditional ∧-semilattice and

propositions are in 1-1-correspondence with regular subsets A of P
↑,

i.e. p ∈ A whenever ∀q≤p ∃r≤q r ∈ A, as in Cohen forcing over P
↑.

For propositions A,B,C we have

A→ B : = {p ∈ P | ∀q ∈ A p ∧ q ∈ B} = {p ∈ P | ∀q ≤ p (q ∈ A⇒ q ∈ B)}

and thus C ⊆ A→ B iff C ∩A ⊆ B

The least proposition ⊥ is given by P
⊥ = D and thus we have

¬A ≡ A→ ⊥ = {p ∈ P | ∀q ∈ A p ∧ q ∈ D} = A⊥

15

Characterization of Forcing

One can show that a SAKS arises (up to iso) from a downward closed

subset of a ∧-semilattice iff

(1) k : Π → Λ is a bijection

(2) application is associative, commutative and idempotent and has

a neutral element 1

(3) application coincides with the push operation (when identifying Λ

and Π via k).

Remark The downset D = {t ∈ Λ | (t,1) ∈ ⊥⊥} (where 1 in Π via k).

In this sense forcing = commutative realizability

16

AKS’s as total OPCAs (1)

Hofstra and van Oosten’s notion of order partial combinatory alge-

bra (OPCA) generalizes both PCAs and complete Heyting algebras

(cHa’s).

We will show how every AKS can be organised into a total OPCA.

A total OPCA is a triple (A,≤, •) where ≤ is a partial order on A and

• is a binary monotone operation on A such that for some k, s ∈ A

k • a • b ≤ a s • a • b • c ≤ a • c • (b • c)

for all a, b, c ∈ A.

17

AKS’s as total OPCAs (2)

With every AKS we may associate the total OPCA whose underlying

set is P⊥⊥(Π), where a ≤ b iff a ⊇ b and application is defined as

a • b = {π ∈ P | ∀t ∈ |a|, s ∈ |b| t ∗ s.π ∈⊥⊥}⊥⊥

where |a| = a⊥. Obviously a ≤ b iff |a| ⊆ |b|.

NB In case of a SAKS we have

|a • b| = {ts | t ∈ |a|, s ∈ |b|}⊥⊥

Lemma 1

From a ≤ b→ c it follows that a • b ≤ c.

Lemma 2

If t ∈ |a| and s ∈ |b| then ts ∈ |a • b|.

18

(P⊥⊥(Π),⊃, •) is a total OPCA

One easily shows that {K}⊥ab ≤ a.

For showing that {S}⊥ • a • b • c ≤ a • c • (b • c) it suffices by (multiple

applications of) Lemma 1 to show that s ≤ a→ b→ c→ (a•c•(b•c)).

It suffices to show that

S ∈ |a→ b→ c→ (a • c • (b • c))|

For this purpose suppose t ∈ |a|, s ∈ |b|, u ∈ |c| and π ∈ a • c • (b • c).

Applying Lemma 2 iteratively we have tu(su) ∈ |a • c • (b • c)| and thus

tu(su) ∗ π ∈ ⊥⊥. Since ⊥⊥ is closed under expansion it follows that

S ∗ t.s.u.π ∈ ⊥⊥ as desired.

19

AKS’s as total OPCAs (3)
A filter in a total OPCA (A,≤, •) is a subset Φ of A closed under •

and containing (some choice of) k and s (for A).

(1) In case of a SAKS induced by a downclosed set D in a ∧-semilattice

P a natural choice of a filter is {P}.

(2) Φ = {a ∈ P⊥⊥(Π) | |a| =/ ∅} is a filter on P⊥⊥(Π) by Lemma 2.

With a filtered opca one may associate a Set-indexed preorder [−,A]Φ

• [I,A]Φ = A
I is the set of all functions from set I to A

• endowed with the preorder ϕ ⊢I ψ iff ∃a ∈ Φ∀i ∈ I a •ϕi ≤ ψi

• for u : J → I the reindexing map [u,A]Φ = u∗ : AI → A
J sends ϕ

to u∗ϕ = (ϕu(j))j∈J.

20

Krivine Tripos (1)
In case A arises from an AKS and Φ = {a ∈ P⊥⊥(Π) | |a| =/ ∅} the

indexed preorder [−,A]Φ is a tripos, i.e.

• all [I,A]Φ are pre-Heyting-algebras whose structure is preserved

by reindexing

• for every u : J → I in Set the reindexing map u∗ has a left adjoint

∃u and a right adjoint ∀u satisfying (Beck-)Chevalley condition

• there is a generic predicate T ∈ [Σ,A]Φ, namely Σ = A and T =

idA, of which all predicates arise by reindexing since ϕ = ϕ∗ idA

It coincides with Krivine’s Classical Realizability since for ϕ,ψ ∈ [M,A]Φ

ϕ ⊢M ψ iff ∃t ∈ Λ∀i ∈M t ∈ |ϕi → ψi|

21

Krivine Tripos (2)

Proof :

Suppose ϕ ⊢M ψ. Then there exists a ∈ Φ such that ∀i ∈M a•ϕi ≤ ψi.

For all i ∈M , u ∈ |a| and v ∈ |ϕi| we have uv ∈ |a•ϕi| ⊆ |ψi|. Let u ∈ |a|.

Then for all i ∈ M we have u ∈ |ϕi| → |ψi| and thus Eu ∈ |ϕi → ψi|.

Thus t = Eu does the job.

Suppose there exists a t ∈ Λ such that ∀i ∈ M t ∈ |ϕi → ψi|. Then we

have ∀i ∈M {t}⊥⊥ ⊆ |ϕi → ψi| Thus for a = {t}⊥ ∈ Φ we have

∀i ∈M∀u ∈ |a|∀v ∈ |ϕi|∀π ∈ ψi u ∗ v.π ∈⊥⊥

from which it follows that

∀i ∈M a • ϕi ≤ ψi

Thus ϕ ⊢M ψ.

22

Forcing in Classical Realizability (1)

Let P be a meet-semilattice. We write pq as a shorthand for p ∧ q.

Let C be an upward closed subset of P .

With every X ⊆ P one associates∗

|X| = {p ∈ P | ∀q (C(pq) → X(q))}

Such subsets of P are called propositions. We say

p forces X iff p ∈ |X|

and thus

p forces X → Y iff ∀q (|X|(q) → |Y |(pq))

p forces ∀i ∈ I.Xi iff ∀i ∈ I. p forces Xi

∗Traditionally, one would associate with X the set X⊥ = {p ∈ P | ∀q ∈ X ¬C(pq)}.
But, classically, we have |X| = (P \X)⊥.

23

Forcing in Classical Realizability (2)

Apparently, we have

p forces X → Y iff

∀q (|X|(q) → ∀r(C(pqr) → Y (r))) iff

∀q, r (C(pqr) → |X|(q) → Y (r)) iff

p ∈
∣

∣

∣{qr | |X|(q) → Y (r)}
∣

∣

∣

p forces ∀i ∈ I.Xi iff p ∈
∣

∣

∣

⋂

i∈I Xi
∣

∣

∣

24

Forcing in Classical Realizability (3)

Actually, in most cases P is not a meet-semilattice but it is so “from

point of view” of C ⊆ P , i.e. we have a binary operation on P and an

element 1 ∈ P such that

C(p(qr)) ↔ C((pq)r)

C(pq) ↔ C(qp)

C(p) ↔ C(pp)

C(1p) ↔ C(p)
(

C(p) ↔ C(q)
)

→
(

C(pr) ↔ C(qr)
)

together with

C(pq) → C(p)

expressing that C is upward closed.

25

Forcing in Classical Realizability (3a)

On P we may define a congruence

p ≃ q ≡ ∀r. (C(rp) ↔ C(rq))

w.r.t. which P is a commutative idempotent monoid, i.e. a meet-

semilattice, of which C is an upward closed subset.

26

Forcing in Classical Realizability (4)

We have seen that p forces X → Y iff ∀q, r (C(pqr) → |X|(q) → Y (r))

Thus a term t realizes p forces X → Y iff

(†) ∀q, r∀u∈C(pqr)∀s∈|X|(q)∀π∈Y (r) t ∗ u.s.π ∈⊥⊥

Thus, one might want to define when a pair (t, p) realizes X → Y .

For this purpose one has to find an AKS structure whose term part

is Λ× P . One defines application and push as follows

(t, p)(s, q) = (ts, pq) (t, p).(π, q) = (t.π, pq)

Moreover, from ⊥⊥ one defines a new ⊥⊥⊥ as

(t, p) ∗ (π, q) ∈⊥⊥⊥ iff ∀u ∈ C(pq) t ∗ πu ∈⊥⊥

where πu is obtained from π by inserting u at its bottom.

27

Forcing in Classical Realizability (4a)

Thus, we have

(t, p) ∈ |X → Y |

iff

∀(s, q) ∈ |X|∀(r, π) ∈ Y (t, p) ∗ (s, q).(π, r) ∈⊥⊥⊥

iff

∀(s, q) ∈ |X|∀(r, π) ∈ Y ∀u ∈ C(pqr) t ∗ s.πu ∈⊥⊥

in accordance with explication (†) of t realizes p forces X → Y as

∀q, r∀u∈C(pqr)∀s∈|X|(q)∀π∈Y (r) t ∗ u.s.π ∈⊥⊥

28

Forcing in Classical Realizability (5)

In order to jump back and forth between

t realizes p forces A and (t′, p) ∈ |A|

one needs “read” and “write” constructs in the original AKS, i.e.

command χ and χ′ s.t.

(read) χ ∗ t.πs � t ∗ s.π

(write) χ′ ∗ t.s.π � t ∗ πs

Using these one can transform t into t′ and vice versa.

Krivine concludes from this that for realizing forcing one needs

global memory.

29

Generic Set and Ideal (1)

In forcing one usually considers the generic set G which is the pred-

icate on P with G(p) = {p}⊥⊥.

Equivalently one my consider its complement, the generic ideal J

with |J (p)| = {p}⊥, i.e.

J (p) = {q ∈ P | p =/ q}

as q ∈ |J (p)| iff ∀r (C(qr) → p =/ r) iff ¬C(qp).

30

Generic Set and Ideal (2)

Obviously p ≃ q iff ∀r (|J (p)|(r) ↔ |J (q)|(r)). More generally, we can

define

p � q ≡ ∀r
(

|J (q)|(r) → |J (p)|(r)
)

i.e. ∀r (C(rp) → C(rq)). This defines a preorder w.r.t. which P gets a

meet-semilattice P with greatest element 1 where pq picks a binary

infimum of p and q.

Equivalently, we may define

||J (p)|| = Π× {p}

since (t, q) ∈ |J (p)| iff ∀π (t, q) ∗ (π, p) ∈⊥⊥⊥ iff ∀u ∈ C(qp)∀π t ∗ πu ∈⊥⊥.

31

P(P) as a cBa

For X ∈ P(P) define J (X) such that

|J (X)|(q) iff ∀p ∈ X ¬C(qp)

i.e. |J |(X) = X⊥. We may extend � to P(P) as follows

X � Y ≡ ∀r
(

|J (Y)|(r) → |J (X)|(r)
)

Thus X � Y iff Y ⊥ ⊆ X⊥ iff X⊥⊥ ⊆ Y ⊥⊥.

This endows P(P) with the structure of a complete boolean preorder

denoted by B. Writing E for the classical realizability topos arising

from the original AKS the classical topos arising from the new AKS

is (equivalent to) the topos ShE(B).

Warning B is not an assembly in E as it is uniform. Thus the con-

struction of ShE(B) from E is not induced by an opca morphism.

32

