Krivine's Classical Realizability from a Categorical Perspective

Thomas Streicher (TU Darmstadt)

July 2011

The Scenario

Krivine's **Classical Realizability** will turn out as a **generalization of forcing** as known from set theory.

Following Hyland with every partial combinatory algebra (pca) \mathbb{A} one associates a realizability topos $RT(\mathbb{A})$. However,

 $RT(\mathbb{A})$ Groth. topos or boolean \Rightarrow \mathbb{A} trivial pca

thus classical realizability is not given by a pca.

However, the **order pca**'s of J. van Oosten and P. Hofstra provide a common generalization of realizability and Heyting valued models.

Classical Realizability (1)

The collection of (possibly open) terms is given by the grammar

 $t ::= x \mid \lambda x.t \mid ts \mid \operatorname{cc} t \mid \mathsf{k}_{\pi}$

where π ranges over **stacks** (i.e. lists) of closed terms. We write Λ for the set of closed terms and Π for the set of stacks of closed terms. A **process** is a pair $t * \pi$ with $t \in \Lambda$ and $\pi \in \Pi$.

The operational semantics of Λ is given by the relation \succeq (*head reduction*) on processes defined inductively by the clauses

(pop)	$\lambda x.t * s.\pi$	\succeq	$t[s/x] * \pi$
(push)	$ts * \pi$	\succeq	$t * s.\pi$
(store)	$\operatorname{cc} t st \pi$	\succeq	$t * k_{\pi}.\pi$
(restore)	$k_{\pi} \ast t.\pi'$	\succeq	$t * \pi$

Classical Realizability (2)

This language has a natural interpretation within the recursive domain

$$D \cong \Sigma^{\mathsf{List}(D)} \cong \prod_{n \in \omega} \Sigma^{D^n}$$

We have $D \cong \Sigma \times D^D$. Thus D^D is a retract of D and, accordingly, D is a model for λ_{β} -calculus. The interpretation of Λ is given by

$$\begin{split} \llbracket x \rrbracket_{\varrho} &= \varrho(x) & \llbracket ts \rrbracket_{\varrho} k = \llbracket t \rrbracket \varrho \langle \llbracket s \rrbracket_{\varrho}, k \rangle \\ \llbracket \lambda x.t \rrbracket_{\varrho} \langle \rangle &= \top & \llbracket \lambda x.t \rrbracket_{\varrho} \langle d, k \rangle = \llbracket t \rrbracket_{\varrho[d/x]} k \\ \llbracket cc t \rrbracket_{\varrho} k &= \llbracket t \rrbracket_{\varrho} \langle \operatorname{ret}(k), k \rangle & \llbracket k \pi \rrbracket_{\varrho} = \operatorname{ret}(\llbracket \pi \rrbracket_{\varrho}) \end{split}$$

where

$$\operatorname{ret}(k)\langle \rangle = \top \qquad \operatorname{ret}(k)\langle d, k' \rangle = d(k)$$
$$\llbracket \langle \rangle \rrbracket \varrho = \langle \rangle \qquad \llbracket t.\pi \rrbracket_{\varrho} = \langle \llbracket t \rrbracket_{\varrho}, \llbracket \pi \rrbracket_{\varrho} \rangle$$

Classical Realizability (3)

A set $\bot\!\!\!\bot$ of processes is called **saturated** iff $q \in \bot\!\!\!\bot$ whenever $q \succeq p \in \bot\!\!\!\bot$. We write $t \perp \pi$ for $t * \pi \in \bot\!\!\!\bot$. For $X \subseteq \Pi$ and $Y \subseteq \Lambda$ we put

$$X^{\perp} = \{ t \in \Lambda \mid \forall \pi \in X. \ t \perp \pi \} \qquad Y^{\perp} = \{ \pi \in \Pi \mid \forall t \in Y. \ t \perp \pi \}$$

Obviously $(-)^{\perp}$ is antitonic and $Z \subseteq Z^{\perp \perp}$ and thus $Z^{\perp} = Z^{\perp \perp \perp}$. For a saturated set \perp of processes second order logic over a set M of individuals is interpreted as follows: *n*-ary predicate variables range over functions $M^n \to \mathcal{P}(\Pi)$ and formulas A are interpreted as $||A|| \subseteq \Pi$

$$||X(t_1, \dots, t_n)||_{\varrho} = \varrho(X)(\llbracket t_1 \rrbracket_{\varrho}, \dots, \llbracket t_1 \rrbracket_{\varrho})$$

$$||A \rightarrow B||_{\varrho} = |A|_{\varrho} \cdot ||B||_{\varrho}$$

$$||\forall X A(x)|| = \bigcup_{a \in M} ||A(a)||$$

$$||\forall X A[X]||_{\varrho} = \bigcup_{R \in \mathcal{P}(\Pi)^{M^n}} ||A||_{\varrho[R/X]}$$

where $|A|_{\varrho} = ||A||_{\varrho}^{\perp}$.

Classical Realizability (4)

We have $|\forall XA| = \bigcap_{R \in \mathcal{P}(\Pi)^{M^n}} |A[R/X]|.$

In general $|A \rightarrow B|$ is a **proper** subset of

 $|A| \rightarrow |B| = \{t \in \Lambda \mid \forall s \in |A| \ ts \in |B|\}$

unless $ts * \pi \in \coprod \Rightarrow t * s.\pi \in \coprod$

But for every $t \in |A| \rightarrow |B|$ its η -expansion $\lambda x.tx \in |A \rightarrow B|$ and, of course, we have $|A \rightarrow B| = |A| \rightarrow |B|$ whenever \bot is also closed under head reduction, i.e. $\bot \supseteq p \succeq q$ implies $q \in \bot \bot$.

One may even assume that \bot is stable w.r.t. the semantic equality $=_D$ induced by the model D. However, there are interesting situations where one has to go beyond such a framework.

Classical Realizability (5)

For realizing the Countable Axiom of Choice CAC Krivine introduced a new language construct χ^* with the reduction rule

$$\chi^* * t.\pi \succeq t * n_t.\pi$$

where n_t is the Church numeral representation of a Gödel number for t, c.f. quote(t) of LISP.

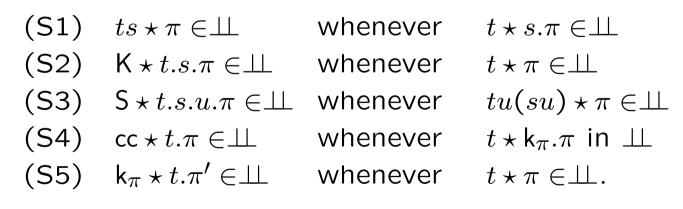
NB quote is in conflict with β -reduction!

NB The term χ^* realizes *Krivine's Axiom* $\exists S \forall x (\forall n^{\text{Int}} Z(x, S_{x,n}) \rightarrow \forall X Z(x, X))$ which entails CAC.

Axiomatic Classical Realizability (1)

Instead of the usual pca's we now consider the following axiomatic framework which we call **Abstract Krivine Structure** (AKS) :

- a set Λ of "terms" together with a binary application operation (written as juxtaposition) and distinguished elements K, S, $cc \in \Lambda$
- a set Π of "stacks" together with a push operation (push) from $\Lambda \times \Pi$ to Π (written $t.\pi$) and a unary operation k : $\Pi \to \Lambda$
- a subset $\bot\!\!\bot$ of $\Lambda \times \Pi$ which is **saturated** in the sense that



Axiomatic Classical Realizability (2)

A proposition A is given by a subset $||A|| \subseteq \Pi$. Its set of realizers is

$$|A| = ||A||^{\perp} = \{t \in \Lambda \mid \forall \pi \in ||A|| \ t \star \pi \in \bot \}$$

and logic is interpreted as follows

$$||R(\vec{t})|| = R\left(\llbracket \vec{t} \rrbracket\right)$$
$$||A \to B|| = |A|.||B|| = \{t.\pi \mid t \in |A|, \pi \in ||B||\}$$
$$||\forall x A(x)|| = \bigcup_{a \in M} ||A(a)||$$
$$||\forall X A(X)|| = \bigcup_{R \in \mathcal{P}(\Pi)^{M^n}} ||A(R)||$$

where M is the underlying set of the model.

Axiomatic Classical Realizability (3)

One could define propositions more restrictively as

$$\mathcal{P}_{\perp\perp}(\Pi) = \{ X \in \mathcal{P}(\Pi) \mid X = X^{\perp\perp} \}$$

without changing the meaning of |A| for closed formulas.

Notice that $\mathcal{P}_{\perp \perp}(\Pi)$ is in 1-1-correspondence with

$$\mathcal{P}_{\perp\perp}(\Lambda) = \{ X \in \mathcal{P}(\Lambda) \mid X = X^{\perp\perp} \}$$

via $(-)^{\perp}$.

In case (S1) holds as an equivalence, i.e. we have (SS1) $ts \star \pi$ in \bot iff $t \star s.\pi$ in \bot one may define $|\cdot|$ directly as

Axiomatic Class Realiz. (4)

$$|R(\vec{t})| = R\left(\llbracket \vec{t} \rrbracket\right)$$
$$|A \to B| = |A| \to |B| = \{t \in L \mid \forall s \in |A| \ ts \in |B|\}$$
$$|\forall x A(x)| = \bigcap_{a \in M} |A(a)|$$
$$|\forall X A(X)| = \bigcap_{R \in \mathcal{P}_{\sqcup}(\Lambda)^{M^n}} |A(R)|$$

and it coincides with the previous definition for closed formulas.

Abstract Krivine structures validating the reasonable assumption (SS1) are called **strong abstract Krivine structures** (SAKSs).

Axiomatic Class Realiz. (5)

Obviously, for $A, B \in \mathcal{P}_{\perp \perp}(\Lambda)$ we have

 $|A \to B| \subseteq |A| \to |B| = \{t \in \Lambda \mid \forall s \in |A| \ ts \in |B|\}$

But for any $t \in |A| \to |B|$ we have

 $\mathsf{E}t \in |A \to B|$

where E = S(KI) with I = SKK.

Axiomatic Class Realiz. (5a)

Proof. One easily checks that

 $\mathsf{I} * t.\pi \in \bot\!\!\bot \iff t * \pi \in \bot\!\!\bot$

and thus we have

 $\mathsf{E}t \ast s.\pi \in \bot\!\!\!\bot \ \Leftarrow \ ts \ast \pi \in \bot\!\!\!\bot$

because

 $Et * s.\pi \in \coprod \iff Kls(ts).\pi \in \coprod \iff l * ts.\pi \in \coprod \iff ts * \pi \in \coprod$ Then for $s \in |A|, \pi \in ||B||$ we have $Et * s.\pi \in \coprod$ because $ts * \pi \in \coprod$ since $t \in |A| \to |B|$.

Thus $Et \in |A \rightarrow B|$ as desired.

Let \mathbb{P} a \wedge -semilattice (with top element 1) and \mathcal{D} a *downward closed* subset of \mathbb{P} . Such a situation gives rise to a SAKS where

- $\Lambda = \Pi = \mathbb{P}$
- application and the push operation are interpreted as \wedge in $\mathbb P$
- k is the identity on $\mathbb P$ and constants K, S and cc are interpreted as 1
- $\bot \bot = \{ (p,q) \in \mathbb{P}^2 \mid p \land q \in \mathcal{D} \}.$

We write $p \perp q$ for $p * q \in \coprod$, i.e. $p \land q \in \mathcal{D}$.

NB This is **not** a pca since application \wedge is commutative and associative and thus a = kab = kba = b.

Forcing as an Instance (2)

For $X \subseteq \mathbb{P}$ we have

$$X^{\perp} = \{ p \in \mathbb{P} \mid \forall q \in X \ p \land q \in \mathcal{D} \}$$

which is downward closed and contains ${\mathcal D}$ as a subset. For such X we have

$$X^{\perp} = \{ p \in \mathbb{P} \mid \forall q \le p \ (q \in X \Rightarrow q \in \mathcal{D}) \}$$

Thus, for arbitrary $X \subseteq \mathbb{P}$ we have

$$\begin{aligned} X^{\perp\perp} &= \{ p \in \mathbb{P} \mid \forall q \leq p \; (q \in X^{\perp} \Rightarrow q \in \mathcal{D}) \} \\ &= \{ p \in \mathbb{P} \mid \forall q \leq p \; (q \notin \mathcal{D} \Rightarrow q \notin X^{\perp}) \} \\ &= \{ p \in \mathbb{P} \mid \forall q \leq p \; (q \notin \mathcal{D} \Rightarrow \exists r \leq q \; (r \notin \mathcal{D} \land r \in X)) \} \end{aligned}$$

as familiar from **Cohen forcing**.

Forcing as an Instance (3)

Accordingly, we define **propositions** as $A \subseteq \mathbb{P}$ with $A = A^{\perp \perp}$.

In case $\mathcal{D} = \{0\}$ then $\mathbb{P}^{\uparrow} = \mathbb{P} \setminus \{0\}$ is a conditional \wedge -semilattice and propositions are in 1-1-correspondence with *regular* subsets A of \mathbb{P}^{\uparrow} , i.e. $p \in A$ whenever $\forall q \leq p \exists r \leq q \ r \in A$, as in **Cohen forcing** over \mathbb{P}^{\uparrow} .

For propositions A, B, C we have

 $\begin{array}{ll} A \rightarrow B := \{ p \in \mathbb{P} \mid \forall q \in A \; p \wedge q \in B \} = \{ p \in \mathbb{P} \mid \forall q \leq p \; (q \in A \Rightarrow q \in B) \} \\ \text{and thus} & C \subseteq A \rightarrow B \quad \text{iff} \quad C \cap A \subseteq B \\ \text{The least proposition} \perp \text{ is given by } \mathbb{P}^{\perp} = \mathcal{D} \text{ and thus we have} \end{array}$

$$\neg A \equiv A \to \bot = \{ p \in \mathbb{P} \mid \forall q \in A \ p \land q \in \mathcal{D} \} = A^{\bot}$$

Characterization of Forcing

One can show that a SAKS arises (up to iso) from a downward closed subset of a \land -semilattice iff

- (1) $k:\Pi\to\Lambda$ is a bijection
- (2) application is associative, commutative and idempotent and has a neutral element 1
- (3) application coincides with the push operation (when identifying Λ and Π via k).

Remark The downset $\mathcal{D} = \{t \in \Lambda \mid (t, 1) \in \bot \}$ (where 1 in Π via k). In this sense forcing = commutative realizability Hofstra and van Oosten's notion of **order partial combinatory algebra** (OPCA) generalizes both PCAs and complete Heyting algebras (cHa's).

We will show how every AKS can be organised into a total OPCA.

A total OPCA is a triple $(\mathbb{A}, \leq, \bullet)$ where \leq is a partial order on \mathbb{A} and

 \bullet is a binary monotone operation on \mathbbm{A} such that for some $k,s\in\mathbbm{A}$

$$k \bullet a \bullet b \le a$$
 $s \bullet a \bullet b \bullet c \le a \bullet c \bullet (b \bullet c)$

for all $a, b, c \in \mathbb{A}$.

AKS's as total OPCAs (2)

With every AKS we may associate the total OPCA whose underlying set is $\mathcal{P}_{\perp\perp}(\Pi)$, where $a \leq b$ iff $a \supseteq b$ and application is defined as

$$a \bullet b = \{\pi \in P \mid \forall t \in |a|, s \in |b| \ t * s.\pi \in \bot\bot\}^{\bot\bot}$$

where $|a| = a^{\perp}$. Obviously $a \leq b$ iff $|a| \subseteq |b|$.

NB In case of a SAKS we have

$$|a \bullet b| = \{ts \mid t \in |a|, s \in |b|\}^{\perp \perp}$$

Lemma 1 From $a \le b \to c$ it follows that $a \bullet b \le c$. **Lemma 2** If $t \in |a|$ and $s \in |b|$ then $ts \in |a \bullet b|$.

$(\mathcal{P}_{\perp\perp}(\Pi), \supset, \bullet)$ is a total OPCA

One easily shows that $\{K\}^{\perp}ab \leq a$.

For showing that $\{S\}^{\perp} \bullet a \bullet b \bullet c \leq a \bullet c \bullet (b \bullet c)$ it suffices by (multiple applications of) Lemma 1 to show that $s \leq a \to b \to c \to (a \bullet c \bullet (b \bullet c))$. It suffices to show that

$$\mathsf{S} \in |a \to b \to c \to (a \bullet c \bullet (b \bullet c))|$$

For this purpose suppose $t \in |a|$, $s \in |b|$, $u \in |c|$ and $\pi \in a \bullet c \bullet (b \bullet c)$. Applying Lemma 2 iteratively we have $tu(su) \in |a \bullet c \bullet (b \bullet c)|$ and thus $tu(su) * \pi \in \square$. Since \square is closed under expansion it follows that $S * t.s.u.\pi \in \square$ as desired.

AKS's as total OPCAs (3)

A filter in a total OPCA $(\mathbb{A}, \leq, \bullet)$ is a subset Φ of \mathbb{A} closed under \bullet and containing (some choice of) k and s (for \mathbb{A}).

(1) In case of a SAKS induced by a downclosed set \mathcal{D} in a \wedge -semilattice \mathbb{P} a natural choice of a filter is $\{\mathbb{P}\}$.

(2) $\Phi = \{a \in \mathcal{P}_{\perp \perp}(\Pi) \mid |a| \neq \emptyset\}$ is a filter on $\mathcal{P}_{\perp \perp}(\Pi)$ by Lemma 2.

With a filtered opca one may associate a Set-indexed preorder $[-,\mathbb{A}]_\Phi$

- $[I, \mathbb{A}]_{\Phi} = \mathbb{A}^{I}$ is the set of all functions from set I to \mathbb{A}
- endowed with the preorder $\varphi \vdash_I \psi$ iff $\exists a \in \Phi \forall i \in I \ a \bullet \varphi_i \leq \psi_i$
- for $u : J \to I$ the reindexing map $[u, \mathbb{A}]_{\Phi} = u^* : \mathbb{A}^I \to \mathbb{A}^J$ sends φ to $u^* \varphi = (\varphi_{u(j)})_{j \in J}$.

Krivine Tripos (1)

In case A arises from an AKS and $\Phi = \{a \in \mathcal{P}_{\perp \perp}(\Pi) \mid |a| \neq \emptyset\}$ the indexed preorder $[-, A]_{\Phi}$ is a **tripos**, i.e.

- \bullet all $[I,\mathbb{A}]_{\Phi}$ are pre-Heyting-algebras whose structure is preserved by reindexing
- for every $u: J \to I$ in Set the reindexing map u^* has a left adjoint \exists_u and a right adjoint \forall_u satisfying (Beck-)Chevalley condition
- there is a generic predicate $T \in [\Sigma, \mathbb{A}]_{\Phi}$, namely $\Sigma = \mathbb{A}$ and $T = id_{\mathbb{A}}$, of which all predicates arise by reindexing since $\varphi = \varphi^* id_{\mathbb{A}}$

It coincides with Krivine's Classical Realizability since for $\varphi, \psi \in [M, \mathbb{A}]_{\Phi}$

 $\varphi \vdash_M \psi \quad \text{iff} \quad \exists t \in \Lambda \forall i \in M \ t \in |\varphi_i \to \psi_i|$

Krivine Tripos (2)

Proof :

Suppose $\varphi \vdash_M \psi$. Then there exists $a \in \Phi$ such that $\forall i \in M \ a \bullet \varphi_i \leq \psi_i$. For all $i \in M$, $u \in |a|$ and $v \in |\varphi_i|$ we have $uv \in |a \bullet \varphi_i| \subseteq |\psi_i|$. Let $u \in |a|$. Then for all $i \in M$ we have $u \in |\varphi_i| \to |\psi_i|$ and thus $\mathsf{E}u \in |\varphi_i \to \psi_i|$. Thus $t = \mathsf{E}u$ does the job.

Suppose there exists a $t \in \Lambda$ such that $\forall i \in M \ t \in |\varphi_i \to \psi_i|$. Then we have $\forall i \in M \ \{t\}^{\perp \perp} \subseteq |\varphi_i \to \psi_i|$ Thus for $a = \{t\}^{\perp} \in \Phi$ we have

 $\forall i \in M \forall u \in |a| \forall v \in |\varphi_i| \forall \pi \in \psi_i \ u * v.\pi \in \bot\!\!\!\bot$

from which it follows that

$$\forall i \in M \ a \bullet \varphi_i \le \psi_i$$

Thus $\varphi \vdash_M \psi$.

Forcing in Classical Realizability (1)

Let P be a meet-semilattice. We write pq as a shorthand for $p \land q$. Let C be an upward closed subset of P. With every $X \subseteq P$ one associates^{*}

 $|X| = \{p \in P \mid \forall q (\mathsf{C}(pq) \to X(q))\}$

Such subsets of P are called propositions. We say

 $p \text{ forces } X \quad \text{iff} \quad p \in |X|$

and thus

 $p \text{ forces } X \to Y \quad \text{iff} \quad \forall q (|X|(q) \to |Y|(pq))$ $p \text{ forces } \forall i \in I.X_i \quad \text{iff} \quad \forall i \in I. \ p \text{ forces } X_i$

*Traditionally, one would associate with X the set $X^{\perp} = \{p \in P \mid \forall q \in X \neg C(pq)\}$. But, classically, we have $|X| = (P \setminus X)^{\perp}$.

Forcing in Classical Realizability (2)

Apparently, we have

$$p \text{ forces } X \to Y \quad \text{iff} \\ \forall q \left(|X|(q) \to \forall r(\mathsf{C}(pqr) \to Y(r)) \right) \quad \text{iff} \\ \forall q, r \left(\mathsf{C}(pqr) \to |X|(q) \to Y(r) \right) \quad \text{iff} \\ p \in \left| \{qr \mid |X|(q) \to Y(r)\} \right|$$

 $p \text{ forces } \forall i \in I.X_i \quad \text{iff} \quad p \in \left| \bigcap_{i \in I} X_i \right|$

Forcing in Classical Realizability (3)

Actually, in most cases P is not a meet-semilattice **but** it is so "from point of view" of $C \subseteq P$, i.e. we have a binary operation on P and an element $1 \in P$ such that

$$C(p(qr)) \leftrightarrow C((pq)r)$$

$$C(pq) \leftrightarrow C(qp)$$

$$C(p) \leftrightarrow C(pp)$$

$$C(1p) \leftrightarrow C(p)$$

$$\left(C(p) \leftrightarrow C(q)\right) \rightarrow \left(C(pr) \leftrightarrow C(qr)\right)$$

together with

$$C(pq) \rightarrow C(p)$$

expressing that C is upward closed.

Forcing in Classical Realizability (3a)

On P we may define a congruence

$$p \simeq q \equiv \forall r. (C(rp) \leftrightarrow C(rq))$$

w.r.t. which P is a commutative idempotent monoid, i.e. a meetsemilattice, of which C is an upward closed subset.

Forcing in Classical Realizability (4)

We have seen that p forces $X \to Y$ iff $\forall q, r (C(pqr) \to |X|(q) \to Y(r))$ Thus a term t realizes p forces $X \to Y$ iff

(†) $\forall q, r \forall u \in \mathsf{C}(pqr) \forall s \in |X|(q) \forall \pi \in Y(r) \ t * u.s.\pi \in \bot \bot$

Thus, one might want to define when a pair (t,p) realizes $X \to Y$. For this purpose one has to find an AKS structure whose term part is $\Lambda \times P$. One defines application and push as follows

$$(t,p)(s,q) = (ts,pq)$$
 $(t,p).(\pi,q) = (t.\pi,pq)$

Moreover, from $\bot\!\!\!\bot$ one defines a new $\bot\!\!\!\bot\!\!\!\bot$ as

 $(t,p)*(\pi,q)\in \coprod$ iff $\forall u\in \mathsf{C}(pq)\ t*\pi^u\in \coprod$

where π^u is obtained from π by inserting u at its bottom.

Forcing in Classical Realizability (4a)

Thus, we have

 $\begin{array}{l} (t,p) \in |X \to Y| \\ \text{iff} \\ \forall (s,q) \in |X| \forall (r,\pi) \in Y \ (t,p) * (s,q).(\pi,r) \in \amalg \\ \text{iff} \\ \forall (s,q) \in |X| \forall (r,\pi) \in Y \forall u \in \mathsf{C}(pqr) \ t * s.\pi^u \in \amalg \end{array}$

in accordance with explication (†) of t realizes p forces $X \to Y$ as

 $\forall q, r \forall u \in \mathsf{C}(pqr) \forall s \in |X|(q) \forall \pi \in Y(r) \ t * u.s.\pi \in \bot \bot$

Forcing in Classical Realizability (5)

In order to jump back and forth between

t realizes p forces A and $(t', p) \in |A|$

one needs "read" and "write" constructs in the original AKS, i.e. command χ and χ' s.t.

- (read) $\chi * t.\pi^s \succeq t * s.\pi$
- (write) $\chi' * t.s.\pi \succeq t * \pi^s$

Using these one can transform t into t' and vice versa.

Krivine concludes from this that for **realizing forcing one needs global memory**.

In forcing one usually considers the **generic set** \mathcal{G} which is the predicate on P with $\mathcal{G}(p) = \{p\}^{\perp \perp}$.

Equivalently one my consider its complement, the generic ideal \mathcal{J} with $|\mathcal{J}(p)| = \{p\}^{\perp}$, i.e.

 $\mathcal{J}(p) = \{ q \in P \mid p \neq q \}$

as $q \in |\mathcal{J}(p)|$ iff $\forall r (\mathsf{C}(qr) \to p \neq r)$ iff $\neg \mathsf{C}(qp)$.

Generic Set and Ideal (2)

Obviously $p \simeq q$ iff $\forall r (|\mathcal{J}(p)|(r) \leftrightarrow |\mathcal{J}(q)|(r))$. More generally, we can define

$$p \leq q \equiv \forall r \left(|\mathcal{J}(q)|(r) \rightarrow |\mathcal{J}(p)|(r) \right)$$

i.e. $\forall r (C(rp) \rightarrow C(rq))$. This defines a preorder w.r.t. which *P* gets a meet-semilattice \mathbb{P} with greatest element 1 where pq picks a binary infimum of *p* and *q*.

Equivalently, we may define

$$||\mathcal{J}(p)|| = \Pi \times \{p\}$$

since $(t,q) \in |\mathcal{J}(p)|$ iff $\forall \pi(t,q) * (\pi,p) \in \coprod$ iff $\forall u \in \mathsf{C}(qp) \forall \pi t * \pi^u \in \coprod$.

$\mathcal{P}(P)$ as a cBa

For $X \in \mathcal{P}(P)$ define $\mathcal{J}(X)$ such that

 $|\mathcal{J}(X)|(q)$ iff $\forall p \in X \neg \mathsf{C}(qp)$

i.e. $|\mathcal{J}|(X) = X^{\perp}$. We may extend \leq to $\mathcal{P}(P)$ as follows

$$X \preceq Y \equiv \forall r \left(|\mathcal{J}(Y)|(r) \to |\mathcal{J}(X)|(r) \right)$$

Thus $X \preceq Y$ iff $Y^{\perp} \subseteq X^{\perp}$ iff $X^{\perp \perp} \subseteq Y^{\perp \perp}$.

This endows $\mathcal{P}(P)$ with the structure of a complete boolean preorder denoted by B. Writing \mathcal{E} for the classical realizability topos arising from the original AKS the classical topos arising from the new AKS is (equivalent to) the topos $Sh_{\mathcal{E}}(B)$.

Warning *B* is not an assembly in \mathcal{E} as it is uniform. Thus the construction of $Sh_{\mathcal{E}}(B)$ from \mathcal{E} is **not** induced by an opca morphism.