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The Scenario

Krivine’s Classical Realizability will turn out as a generalization of

forcing as known from set theory.

Following Hyland with every partial combinatory algebra (pca) A

one associates a realizability topos RT(A). However,

RT(A) Groth. topos or boolean ⇒ A trivial pca

thus classical realizability is not given by a pca.

However, the order pca’s of J. van Oosten and P. Hofstra provide a

common generalization of realizability and Heyting valued models.
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Classical Realizability (1)

The collection of (possibly open) terms is given by the grammar

t ::= x | λx.t | ts | cc t | kπ

where π ranges over stacks (i.e. lists) of closed terms. We write Λ

for the set of closed terms and Π for the set of stacks of closed terms.

A process is a pair t ∗ π with t ∈ Λ and π ∈ Π.

The operational semantics of Λ is given by the relation � (head

reduction) on processes defined inductively by the clauses

(pop) λx.t ∗ s.π � t[s/x] ∗ π

(push) ts ∗ π � t ∗ s.π

(store) cc t ∗ π � t ∗ kπ.π

(restore) kπ ∗ t.π′ � t ∗ π
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Classical Realizability (2)

This language has a natural interpretation within the recursive domain

D ∼= ΣList(D) ∼=
∏

n∈ω
ΣDn

We have D ∼= Σ ×DD. Thus DD is a retract of D and, accordingly,

D is a model for λβ-calculus. The interpretation of Λ is given by

JxK̺ = ̺(x) JtsK̺ k = JtK ̺〈JsK̺ , k〉
Jλx.tK̺ 〈〉 = ⊤ Jλx.tK̺ 〈d, k〉 = JtK̺[d/x] k
Jcc tK̺ k = JtK̺ 〈ret(k), k〉 JkπK̺ = ret(JπK̺)

where

ret(k)〈〉 = ⊤ ret(k)〈d, k′〉 = d(k)

J〈〉K ̺ = 〈〉 Jt.πK̺ = 〈JtK̺ , JπK̺〉
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Classical Realizability (3)

A set ⊥⊥ of processes is called saturated iff q ∈ ⊥⊥ whenever q� p ∈⊥⊥.

We write t ⊥ π for t ∗ π ∈⊥⊥. For X ⊆ Π and Y ⊆ Λ we put

X⊥ = {t ∈ Λ | ∀π ∈ X. t ⊥ π} Y ⊥ = {π ∈ Π | ∀t ∈ Y. t ⊥ π}

Obviously (−)⊥ is antitonic and Z ⊆ Z⊥⊥ and thus Z⊥ = Z⊥⊥⊥.

For a saturated set ⊥⊥ of processes second order logic over a set M

of individuals is interpreted as follows: n-ary predicate variables range

over functions Mn → P(Π) and formulas A are interpreted as ||A|| ⊆ Π

||X(t1, . . . , tn)||̺ = ̺(X)([[t1]]̺, . . . , [[t1]]̺)

||A→B||̺ = |A|̺.||B||̺

||∀xA(x)|| =
⋃

a∈M ||A(a)||

||∀XA[X]||̺ =
⋃

R∈P(Π)M
n ||A||̺[R/X]

where |A|̺ = ||A||⊥̺ .
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Classical Realizability (4)

We have |∀XA| =
⋂

R∈P(Π)M
n
|A[R/X]|.

In general |A→B| is a proper subset of

|A|→|B| = {t∈Λ | ∀s∈|A| ts ∈ |B|}

unless ts ∗ π ∈ ⊥⊥ ⇒ t ∗ s.π ∈ ⊥⊥

But for every t ∈ |A|→|B| its η-expansion λx.tx ∈ |A→B| and, of

course, we have |A→B| = |A|→|B| whenever ⊥⊥ is also closed under

head reduction, i.e. ⊥⊥∋ p� q implies q ∈ ⊥⊥.

One may even assume that ⊥⊥ is stable w.r.t. the semantic equality

=D induced by the model D. However, there are interesting situations

where one has to go beyond such a framework.
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Classical Realizability (5)

For realizing the Countable Axiom of Choice CAC Krivine introduced

a new language construct χ∗ with the reduction rule

χ∗ ∗ t.π � t ∗ nt.π

where nt is the Church numeral representation of a Gödel number for

t, c.f. quote(t) of LISP.

NB quote is in conflict with β-reduction!

NB The term χ∗ realizes Krivine’s Axiom

∃S∀x
(

∀nIntZ(x, Sx,n) → ∀XZ(x,X)
)

which entails CAC.
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Axiomatic Classical Realizability (1)
Instead of the usual pca’s we now consider the following axiomatic

framework which we call Abstract Krivine Structure (AKS) :

• a set Λ of “terms” together with a binary application operation

(written as juxtaposition) and distinguished elements K, S, cc ∈ Λ

• a set Π of “stacks” together with a push operation (push) from

Λ×Π to Π (written t.π) and a unary operation k : Π → Λ

• a subset ⊥⊥ of Λ×Π which is saturated in the sense that

(S1) ts ⋆ π ∈⊥⊥ whenever t ⋆ s.π ∈⊥⊥

(S2) K ⋆ t.s.π ∈⊥⊥ whenever t ⋆ π ∈⊥⊥

(S3) S ⋆ t.s.u.π ∈⊥⊥ whenever tu(su) ⋆ π ∈⊥⊥

(S4) cc ⋆ t.π ∈⊥⊥ whenever t ⋆ kπ.π in ⊥⊥

(S5) kπ ⋆ t.π′ ∈⊥⊥ whenever t ⋆ π ∈⊥⊥.
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Axiomatic Classical Realizability (2)

A proposition A is given by a subset ||A|| ⊆ Π. Its set of realizers is

|A| = ||A||⊥ = {t ∈ Λ | ∀π ∈ ||A|| t ⋆ π ∈ ⊥⊥}

and logic is interpreted as follows

||R(~t)|| = R
(q
~t
y)

||A→B|| = |A|.||B|| = {t.π | t ∈ |A|, π ∈ ||B||}

||∀xA(x)|| =
⋃

a∈M

||A(a)||

||∀XA(X)|| =
⋃

R∈P(Π)M
n

||A(R)||

where M is the underlying set of the model.
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Axiomatic Classical Realizability (3)

One could define propositions more restrictively as

P⊥⊥(Π) = {X ∈ P(Π) | X = X⊥⊥}

without changing the meaning of |A| for closed formulas.

Notice that P⊥⊥(Π) is in 1-1-correspondence with

P⊥⊥(Λ) = {X ∈ P(Λ) | X = X⊥⊥}

via (−)⊥.

In case (S1) holds as an equivalence, i.e. we have

(SS1) ts ⋆ π in ⊥⊥ iff t ⋆ s.π in ⊥⊥

one may define | · | directly as
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Axiomatic Class Realiz. (4)

|R(~t)| = R
(q
~t
y)

|A→B| = |A|→|B| = {t ∈ L | ∀s ∈ |A| ts ∈ |B|}

|∀xA(x)| =
⋂

a∈M

|A(a)|

|∀XA(X)| =
⋂

R∈P⊥⊥(Λ)
Mn

|A(R)|

and it coincides with the previous definition for closed formulas.

Abstract Krivine structures validating the reasonable assumption (SS1)

are called strong abstract Krivine structures (SAKSs).
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Axiomatic Class Realiz. (5)

Obviously, for A,B ∈ P⊥⊥(Λ) we have

|A→B| ⊆ |A|→|B| = {t ∈ Λ | ∀s ∈ |A| ts ∈ |B|}

But for any t ∈ |A| → |B| we have

Et ∈ |A→B|

where E = S(KI) with I = SKK.
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Axiomatic Class Realiz. (5a)

Proof. One easily checks that

I ∗ t.π ∈ ⊥⊥ ⇐ t ∗ π ∈ ⊥⊥

and thus we have

Et ∗ s.π ∈ ⊥⊥ ⇐ ts ∗ π ∈ ⊥⊥

because

Et ∗ s.π ∈ ⊥⊥ ⇐ KIs(ts).π ∈ ⊥⊥ ⇐ I ∗ ts.π ∈ ⊥⊥ ⇐ ts ∗ π ∈ ⊥⊥

Then for s ∈ |A|, π ∈ ||B|| we have Et ∗ s.π ∈ ⊥⊥

because ts ∗ π ∈ ⊥⊥ since t ∈ |A| → |B|.

Thus Et ∈ |A→B| as desired.
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Forcing as an Instance (1)

Let P a ∧-semilattice (with top element 1) and D a downward closed

subset of P. Such a situation gives rise to a SAKS where

- Λ = Π = P

- application and the push operation are interpreted as ∧ in P

- k is the identity on P and constants K, S and cc are interpreted as 1

- ⊥⊥ = {(p, q) ∈ P
2 | p ∧ q ∈ D}.

We write p ⊥ q for p ∗ q ∈ ⊥⊥, i.e. p ∧ q ∈ D.

NB This is not a pca since application ∧ is commutative and asso-

ciative and thus a = kab = kba = b.
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Forcing as an Instance (2)

For X ⊆ P we have

X⊥ = {p ∈ P | ∀q ∈ X p ∧ q ∈ D}

which is downward closed and contains D as a subset.

For such X we have

X⊥ = {p ∈ P | ∀q ≤ p (q ∈ X ⇒ q ∈ D)}

Thus, for arbitrary X ⊆ P we have

X⊥⊥ = {p ∈ P | ∀q ≤ p (q ∈ X⊥ ⇒ q ∈ D)}

= {p ∈ P | ∀q ≤ p (q /∈ D ⇒ q /∈ X⊥)}

= {p ∈ P | ∀q ≤ p (q /∈ D ⇒ ∃r ≤ q (r /∈ D ∧ r ∈ X))}

as familiar from Cohen forcing.
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Forcing as an Instance (3)

Accordingly, we define propositions as A ⊆ P with A = A⊥⊥.

In case D = {0} then P
↑ = P \ {0} is a conditional ∧-semilattice and

propositions are in 1-1-correspondence with regular subsets A of P
↑,

i.e. p ∈ A whenever ∀q≤p ∃r≤q r ∈ A, as in Cohen forcing over P
↑.

For propositions A,B,C we have

A→ B : = {p ∈ P | ∀q ∈ A p ∧ q ∈ B} = {p ∈ P | ∀q ≤ p (q ∈ A⇒ q ∈ B)}

and thus C ⊆ A→ B iff C ∩A ⊆ B

The least proposition ⊥ is given by P
⊥ = D and thus we have

¬A ≡ A→ ⊥ = {p ∈ P | ∀q ∈ A p ∧ q ∈ D} = A⊥
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Characterization of Forcing

One can show that a SAKS arises (up to iso) from a downward closed

subset of a ∧-semilattice iff

(1) k : Π → Λ is a bijection

(2) application is associative, commutative and idempotent and has

a neutral element 1

(3) application coincides with the push operation (when identifying Λ

and Π via k).

Remark The downset D = {t ∈ Λ | (t,1) ∈ ⊥⊥} (where 1 in Π via k).

In this sense forcing = commutative realizability
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AKS’s as total OPCAs (1)

Hofstra and van Oosten’s notion of order partial combinatory alge-

bra (OPCA) generalizes both PCAs and complete Heyting algebras

(cHa’s).

We will show how every AKS can be organised into a total OPCA.

A total OPCA is a triple (A,≤, •) where ≤ is a partial order on A and

• is a binary monotone operation on A such that for some k, s ∈ A

k • a • b ≤ a s • a • b • c ≤ a • c • (b • c)

for all a, b, c ∈ A.
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AKS’s as total OPCAs (2)

With every AKS we may associate the total OPCA whose underlying

set is P⊥⊥(Π), where a ≤ b iff a ⊇ b and application is defined as

a • b = {π ∈ P | ∀t ∈ |a|, s ∈ |b| t ∗ s.π ∈⊥⊥}⊥⊥

where |a| = a⊥. Obviously a ≤ b iff |a| ⊆ |b|.

NB In case of a SAKS we have

|a • b| = {ts | t ∈ |a|, s ∈ |b|}⊥⊥

Lemma 1

From a ≤ b→ c it follows that a • b ≤ c.

Lemma 2

If t ∈ |a| and s ∈ |b| then ts ∈ |a • b|.
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(P⊥⊥(Π),⊃, •) is a total OPCA

One easily shows that {K}⊥ab ≤ a.

For showing that {S}⊥ • a • b • c ≤ a • c • (b • c) it suffices by (multiple

applications of) Lemma 1 to show that s ≤ a→ b→ c→ (a•c•(b•c)).

It suffices to show that

S ∈ |a→ b→ c→ (a • c • (b • c))|

For this purpose suppose t ∈ |a|, s ∈ |b|, u ∈ |c| and π ∈ a • c • (b • c).

Applying Lemma 2 iteratively we have tu(su) ∈ |a • c • (b • c)| and thus

tu(su) ∗ π ∈ ⊥⊥. Since ⊥⊥ is closed under expansion it follows that

S ∗ t.s.u.π ∈ ⊥⊥ as desired.
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AKS’s as total OPCAs (3)
A filter in a total OPCA (A,≤, •) is a subset Φ of A closed under •

and containing (some choice of) k and s (for A).

(1) In case of a SAKS induced by a downclosed set D in a ∧-semilattice

P a natural choice of a filter is {P}.

(2) Φ = {a ∈ P⊥⊥(Π) | |a| =/ ∅} is a filter on P⊥⊥(Π) by Lemma 2.

With a filtered opca one may associate a Set-indexed preorder [−,A]Φ

• [I,A]Φ = A
I is the set of all functions from set I to A

• endowed with the preorder ϕ ⊢I ψ iff ∃a ∈ Φ∀i ∈ I a •ϕi ≤ ψi

• for u : J → I the reindexing map [u,A]Φ = u∗ : AI → A
J sends ϕ

to u∗ϕ = (ϕu(j))j∈J.
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Krivine Tripos (1)
In case A arises from an AKS and Φ = {a ∈ P⊥⊥(Π) | |a| =/ ∅} the

indexed preorder [−,A]Φ is a tripos, i.e.

• all [I,A]Φ are pre-Heyting-algebras whose structure is preserved

by reindexing

• for every u : J → I in Set the reindexing map u∗ has a left adjoint

∃u and a right adjoint ∀u satisfying (Beck-)Chevalley condition

• there is a generic predicate T ∈ [Σ,A]Φ, namely Σ = A and T =

idA, of which all predicates arise by reindexing since ϕ = ϕ∗ idA

It coincides with Krivine’s Classical Realizability since for ϕ,ψ ∈ [M,A]Φ

ϕ ⊢M ψ iff ∃t ∈ Λ∀i ∈M t ∈ |ϕi → ψi|
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Krivine Tripos (2)

Proof :

Suppose ϕ ⊢M ψ. Then there exists a ∈ Φ such that ∀i ∈M a•ϕi ≤ ψi.

For all i ∈M , u ∈ |a| and v ∈ |ϕi| we have uv ∈ |a•ϕi| ⊆ |ψi|. Let u ∈ |a|.

Then for all i ∈ M we have u ∈ |ϕi| → |ψi| and thus Eu ∈ |ϕi → ψi|.

Thus t = Eu does the job.

Suppose there exists a t ∈ Λ such that ∀i ∈ M t ∈ |ϕi → ψi|. Then we

have ∀i ∈M {t}⊥⊥ ⊆ |ϕi → ψi| Thus for a = {t}⊥ ∈ Φ we have

∀i ∈M∀u ∈ |a|∀v ∈ |ϕi|∀π ∈ ψi u ∗ v.π ∈⊥⊥

from which it follows that

∀i ∈M a • ϕi ≤ ψi

Thus ϕ ⊢M ψ.
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Forcing in Classical Realizability (1)

Let P be a meet-semilattice. We write pq as a shorthand for p ∧ q.

Let C be an upward closed subset of P .

With every X ⊆ P one associates∗

|X| = {p ∈ P | ∀q (C(pq) → X(q))}

Such subsets of P are called propositions. We say

p forces X iff p ∈ |X|

and thus

p forces X → Y iff ∀q (|X|(q) → |Y |(pq))

p forces ∀i ∈ I.Xi iff ∀i ∈ I. p forces Xi

∗Traditionally, one would associate with X the set X⊥ = {p ∈ P | ∀q ∈ X ¬C(pq)}.
But, classically, we have |X| = (P \X)⊥.
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Forcing in Classical Realizability (2)

Apparently, we have

p forces X → Y iff

∀q (|X|(q) → ∀r(C(pqr) → Y (r))) iff

∀q, r (C(pqr) → |X|(q) → Y (r)) iff

p ∈
∣

∣

∣{qr | |X|(q) → Y (r)}
∣

∣

∣

p forces ∀i ∈ I.Xi iff p ∈
∣

∣

∣

⋂

i∈I Xi
∣

∣

∣
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Forcing in Classical Realizability (3)

Actually, in most cases P is not a meet-semilattice but it is so “from

point of view” of C ⊆ P , i.e. we have a binary operation on P and an

element 1 ∈ P such that

C(p(qr)) ↔ C((pq)r)

C(pq) ↔ C(qp)

C(p) ↔ C(pp)

C(1p) ↔ C(p)
(

C(p) ↔ C(q)
)

→
(

C(pr) ↔ C(qr)
)

together with

C(pq) → C(p)

expressing that C is upward closed.
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Forcing in Classical Realizability (3a)

On P we may define a congruence

p ≃ q ≡ ∀r. (C(rp) ↔ C(rq))

w.r.t. which P is a commutative idempotent monoid, i.e. a meet-

semilattice, of which C is an upward closed subset.
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Forcing in Classical Realizability (4)

We have seen that p forces X → Y iff ∀q, r (C(pqr) → |X|(q) → Y (r))

Thus a term t realizes p forces X → Y iff

(†) ∀q, r∀u∈C(pqr)∀s∈|X|(q)∀π∈Y (r) t ∗ u.s.π ∈⊥⊥

Thus, one might want to define when a pair (t, p) realizes X → Y .

For this purpose one has to find an AKS structure whose term part

is Λ× P . One defines application and push as follows

(t, p)(s, q) = (ts, pq) (t, p).(π, q) = (t.π, pq)

Moreover, from ⊥⊥ one defines a new ⊥⊥⊥ as

(t, p) ∗ (π, q) ∈⊥⊥⊥ iff ∀u ∈ C(pq) t ∗ πu ∈⊥⊥

where πu is obtained from π by inserting u at its bottom.
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Forcing in Classical Realizability (4a)

Thus, we have

(t, p) ∈ |X → Y |

iff

∀(s, q) ∈ |X|∀(r, π) ∈ Y (t, p) ∗ (s, q).(π, r) ∈⊥⊥⊥

iff

∀(s, q) ∈ |X|∀(r, π) ∈ Y ∀u ∈ C(pqr) t ∗ s.πu ∈⊥⊥

in accordance with explication (†) of t realizes p forces X → Y as

∀q, r∀u∈C(pqr)∀s∈|X|(q)∀π∈Y (r) t ∗ u.s.π ∈⊥⊥
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Forcing in Classical Realizability (5)

In order to jump back and forth between

t realizes p forces A and (t′, p) ∈ |A|

one needs “read” and “write” constructs in the original AKS, i.e.

command χ and χ′ s.t.

(read) χ ∗ t.πs � t ∗ s.π

(write) χ′ ∗ t.s.π � t ∗ πs

Using these one can transform t into t′ and vice versa.

Krivine concludes from this that for realizing forcing one needs

global memory.
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Generic Set and Ideal (1)

In forcing one usually considers the generic set G which is the pred-

icate on P with G(p) = {p}⊥⊥.

Equivalently one my consider its complement, the generic ideal J

with |J (p)| = {p}⊥, i.e.

J (p) = {q ∈ P | p =/ q}

as q ∈ |J (p)| iff ∀r (C(qr) → p =/ r) iff ¬C(qp).
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Generic Set and Ideal (2)

Obviously p ≃ q iff ∀r (|J (p)|(r) ↔ |J (q)|(r)). More generally, we can

define

p � q ≡ ∀r
(

|J (q)|(r) → |J (p)|(r)
)

i.e. ∀r (C(rp) → C(rq)). This defines a preorder w.r.t. which P gets a

meet-semilattice P with greatest element 1 where pq picks a binary

infimum of p and q.

Equivalently, we may define

||J (p)|| = Π× {p}

since (t, q) ∈ |J (p)| iff ∀π (t, q) ∗ (π, p) ∈⊥⊥⊥ iff ∀u ∈ C(qp)∀π t ∗ πu ∈⊥⊥.
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P(P ) as a cBa

For X ∈ P(P ) define J (X) such that

|J (X)|(q) iff ∀p ∈ X ¬C(qp)

i.e. |J |(X) = X⊥. We may extend � to P(P ) as follows

X � Y ≡ ∀r
(

|J (Y )|(r) → |J (X)|(r)
)

Thus X � Y iff Y ⊥ ⊆ X⊥ iff X⊥⊥ ⊆ Y ⊥⊥.

This endows P(P ) with the structure of a complete boolean preorder

denoted by B. Writing E for the classical realizability topos arising

from the original AKS the classical topos arising from the new AKS

is (equivalent to) the topos ShE(B).

Warning B is not an assembly in E as it is uniform. Thus the con-

struction of ShE(B) from E is not induced by an opca morphism.
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