The possible values of critical points between varieties of algebras

P. Gillibert

Univerzita Karlova v Praze *E-mail :* gilliber@karlin.mff.cuni.cz

July 2011

Fix a functor $\Psi : \mathcal{A} \to \mathcal{S}$.

Fix a functor $\Psi : \mathcal{A} \to \mathcal{S}$.

(1) Which objects, up to isomorphism, lie in the range of Ψ ?

Fix a functor $\Psi \colon \mathcal{A} \to \mathcal{S}$.

- (1) Which objects, up to isomorphism, lie in the range of Ψ ?
- (2) Given a lattice P, which P-indexed diagrams are equivalent to $\Psi \circ \vec{A}$ for some $\vec{A} : P \rightarrow A$?

Fix a functor $\Psi \colon \mathcal{A} \to \mathcal{S}$.

- (1) Which objects, up to isomorphism, lie in the range of Ψ ?
- (2) Given a lattice P, which P-indexed diagrams are equivalent to $\Psi \circ \vec{A}$ for some $\vec{A} : P \rightarrow A$?

• A Ψ -*lifting* of $S \in S$ is an object $A \in A$ such that $\Psi(A) \cong S$.

Fix a functor $\Psi \colon \mathcal{A} \to \mathcal{S}$.

- (1) Which objects, up to isomorphism, lie in the range of Ψ ?
- (2) Given a lattice P, which P-indexed diagrams are equivalent to Ψ ∘ Å for some Å: P → A ?
 - A Ψ -*lifting* of $S \in S$ is an object $A \in A$ such that $\Psi(A) \cong S$.
 - A Ψ -*lifting* of a diagram $\vec{S} \colon P \to S$ is a diagram $\vec{A} \colon P \to S$ such that $\Psi \circ \vec{A} \cong \vec{S}$.

Theorem

Assume that :

 every object in S is a directed colimit of finitely presented objects.

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Then every object in S has a Ψ -lifting in A.

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Then every object in S has a Ψ -lifting in A.

Idea : Let $S \in S$,

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Then every object in S has a Ψ -lifting in A.

Idea : Let $S \in S$, take \vec{S} with $S \cong \varinjlim \vec{S}$,

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Then every object in S has a Ψ -lifting in A.

Idea : Let $S \in S$, take \vec{S} with $S \cong \varinjlim \vec{S}$, take \vec{A} a Ψ -lifting of \vec{S} .

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Then every object in S has a Ψ -lifting in A.

Idea : Let $S \in S$, take \vec{S} with $S \cong \varinjlim \vec{S}$, take \vec{A} a Ψ -lifting of \vec{S} . Set $A = \varinjlim \vec{A}$.

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Then every object in S has a Ψ -lifting in A.

Idea : Let $S \in S$, take \vec{S} with $S \cong \varinjlim \vec{S}$, take \vec{A} a Ψ -lifting of \vec{S} . Set $A = \varinjlim \vec{A}$. Then :

 $\Psi(A) = \Psi(\varinjlim \vec{A})$

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Then every object in S has a Ψ -lifting in A.

Idea : Let $S \in S$, take \vec{S} with $S \cong \varinjlim \vec{S}$, take \vec{A} a Ψ -lifting of \vec{S} . Set $A = \varinjlim \vec{A}$. Then :

$$\Psi(A) = \Psi(\varinjlim \vec{A}) \cong \varinjlim (\Psi \circ \vec{A})$$

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Then every object in S has a Ψ -lifting in A.

Idea : Let $S \in S$, take \vec{S} with $S \cong \varinjlim \vec{S}$, take \vec{A} a Ψ -lifting of \vec{S} . Set $A = \varinjlim \vec{A}$. Then :

$$\Psi(A) = \Psi(\varinjlim \vec{A}) \cong \varinjlim (\Psi \circ \vec{A}) \cong \varinjlim (\vec{S})$$

Theorem

Assume that :

- every object in S is a directed colimit of finitely presented objects.
- *A* has directed colimits and Ψ preserves directed colimits.
- every lattice-indexed diagram of finitely presented objects in S has a Ψ-lifting in A.

Then every object in S has a Ψ -lifting in A.

Idea : Let $S \in S$, take \vec{S} with $S \cong \varinjlim \vec{S}$, take \vec{A} a Ψ -lifting of \vec{S} . Set $A = \varinjlim \vec{A}$. Then :

$$\Psi(A) = \Psi(\varinjlim \vec{A}) \cong \varinjlim (\Psi \circ \vec{A}) \cong \varinjlim (\vec{S}) \cong S$$

• Let $\Psi \colon \mathcal{A} \to \mathcal{S}$ is a "nice" functor between "nice" categories.

Let Ψ: A → S is a "nice" functor between "nice" categories.
Let P be a lattice, let S be a P-indexed diagram in S.

- Let $\Psi \colon \mathcal{A} \to \mathcal{S}$ is a "nice" functor between "nice" categories.
- Let *P* be a lattice, let \vec{S} be a *P*-indexed diagram in *S*.
- We construct an object S in S, called a *condensate* of \vec{S} .

- Let $\Psi \colon \mathcal{A} \to \mathcal{S}$ is a "nice" functor between "nice" categories.
- Let *P* be a lattice, let \vec{S} be a *P*-indexed diagram in *S*.
- We construct an object S in S, called a *condensate* of \vec{S} .

Theorem (G. and Wehrung, 2010)

Assume there is no diagram $\vec{A} \colon P \to A$, with $\Psi \circ \vec{A} \cong \vec{S}$.

- Let $\Psi \colon \mathcal{A} \to \mathcal{S}$ is a "nice" functor between "nice" categories.
- Let *P* be a lattice, let \vec{S} be a *P*-indexed diagram in *S*.
- We construct an object S in S, called a *condensate* of \vec{S} .

Theorem (G. and Wehrung, 2010)

Assume there is no diagram $\vec{A} \colon P \to A$, with $\Psi \circ \vec{A} \cong \vec{S}$. Then there is no object $A \in A$ with $\Psi(A) \cong S$.

- Let $\Psi \colon \mathcal{A} \to \mathcal{S}$ is a "nice" functor between "nice" categories.
- Let *P* be a lattice, let \vec{S} be a *P*-indexed diagram in *S*.
- We construct an object S in S, called a *condensate* of \vec{S} .

Theorem (G. and Wehrung, 2010)

- Let $\Psi \colon \mathcal{A} \to \mathcal{S}$ is a "nice" functor between "nice" categories.
- Let *P* be a lattice, let \vec{S} be a *P*-indexed diagram in *S*.
- We construct an object S in S, called a *condensate* of \vec{S} .

Theorem (G. and Wehrung, 2010)

Assume there is no diagram $\vec{A} \colon P \to A$, with $\Psi \circ \vec{A} \cong \vec{S}$. Then there is no object $A \in A$ with $\Psi(A) \cong S$. Moreover, if our categories have cardinality-like notion, the cardinality of S is not too large.

• Assume that all objects of \vec{S} are κ -presented.

- Let $\Psi \colon \mathcal{A} \to \mathcal{S}$ is a "nice" functor between "nice" categories.
- Let *P* be a lattice, let \vec{S} be a *P*-indexed diagram in *S*.
- We construct an object S in S, called a *condensate* of \vec{S} .

Theorem (G. and Wehrung, 2010)

- Assume that all objects of \vec{S} are κ -presented.
- There is a cardinal κ', depending only on an infinite combinatorial statement related to P and κ, such that we can choose S of cardinality κ.

- Let $\Psi \colon \mathcal{A} \to \mathcal{S}$ is a "nice" functor between "nice" categories.
- Let *P* be a lattice, let \vec{S} be a *P*-indexed diagram in *S*.
- We construct an object S in S, called a *condensate* of \vec{S} .

Theorem (G. and Wehrung, 2010)

- Assume that all objects of \vec{S} are κ -presented.
- There is a cardinal κ', depending only on an infinite combinatorial statement related to P and κ, such that we can choose S of cardinality κ.
- If *P* is finite, there is an integer *n*, such that $\kappa' = \kappa^{+n}$.

- Let $\Psi \colon \mathcal{A} \to \mathcal{S}$ is a "nice" functor between "nice" categories.
- Let *P* be a lattice, let \vec{S} be a *P*-indexed diagram in *S*.
- We construct an object S in S, called a *condensate* of \vec{S} .

Theorem (G. and Wehrung, 2010)

- Assume that all objects of \vec{S} are κ -presented.
- There is a cardinal κ', depending only on an infinite combinatorial statement related to P and κ, such that we can choose S of cardinality κ.
- If *P* is finite, there is an integer *n*, such that $\kappa' = \kappa^{+n}$. This follows from a combinatorial theorem of Kuratowski.

• Varieties of algebras are "nice" categories.

- Varieties of algebras are "nice" categories.
- Denote Con_c the functor that map an algebra to its semilattice of finitely generated congruences.

- Varieties of algebras are "nice" categories.
- Denote Con_c the functor that map an algebra to its semilattice of finitely generated congruences. Then Con_c is a "nice" functor.

- Varieties of algebras are "nice" categories.
- Denote Con_c the functor that map an algebra to its semilattice of finitely generated congruences. Then Con_c is a "nice" functor.
- Denote by *V* the functor that map a ring to its non-stable *K*-theory.

- Varieties of algebras are "nice" categories.
- Denote Con_c the functor that map an algebra to its semilattice of finitely generated congruences. Then Con_c is a "nice" functor.
- Denote by *V* the functor that map a ring to its non-stable *K*-theory. Then *V* is a "nice" functor.

- Varieties of algebras are "nice" categories.
- Denote Con_c the functor that map an algebra to its semilattice of finitely generated congruences. Then Con_c is a "nice" functor.
- Denote by *V* the functor that map a ring to its non-stable *K*-theory. Then *V* is a "nice" functor.
- The theorem might be applied in case where there is no apparent functor.

- Varieties of algebras are "nice" categories.
- Denote Con_c the functor that map an algebra to its semilattice of finitely generated congruences. Then Con_c is a "nice" functor.
- Denote by *V* the functor that map a ring to its non-stable *K*-theory. Then *V* is a "nice" functor.
- The theorem might be applied in case where there is no apparent functor.
- The categories of lattices with a congruence-preserving extension is "nice".

- Varieties of algebras are "nice" categories.
- Denote Con_c the functor that map an algebra to its semilattice of finitely generated congruences. Then Con_c is a "nice" functor.
- Denote by *V* the functor that map a ring to its non-stable *K*-theory. Then *V* is a "nice" functor.
- The theorem might be applied in case where there is no apparent functor.
- The categories of lattices with a congruence-preserving extension is "nice".
- The forgetful functor (that forget the congruence-preserving extension) is "nice".
"Nice" categories and functors

- Varieties of algebras are "nice" categories.
- Denote Con_c the functor that map an algebra to its semilattice of finitely generated congruences. Then Con_c is a "nice" functor.
- Denote by *V* the functor that map a ring to its non-stable *K*-theory. Then *V* is a "nice" functor.
- The theorem might be applied in case where there is no apparent functor.
- The categories of lattices with a congruence-preserving extension is "nice".
- The forgetful functor (that forget the congruence-preserving extension) is "nice".
- This theorem allows to find a lattice, of cardinality ℵ₁, with no congruence-preserving extension.

"Nice" categories and functors

- Varieties of algebras are "nice" categories.
- Denote Con_c the functor that map an algebra to its semilattice of finitely generated congruences. Then Con_c is a "nice" functor.
- Denote by *V* the functor that map a ring to its non-stable *K*-theory. Then *V* is a "nice" functor.
- The theorem might be applied in case where there is no apparent functor.
- The categories of lattices with a congruence-preserving extension is "nice".
- The forgetful functor (that forget the congruence-preserving extension) is "nice".
- This theorem allows to find a lattice, of cardinality ℵ₁, with no congruence-preserving extension.
- We can also compare the ranges of two functors Φ: A → S and Ψ: B → S.

General problem

How it work?

General problem

- How it work?
- Guess which objects are in the range of Ψ .

General problem

- How it work?
- Guess which objects are in the range of Ψ. Change S to the corresponding category.

- How it work?
- Guess which objects are in the range of Ψ. Change S to the corresponding category.
- The statements we want to study are now :

- How it work?
- Guess which objects are in the range of Ψ. Change S to the corresponding category.
- The statements we want to study are now :

(1) Each object in S has a Ψ -lifting in A.

- How it work?
- Guess which objects are in the range of Ψ. Change S to the corresponding category.
- The statements we want to study are now :

- (1) Each object in S has a Ψ -lifting in A.
- (2) For each lattice P, each P-indexed diagram S in S has a Ψ-lifting in A.

- How it work?
- Guess which objects are in the range of Ψ. Change S to the corresponding category.
- The statements we want to study are now :

- (1) Each object in S has a Ψ -lifting in A.
- (2) For each lattice P, each P-indexed diagram S in S has a Ψ-lifting in A.
 - In order to prove (1), we only need to prove (2) for diagrams of small objects.

- How it work?
- Guess which objects are in the range of Ψ. Change S to the corresponding category.
- The statements we want to study are now :

- (1) Each object in S has a Ψ -lifting in A.
- (2) For each lattice P, each P-indexed diagram S in S has a Ψ-lifting in A.
 - In order to prove (1), we only need to prove (2) for diagrams of small objects.
 - Or we prove (2) fails, and deduce the guess is wrong (i.e. (1) fails).

• Denote by A the functor of 0, 1-chains. Denote by S the category of Boolean algebras.

- Denote by A the functor of 0, 1-chains. Denote by S the category of Boolean algebras.
- Denote by Ψ: A → S the category that map a chain C to the Boolean algebra generated by C.

- Denote by A the functor of 0, 1-chains. Denote by S the category of Boolean algebras.
- Denote by Ψ: A → S the category that map a chain C to the Boolean algebra generated by C.
- A (1) Finite and countable Boolean algebras are in the range of Ψ .

- Denote by A the functor of 0, 1-chains. Denote by S the category of Boolean algebras.
- Denote by Ψ: A → S the category that map a chain C to the Boolean algebra generated by C.
- A (1) Finite and countable Boolean algebras are in the range of Ψ .
 - (2) But there is a Boolean algebra of cardinality ℵ₁ that is not in the range of Ψ.

- Denote by A the functor of 0, 1-chains. Denote by S the category of Boolean algebras.
- Denote by Ψ: A → S the category that map a chain C to the Boolean algebra generated by C.
- A (1) Finite and countable Boolean algebras are in the range of Ψ .
 - (2) But there is a Boolean algebra of cardinality ℵ₁ that is not in the range of Ψ.
- B (1) Diagrams of finite Boolean algebras, indexed by ω , are in the range of Ψ .

- Denote by A the functor of 0, 1-chains. Denote by S the category of Boolean algebras.
- Denote by Ψ: A → S the category that map a chain C to the Boolean algebra generated by C.
- A (1) Finite and countable Boolean algebras are in the range of Ψ .
 - (2) But there is a Boolean algebra of cardinality \aleph_1 that is not in the range of Ψ .
- B (1) Diagrams of finite Boolean algebras, indexed by ω , are in the range of Ψ .
 - (2) But there is a diagram of finite Boolean algebras, indexed by a square, that is not in the range of Ψ.

- Denote by A the functor of 0, 1-chains. Denote by S the category of Boolean algebras.
- Denote by Ψ: A → S the category that map a chain C to the Boolean algebra generated by C.
- A (1) Finite and countable Boolean algebras are in the range of Ψ .
 - (2) But there is a Boolean algebra of cardinality ℵ₁ that is not in the range of Ψ.
- B (1) Diagrams of finite Boolean algebras, indexed by ω , are in the range of Ψ .
 - (2) But there is a diagram of finite Boolean algebras, indexed by a square, that is not in the range of Ψ .
- A (1) follows from B (1) and A (2) follows from B (2).

 We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.
- Let C_0 be a maximal chain of S_0 .

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.
- Let C_0 be a maximal chain of S_0 .
- Let C_1 be a maximal chain of S_1 that contains $\sigma_0^1(C_0)$.

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.
- Let C_0 be a maximal chain of S_0 .
- Let C_1 be a maximal chain of S_1 that contains $\sigma_0^1(C_0)$.
- Let C_2 be a maximal chain of S_2 that contains $\sigma_1^2(C_1)$.

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.
- Let C_0 be a maximal chain of S_0 .
- Let C_1 be a maximal chain of S_1 that contains $\sigma_0^1(C_0)$.
- Let C_2 be a maximal chain of S_2 that contains $\sigma_1^2(C_1)$.
- and so on...

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.
- Let C_0 be a maximal chain of S_0 .
- Let C_1 be a maximal chain of S_1 that contains $\sigma_0^1(C_0)$.
- Let C_2 be a maximal chain of S_2 that contains $\sigma_1^2(C_1)$.
- and so on...
- We obtain a diagram \vec{C} with $\Psi \circ \vec{C} \cong \vec{S}$, as wanted.

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.
- Let C_0 be a maximal chain of S_0 .
- Let C_1 be a maximal chain of S_1 that contains $\sigma_0^1(C_0)$.
- Let C_2 be a maximal chain of S_2 that contains $\sigma_1^2(C_1)$.
- and so on...
- We obtain a diagram \vec{C} with $\Psi \circ \vec{C} \cong \vec{S}$, as wanted.
- We deduce A (1) : Finite and countable Boolean algebras are in the range of Ψ.

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.
- Let C_0 be a maximal chain of S_0 .
- Let C_1 be a maximal chain of S_1 that contains $\sigma_0^1(C_0)$.
- Let C_2 be a maximal chain of S_2 that contains $\sigma_1^2(C_1)$.
- and so on...
- We obtain a diagram \vec{C} with $\Psi \circ \vec{C} \cong \vec{S}$, as wanted.
- We deduce A (1) : Finite and countable Boolean algebras are in the range of Ψ.
- Let *B* be a countable Boolean algebra.

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.
- Let C_0 be a maximal chain of S_0 .
- Let C_1 be a maximal chain of S_1 that contains $\sigma_0^1(C_0)$.
- Let C_2 be a maximal chain of S_2 that contains $\sigma_1^2(C_1)$.
- and so on...
- We obtain a diagram \vec{C} with $\Psi \circ \vec{C} \cong \vec{S}$, as wanted.
- We deduce A (1) : Finite and countable Boolean algebras are in the range of Ψ.
- Let *B* be a countable Boolean algebra.
- Write $B = \bigcup_{n \in \omega} S_n$ where $S_n \subseteq S_m$ are finite Boolean algebras.

- We prove B (1) : Diagrams of finite Boolean algebras, indexed by ω, are in the range of Ψ.
- Let $\vec{S} = (S_n, \sigma_n^m \mid m \le n \text{ in } \omega)$ be a diagram of finite Boolean algebras.
- Let C_0 be a maximal chain of S_0 .
- Let C_1 be a maximal chain of S_1 that contains $\sigma_0^1(C_0)$.
- Let C_2 be a maximal chain of S_2 that contains $\sigma_1^2(C_1)$.
- and so on...
- We obtain a diagram \vec{C} with $\Psi \circ \vec{C} \cong \vec{S}$, as wanted.
- We deduce A (1) : Finite and countable Boolean algebras are in the range of Ψ.
- Let *B* be a countable Boolean algebra.
- Write $B = \bigcup_{n \in \omega} S_n$ where $S_n \subseteq S_m$ are finite Boolean algebras.
- Let (C_n | n ∈ ω) as before. Then ⋃_{n∈ω} C_n is a chain that generates B.

We prove B (2). Let $X = \{a, b, c, d\}$ be a four elements set. We consider the following diagram of Boolean algebras

• We consider algebras on an arbitrary (finite) similarity type.

- We consider algebras on an arbitrary (finite) similarity type.
- A *variety* of algebras is the class of all algebras that satisfy a given set of identities.

- We consider algebras on an arbitrary (finite) similarity type.
- A *variety* of algebras is the class of all algebras that satisfy a given set of identities.
- For K a class of algebras (with same similarity type), we denote by VarK the smallest variety that contains K.

- We consider algebras on an arbitrary (finite) similarity type.
- A *variety* of algebras is the class of all algebras that satisfy a given set of identities.
- For \mathcal{K} a class of algebras (with same similarity type), we denote by **Var** \mathcal{K} the smallest variety that contains \mathcal{K} .
- A variety is *finitely generated* if it is generated by a finite class of finite algebras.

Given x, y in A, denote by Θ_A(x, y) the smallest congruence of A that identify x and y.

 Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y. Such congruence is called *principal*.

- Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y. Such congruence is called *principal*.
- A congruence is *finitely generated* if it is a finite join of principal congruences.
- Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y. Such congruence is called *principal*.
- A congruence is *finitely generated* if it is a finite join of principal congruences.
- We denote by Con_c A the set of compact (=finitely generated) congruences of A.

- Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y. Such congruence is called *principal*.
- A congruence is *finitely generated* if it is a finite join of principal congruences.
- We denote by Con_c A the set of compact (=finitely generated) congruences of A. It is a semilattice,

- Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y. Such congruence is called *principal*.
- A congruence is *finitely generated* if it is a finite join of principal congruences.
- We denote by Con_c A the set of compact (=finitely generated) congruences of A. It is a semilattice, That is :
 - The smallest congruence of *A*, denoted by **0**_{*A*}, is finitely generated.

- Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y. Such congruence is called *principal*.
- A congruence is *finitely generated* if it is a finite join of principal congruences.
- We denote by Con_c A the set of compact (=finitely generated) congruences of A. It is a semilattice, That is :
 - The smallest congruence of *A*, denoted by **0**_{*A*}, is finitely generated.
 - The join of two finitely generated congruences is finitely generated.

• For $f: A \rightarrow B$ a morphism of algebras. We put :

 $\begin{array}{l} \operatorname{Con}_{\mathsf{c}} f \colon \operatorname{Con}_{\mathsf{c}} A \to \operatorname{Con}_{\mathsf{c}} B \\ \\ \alpha \mapsto \Theta_{B}(\{(f(x), f(y)) \mid (x, y) \in \alpha\}) \end{array}$

• For $f: A \rightarrow B$ a morphism of algebras. We put :

$$\operatorname{Con}_{c} f \colon \operatorname{Con}_{c} A \to \operatorname{Con}_{c} B$$
$$\alpha \mapsto \Theta_{B}(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$$

• Con_c *f* is a morphism of semilattices.

• For $f: A \rightarrow B$ a morphism of algebras. We put :

$$\operatorname{Con}_{c} f \colon \operatorname{Con}_{c} A \to \operatorname{Con}_{c} B$$
$$\alpha \mapsto \Theta_{B}(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$$

- Con_c *f* is a morphism of semilattices.
- Con_c is a functor from any variety of algebras to the variety of semilattices.

• We now only consider Con_c-lifting, we just say lifting.

- We now only consider Con_c-lifting, we just say lifting.
- A *lifting* of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.

- We now only consider Con_c-lifting, we just say lifting.
- A *lifting* of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- The *congruence class* of a variety \mathcal{V} , denoted by Con_c \mathcal{V} , is the class of all semilattices liftable in \mathcal{V} .

- We now only consider Con_c-lifting, we just say lifting.
- A *lifting* of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- The *congruence class* of a variety \mathcal{V} , denoted by Con_c \mathcal{V} , is the class of all semilattices liftable in \mathcal{V} .
- We have a good description of Con_c V for very few varieties of algebras.

- We now only consider Con_c-lifting, we just say lifting.
- A *lifting* of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- The *congruence class* of a variety \mathcal{V} , denoted by Con_c \mathcal{V} , is the class of all semilattices liftable in \mathcal{V} .
- We have a good description of Con_c V for very few varieties of algebras.
- We denote by D the variety of all distributive lattices, then Con_c D is the class of all generalized Boolean algebras.

• We denote by \mathcal{L} the variety of all lattices.

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.
- Every finite distributive semilattice belongs to Con_c L (Dilworth ≈1940, Grätzer and Schmidt 1962).

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.
- Every finite distributive semilattice belongs to Con_c L (Dilworth ≈1940, Grätzer and Schmidt 1962).
- Every distributive semilattice of cardinality at most ℵ₁ belongs to Con_c L (Huhn 1985).

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.
- Every finite distributive semilattice belongs to Con_c L (Dilworth ≈1940, Grätzer and Schmidt 1962).
- Every distributive semilattice of cardinality at most ℵ₁ belongs to Con_c L (Huhn 1985).
- There exists a distributive semilattice of cardinality ℵ_{ω+1} that does not belong to Con_c ℒ (Wehrung 2007).

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.
- Every finite distributive semilattice belongs to Con_c L (Dilworth ≈1940, Grätzer and Schmidt 1962).
- Every distributive semilattice of cardinality at most ℵ₁ belongs to Con_c L (Huhn 1985).
- There exists a distributive semilattice of cardinality ℵ_{ω+1} that does not belong to Con_c ℒ (Wehrung 2007).
- There exists a distributive semilattice of cardinality ℵ₂ that does not belong to Con_c L (Růžička 2008).

• Given varieties of algebras \mathcal{V} and \mathcal{W} , in which case do we have $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$?

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

Denote by M_n the variety of lattices generated by M_n .

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

crit(M₃; D) = ℵ₀, where D is the variety of all distributive lattices.

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

- crit(M₃; D) = ℵ₀, where D is the variety of all distributive lattices.
- crit(\mathcal{M}_m ; \mathcal{M}_n) = \aleph_2 , for all $m > n \ge 3$ (Ploščica, 2003)

 The following results are due to Růžička, Tůma, and Wehrung (2007).

- The following results are due to Růžička, Tůma, and Wehrung (2007).
- Each distributive semilattice of cardinality ≤ ℵ₁ is liftable with a group.

- The following results are due to Růžička, Tůma, and Wehrung (2007).
- Each distributive semilattice of cardinality ≤ ℵ₁ is liftable with a group.
- Let *F* be the lattice freely generate by \aleph_2 elements.

- The following results are due to Růžička, Tůma, and Wehrung (2007).
- Each distributive semilattice of cardinality ≤ ℵ₁ is liftable with a group.
- Let *F* be the lattice freely generate by \aleph_2 elements.
- Then Con_c *F* is not liftable with any congruence-permutable algebras.

- The following results are due to Růžička, Tůma, and Wehrung (2007).
- Each distributive semilattice of cardinality ≤ ℵ₁ is liftable with a group.
- Let *F* be the lattice freely generate by \aleph_2 elements.
- Then Con_c *F* is not liftable with any congruence-permutable algebras.
- In particular :

 $crit(lattices; groups) = \aleph_2$

- The following results are due to Růžička, Tůma, and Wehrung (2007).
- Each distributive semilattice of cardinality ≤ ℵ₁ is liftable with a group.
- Let *F* be the lattice freely generate by \aleph_2 elements.
- Then Con_c *F* is not liftable with any congruence-permutable algebras.
- In particular :

 $crit(lattices; groups) = \aleph_2$

 We have M₃ ≅ Con((ℤ/2ℤ)²) and M₃ is not distributive. Hence :

- The following results are due to Růžička, Tůma, and Wehrung (2007).
- Each distributive semilattice of cardinality ≤ ℵ₁ is liftable with a group.
- Let *F* be the lattice freely generate by \aleph_2 elements.
- Then Con_c *F* is not liftable with any congruence-permutable algebras.
- In particular :

 $crit(lattices; groups) = \aleph_2$

 We have M₃ ≅ Con((ℤ/2ℤ)²) and M₃ is not distributive. Hence :

crit(groups; lattices) = card $M_3 = 5$

• A *majority algebra* is an algebra *M* with a ternary operation *m* satisfying the identities

$$m(x,x,y)=m(x,y,x)=m(y,x,x)=x.$$

• A *majority algebra* is an algebra *M* with a ternary operation *m* satisfying the identities

$$m(x,x,y)=m(x,y,x)=m(y,x,x)=x.$$

 Ploščica, using a method introduced by Wehrung to solve CLP, and a method by Růžička to improve the result, prove that :

• A *majority algebra* is an algebra *M* with a ternary operation *m* satisfying the identities

$$m(x,x,y)=m(x,y,x)=m(y,x,x)=x.$$

 Ploščica, using a method introduced by Wehrung to solve CLP, and a method by Růžička to improve the result, prove that :

crit(majority algebras; lattices) = \aleph_2 .

• A *majority algebra* is an algebra *M* with a ternary operation *m* satisfying the identities

$$m(x,x,y)=m(x,y,x)=m(y,x,x)=x.$$

 Ploščica, using a method introduced by Wehrung to solve CLP, and a method by Růžička to improve the result, prove that :

crit(majority algebras; lattices) = \aleph_2 .

 However each lattice can be viewed as a majority algebras. It follows :

 $\operatorname{crit}(\operatorname{lattices};\operatorname{majority} \operatorname{algebras}) = \infty$.
Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

• Put $S = 2^2$, put T = 2, denote $\phi \colon S \to T$, $(\alpha, \beta) \mapsto \alpha \lor \beta$.

• The inclusion $f: \{0, a, 1\} \rightarrow M_3$ is a lifting of ϕ .

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

• Put $S = 2^2$, put T = 2, denote $\phi \colon S \to T$, $(\alpha, \beta) \mapsto \alpha \lor \beta$.

- The inclusion $f: \{0, a, 1\} \rightarrow M_3$ is a lifting of ϕ .
- ϕ has no lifting in \mathcal{N}_5 .

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

- Put $S = 2^2$, put T = 2, denote $\phi \colon S \to T$, $(\alpha, \beta) \mapsto \alpha \lor \beta$.
- The inclusion $f: \{0, a, 1\} \rightarrow M_3$ is a lifting of ϕ .
- ϕ has no lifting in \mathcal{N}_5 .
- The "diagram" φ is indexed by 2, the corresponding combinatorial statement is simple.

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

- Put $S = 2^2$, put T = 2, denote $\phi \colon S \to T$, $(\alpha, \beta) \mapsto \alpha \lor \beta$.
- The inclusion $f: \{0, a, 1\} \rightarrow M_3$ is a lifting of ϕ .
- ϕ has no lifting in \mathcal{N}_5 .
- The "diagram" φ is indexed by 2, the corresponding combinatorial statement is simple. So crit(M₃; N₅) = ℵ₀.

• A variety W of algebras is *strongly congruence-proper* if, for all finite semilattice *S*,

 A variety W of algebras is strongly congruence-proper if, for all finite semilattice S, there are, up to isomorphism, at most finitely many A ∈ W such that Con_c A ≅ S,

 A variety W of algebras is *strongly congruence-proper* if, for all finite semilattice S, there are, up to isomorphism, at most finitely many A ∈ W such that Con_c A ≅ S, and each such A is finite.

- A variety W of algebras is *strongly congruence-proper* if, for all finite semilattice S, there are, up to isomorphism, at most finitely many A ∈ W such that Con_c A ≅ S, and each such A is finite.
- Let W be a finitely generated congruence-modular variety of algebras.

- A variety W of algebras is *strongly congruence-proper* if, for all finite semilattice S, there are, up to isomorphism, at most finitely many A ∈ W such that Con_c A ≅ S, and each such A is finite.
- Let \mathcal{W} be a finitely generated congruence-modular variety of algebras. Then \mathcal{W} is strongly congruence-proper (consequence of a result by Freese and McKenzie).

- A variety W of algebras is *strongly congruence-proper* if, for all finite semilattice S, there are, up to isomorphism, at most finitely many A ∈ W such that Con_c A ≅ S, and each such A is finite.
- Let \mathcal{W} be a finitely generated congruence-modular variety of algebras. Then \mathcal{W} is strongly congruence-proper (consequence of a result by Freese and McKenzie).
- Let W be a finitely generated variety of algebras omitting tame congruence theory type **1** and **5**.

- A variety W of algebras is *strongly congruence-proper* if, for all finite semilattice S, there are, up to isomorphism, at most finitely many A ∈ W such that Con_c A ≅ S, and each such A is finite.
- Let \mathcal{W} be a finitely generated congruence-modular variety of algebras. Then \mathcal{W} is strongly congruence-proper (consequence of a result by Freese and McKenzie).
- Let \mathcal{W} be a finitely generated variety of algebras omitting tame congruence theory type **1** and **5**. Then \mathcal{W} is strongly congruence-proper (consequence of a result by Hobby and McKenzie).

- A variety W of algebras is *strongly congruence-proper* if, for all finite semilattice S, there are, up to isomorphism, at most finitely many A ∈ W such that Con_c A ≅ S, and each such A is finite.
- Let \mathcal{W} be a finitely generated congruence-modular variety of algebras. Then \mathcal{W} is strongly congruence-proper (consequence of a result by Freese and McKenzie).
- Let \mathcal{W} be a finitely generated variety of algebras omitting tame congruence theory type **1** and **5**. Then \mathcal{W} is strongly congruence-proper (consequence of a result by Hobby and McKenzie).
- The variety of lattices is not strongly congruence-proper.

Let $\mathcal V$ and $\mathcal W$ be a locally finite varieties of algebras, we assume that :

Let $\mathcal V$ and $\mathcal W$ be a locally finite varieties of algebras, we assume that :

• *W* is strongly congruence-proper.

Let $\mathcal V$ and $\mathcal W$ be a locally finite varieties of algebras, we assume that :

- *W* is strongly congruence-proper.
- If A is a finite lattice-indexed diagram of finite algebras in V, then there is a diagram B in W such that Con_c ∘A ≅ Con_c ∘B.

Let $\mathcal V$ and $\mathcal W$ be a locally finite varieties of algebras, we assume that :

• *W* is strongly congruence-proper.

 If A is a finite lattice-indexed diagram of finite algebras in V, then there is a diagram B in W such that Con_c ∘A ≅ Con_c ∘B.

Then $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$.

• Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.

Let A ∈ V. Let A be the diagram of finite subalgebras of A.
As A is locally finite, A = lim A.

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .
- Theses liftings might not be compatible...

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .
- Theses liftings might not be compatible...
- By compactness argument there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .
- Theses liftings might not be compatible...
- By compactness argument there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.

• Put
$$B = \varinjlim \vec{B}$$
, then

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .
- Theses liftings might not be compatible...
- By compactness argument there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.
- Put $B = \varinjlim \vec{B}$, then

$$\operatorname{\mathsf{Con}}_{\operatorname{\mathsf{c}}} B = \operatorname{\mathsf{Con}}_{\operatorname{\mathsf{c}}}(\varinjlim \vec{B})$$

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .
- Theses liftings might not be compatible...
- By compactness argument there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.
- Put $B = \varinjlim \vec{B}$, then

$$\operatorname{Con}_{c} B = \operatorname{Con}_{c}(\varinjlim \vec{B})$$

 $\cong \varinjlim(\operatorname{Con}_{c} \circ \vec{B})$

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .
- Theses liftings might not be compatible...
- By compactness argument there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.
- Put $B = \varinjlim \vec{B}$, then

$$egin{aligned} \mathsf{Con}_{\mathsf{c}}\, B &= \mathsf{Con}_{\mathsf{c}}(ert ec{\mathsf{lim}}\,ec{B})\ &\cong ec{\mathsf{lim}}(\mathsf{Con}_{\mathsf{c}}\,\circec{B})\ &\cong ec{\mathsf{lim}}(\mathsf{Con}_{\mathsf{c}}\,\circec{A}) \end{aligned}$$

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .
- Theses liftings might not be compatible...
- By compactness argument there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.
- Put $B = \varinjlim \vec{B}$, then

$$\operatorname{Con}_{c} B = \operatorname{Con}_{c}(\varinjlim \vec{B})$$

 $\cong \varinjlim(\operatorname{Con}_{c} \circ \vec{B})$
 $\cong \varinjlim(\operatorname{Con}_{c} \circ \vec{A})$
 $\cong \operatorname{Con}_{c}(\varinjlim \vec{A})$

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .
- Theses liftings might not be compatible...
- By compactness argument there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.
- Put $B = \varinjlim \vec{B}$, then

$$Con_{c} B = Con_{c}(\varinjlim \vec{B})$$
$$\cong \varinjlim(Con_{c} \circ \vec{B})$$
$$\cong \varinjlim(Con_{c} \circ \vec{A})$$
$$\cong Con_{c}(\varinjlim \vec{A})$$
$$= Con_{c} A$$

- Let $A \in \mathcal{V}$. Let \vec{A} be the diagram of finite subalgebras of A.
- As A is locally finite, $A = \varinjlim \vec{A}$.
- Every finite subdiagram of $Con_c \circ \vec{A}$ has a lifting in \mathcal{W} .
- Theses liftings might not be compatible...
- By compactness argument there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.
- Put $B = \varinjlim \vec{B}$, then

$$Con_{c} B = Con_{c}(\varinjlim \vec{B})$$
$$\cong \varinjlim(Con_{c} \circ \vec{B})$$
$$\cong \varinjlim(Con_{c} \circ \vec{A})$$
$$\cong Con_{c}(\varinjlim \vec{A})$$
$$= Con_{c} A$$

• So
$$\operatorname{Con}_{c} \mathcal{V} \subseteq \operatorname{Con}_{c} \mathcal{W}$$
.

Theorem

Let \mathcal{V} and \mathcal{W} be locally finite varieties of algebras. If \mathcal{W} is strongly congruence-proper,

Theorem

Let \mathcal{V} and \mathcal{W} be locally finite varieties of algebras. If \mathcal{W} is strongly congruence-proper, then either crit($\mathcal{V}; \mathcal{W}$) < \aleph_{ω} or

Theorem

Let \mathcal{V} and \mathcal{W} be locally finite varieties of algebras. If \mathcal{W} is strongly congruence-proper, then either $crit(\mathcal{V}; \mathcal{W}) < \aleph_{\omega}$ or $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$.

Let \mathcal{V} and \mathcal{W} be locally finite varieties of algebras. If \mathcal{W} is strongly congruence-proper, then either $crit(\mathcal{V}; \mathcal{W}) < \aleph_{\omega}$ or $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$.

• Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.

Let \mathcal{V} and \mathcal{W} be locally finite varieties of algebras. If \mathcal{W} is strongly congruence-proper, then either $crit(\mathcal{V}; \mathcal{W}) < \aleph_{\omega}$ or $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$.

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Let P be a finite lattice, let A be a P-indexed diagram of finite algebras in V.

Let \mathcal{V} and \mathcal{W} be locally finite varieties of algebras. If \mathcal{W} is strongly congruence-proper, then either $crit(\mathcal{V}; \mathcal{W}) < \aleph_{\omega}$ or $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$.

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Let P be a finite lattice, let A be a P-indexed diagram of finite algebras in V.
- The cardinal satisfying the combinatorial statement related to *P* is ℵ_n for some integer n ≥ 0 (Kuratowski).
- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Let P be a finite lattice, let A be a P-indexed diagram of finite algebras in V.
- The cardinal satisfying the combinatorial statement related to *P* is ℵ_n for some integer n ≥ 0 (Kuratowski).
- Let A be a condensate of \vec{A} .

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Let P be a finite lattice, let A be a P-indexed diagram of finite algebras in V.
- The cardinal satisfying the combinatorial statement related to *P* is ℵ_n for some integer n ≥ 0 (Kuratowski).
- Let A be a condensate of \vec{A} .
- As card Con_c $A \leq$ card $A = \aleph_n < \aleph_\omega$,

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Let P be a finite lattice, let A be a P-indexed diagram of finite algebras in V.
- The cardinal satisfying the combinatorial statement related to *P* is ℵ_n for some integer n ≥ 0 (Kuratowski).
- Let A be a condensate of \vec{A} .
- As card Con_c A ≤ card A = ℵ_n < ℵ_ω, there is B ∈ W such that Con_c A ≅ Con_c B.

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Let P be a finite lattice, let A be a P-indexed diagram of finite algebras in V.
- The cardinal satisfying the combinatorial statement related to *P* is ℵ_n for some integer n ≥ 0 (Kuratowski).
- Let A be a condensate of \vec{A} .
- As card Con_c A ≤ card A = ℵ_n < ℵ_ω, there is B ∈ W such that Con_c A ≅ Con_c B.
- So there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Let P be a finite lattice, let A be a P-indexed diagram of finite algebras in V.
- The cardinal satisfying the combinatorial statement related to *P* is ℵ_n for some integer n ≥ 0 (Kuratowski).
- Let A be a condensate of \vec{A} .
- As card Con_c A ≤ card A = ℵ_n < ℵ_ω, there is B ∈ W such that Con_c A ≅ Con_c B.
- So there is a diagram \vec{B} in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.
- By the compactness theorem $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$.

Let \mathcal{V} and \mathcal{W} be locally finite varieties of algebras. If \mathcal{W} is strongly congruence-proper, then either $crit(\mathcal{V};\mathcal{W}) \leq \aleph_2$ or $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$.

• The proof is similar to the previous one (plus a few more technical lemmas).

- The proof is similar to the previous one (plus a few more technical lemmas).
- It is based on diagrams indexed by finite truncated Boolean algebras.

- The proof is similar to the previous one (plus a few more technical lemmas).
- It is based on diagrams indexed by finite truncated Boolean algebras.
- The cardinal ℵ₂ satisfies the corresponding combinatorial statement, it is equivalent to a theorem of Hajnal and Máté.

- The proof is similar to the previous one (plus a few more technical lemmas).
- It is based on diagrams indexed by finite truncated Boolean algebras.
- The cardinal ℵ₂ satisfies the corresponding combinatorial statement, it is equivalent to a theorem of Hajnal and Máté.
- Notice that the theorem does not allow to find which of the two statement holds.

- The proof is similar to the previous one (plus a few more technical lemmas).
- It is based on diagrams indexed by finite truncated Boolean algebras.
- The cardinal ℵ₂ satisfies the corresponding combinatorial statement, it is equivalent to a theorem of Hajnal and Máté.
- Notice that the theorem does not allow to find which of the two statement holds.
- But for lattices we can do more.

 Let V and W be varieties of lattices, denote by V^d the dual of V.

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

Theorem

Let $\mathcal V$ and $\mathcal W$ be varieties of lattices.

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

Theorem

Let \mathcal{V} and \mathcal{W} be varieties of lattices. Assume that each simple lattice in \mathcal{W} has a prime interval.

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

Theorem

Let \mathcal{V} and \mathcal{W} be varieties of lattices. Assume that each simple lattice in \mathcal{W} has a prime interval. One of the following statement is true.

• crit(
$$\mathcal{V}; \mathcal{W}$$
) $\leq \aleph_2$.

$$2 \mathcal{V} \subseteq \mathcal{W} \text{ or } \mathcal{V} \subseteq \mathcal{W}^{d}.$$

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

Theorem

Let \mathcal{V} and \mathcal{W} be varieties of lattices. Assume that each simple lattice in \mathcal{W} has a prime interval. One of the following statement is true.

• crit(
$$\mathcal{V}; \mathcal{W}$$
) $\leq \aleph_2$.

2
$$\mathcal{V} \subseteq \mathcal{W}$$
 or $\mathcal{V} \subseteq \mathcal{W}^d$.

Idea : If V is neither contained in W nor its dual.

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

Theorem

Let \mathcal{V} and \mathcal{W} be varieties of lattices. Assume that each simple lattice in \mathcal{W} has a prime interval. One of the following statement is true.

• crit(
$$\mathcal{V}; \mathcal{W}$$
) $\leq \aleph_2$.

2
$$\mathcal{V} \subseteq \mathcal{W}$$
 or $\mathcal{V} \subseteq \mathcal{W}^d$.

 Idea : If V is neither contained in W nor its dual. Then find a diagram A in V such that Con_c ∘A has no lifting in W.

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

Theorem

Let \mathcal{V} and \mathcal{W} be varieties of lattices. Assume that each simple lattice in \mathcal{W} has a prime interval. One of the following statement is true.

• crit(
$$\mathcal{V}; \mathcal{W}$$
) $\leq \aleph_2$.

2
$$\mathcal{V} \subseteq \mathcal{W}$$
 or $\mathcal{V} \subseteq \mathcal{W}^d$.

- Idea : If V is neither contained in W nor its dual. Then find a diagram A in V such that Con_c ∘A has no lifting in W.
- There is a condensate A of A of cardinality ℵ₂ such that Con_c A has no lifting in W.

Thank you for your attention. Any questions ?