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Relativizing the substructural hierarchy.
[Partly based on joint work with
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Substructural logics are non-classical logics that include intuitionistic,
relevance, linear (MAILL),  Lukasiewicz many-valued, Hájek basic,
among others.
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Substructural logics are non-classical logics that include intuitionistic,
relevance, linear (MAILL),  Lukasiewicz many-valued, Hájek basic,
among others.

When presented by sequent calculi, they do not always include the
structural rules of weakening, contraction, or exchange.
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Substructural logics are non-classical logics that include intuitionistic,
relevance, linear (MAILL),  Lukasiewicz many-valued, Hájek basic,
among others.

When presented by sequent calculi, they do not always include the
structural rules of weakening, contraction, or exchange.

Their algebraic semantics are residuated lattices, and include Boolean
algebras, Heyting algebras, MV-algebras, but also lattice-ordered
groups.
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Starting from the algebraic properties of residuated lattices, we will:

■ Rediscover the substructural hierarchy (Ciabattoni-NG-Terui)

■ Rediscover the sequent calculus for FL, and the hypersequent
calculus (Avron, Ciabattoni-NG-Terui)

■ Rediscover residuated frames (NG-Jipsen)

■ Relativize the hierarchy/calculus/frames for the involutive
(classical), and distributive cases (NG-Jipsen)

■ Survey some recent results

◆ cut elimination (admissibility) for FL, InFL, DFL, HFL, HDFL
and extensions

■ Also, prove two new results

◆ FEP for IDFL and extensions (NG)

◆ cut elimination for HDFL and extensions
(Ciabattoni-NG-Terui)
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A residuated lattice, or residuated lattice-ordered monoid , [Blount
and Tsinakis] is an algebra A = 〈A,∧,∨, ·, \, /, 1〉 such that

■ 〈A,∧,∨〉 is a lattice,

■ 〈A, ·, 1〉 is a monoid and
■ for all a, b, c ∈ A,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.
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A residuated lattice, or residuated lattice-ordered monoid , [Blount
and Tsinakis] is an algebra A = 〈A,∧,∨, ·, \, /, 1〉 such that

■ 〈A,∧,∨〉 is a lattice,

■ 〈A, ·, 1〉 is a monoid and
■ for all a, b, c ∈ A,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Fact. The last condition is equivalent to either one of:

■ Multiplication distributes over existing
∨

’s and, for all a, c ∈ A,
both

∨
{b : ab ≤ c} (=: a\c) and

∨
{b : ba ≤ c} (=: c/a) exist.

■ (For complete lattices) · distributes over
∨

. [Quantales]

■ For all a, b, c ∈ A,
b ≤ a\(ab ∨ c) a ≤ (c ∨ ab)/b
a(a\c ∧ b) ≤ c (a ∧ c/b)b ≤ c
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A residuated lattice, or residuated lattice-ordered monoid , [Blount
and Tsinakis] is an algebra A = 〈A,∧,∨, ·, \, /, 1〉 such that

■ 〈A,∧,∨〉 is a lattice,

■ 〈A, ·, 1〉 is a monoid and
■ for all a, b, c ∈ A,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Fact. The last condition is equivalent to either one of:

■ Multiplication distributes over existing
∨

’s and, for all a, c ∈ A,
both

∨
{b : ab ≤ c} (=: a\c) and

∨
{b : ba ≤ c} (=: c/a) exist.

■ (For complete lattices) · distributes over
∨

. [Quantales]

■ For all a, b, c ∈ A,
b ≤ a\(ab ∨ c) a ≤ (c ∨ ab)/b
a(a\c ∧ b) ≤ c (a ∧ c/b)b ≤ c

So, residuated lattices form an equational class/variety.

Pointed residuated lattices are expansions with a constant 0. This
allows us to define two negations: ∼x = x\0 and −x = 0/x.
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■ Boolean algebras. x/y = y\x = y → x = ¬y ∨ x and
x · y = x ∧ y.

■ MV-algebras. For x · y = x⊙ y and x\y = y/x = ¬(¬x⊙ y).

■ Lattice-ordered groups. For x\y = x−1y, y/x = yx−1;
¬x = x−1.

■ (Reducts of) relation algebras. For x · y = x; y, x\y = (x∪; yc)c,
y/x = (yc;x∪)c, 1 = id.

■ Ideals of a ring (with 1), where IJ = {
∑

fin ij | i ∈ I, j ∈ J}
I/J = {k | kJ ⊆ I}, J\I = {k | Jk ⊆ I}, 1 = R.

■ Quantales (Q,
∨
, ·, 1) are (definitionally equivalent) complete

residuated lattices.

■ The powerset 〈P(M),∩,∪, ·, \, /, {e}〉 of a monoid
M = 〈M, ·, e〉, where X · Y = {x · y | x ∈ X, y ∈ Y },
X/Y = {z ∈ M | {z} · Y ⊆ X}, Y \X = {z ∈ M | Y · {z} ⊆ X}.
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■ x1 = x = 1x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, if P is a residuated lattice, then (P,∨, ·, 1) is a semiring. [In the
complete case, a quantale.]



Bi-modules
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 6 / 28

■ x1 = x = 1x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, if P is a residuated lattice, then (P,∨, ·, 1) is a semiring. [In the
complete case, a quantale.]

■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)
■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z
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■ x1 = x = 1x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, if P is a residuated lattice, then (P,∨, ·, 1) is a semiring. [In the
complete case, a quantale.]

■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)
■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z

So, for N = P , (P,∨, ·, 1) acts on both sides on (N,∧) by \ and /.
Thus, ((N,∧), \, /) becomes a (P,∨, ·, 1)-bimodule.
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■ x1 = x = 1x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, if P is a residuated lattice, then (P,∨, ·, 1) is a semiring. [In the
complete case, a quantale.]

■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)
■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z

So, for N = P , (P,∨, ·, 1) acts on both sides on (N,∧) by \ and /.
Thus, ((N,∧), \, /) becomes a (P,∨, ·, 1)-bimodule. This split
matches the notion of polarity.



Bi-modules
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 6 / 28

■ x1 = x = 1x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, if P is a residuated lattice, then (P,∨, ·, 1) is a semiring. [In the
complete case, a quantale.]

■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)
■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z

So, for N = P , (P,∨, ·, 1) acts on both sides on (N,∧) by \ and /.
Thus, ((N,∧), \, /) becomes a (P,∨, ·, 1)-bimodule. This split
matches the notion of polarity. It also extend to

∨
,
∧

.
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■ x1 = x = 1x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, if P is a residuated lattice, then (P,∨, ·, 1) is a semiring. [In the
complete case, a quantale.]

■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)
■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z

So, for N = P , (P,∨, ·, 1) acts on both sides on (N,∧) by \ and /.
Thus, ((N,∧), \, /) becomes a (P,∨, ·, 1)-bimodule. This split
matches the notion of polarity. It also extend to

∨
,
∧

.

The bimodule can be viewed as a two-sorted algebra
(P,∨, ·, 1, N,∧, \, /).
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■ x1 = x = 1x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, if P is a residuated lattice, then (P,∨, ·, 1) is a semiring. [In the
complete case, a quantale.]

■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)
■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z

So, for N = P , (P,∨, ·, 1) acts on both sides on (N,∧) by \ and /.
Thus, ((N,∧), \, /) becomes a (P,∨, ·, 1)-bimodule. This split
matches the notion of polarity. It also extend to

∨
,
∧

.

The bimodule can be viewed as a two-sorted algebra
(P,∨, ·, 1, N,∧, \, /).

The absolutely free algebra for P = N generated by P0 = N0 = V ar
(the set of propositional variables) gives the set of all formulas.
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■ x1 = x = 1x, (xy)z = x(yz)
■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

So, if P is a residuated lattice, then (P,∨, ·, 1) is a semiring. [In the
complete case, a quantale.]

■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)
■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)
■ 1\x = x = x/1
■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z
■ x\(y/z) = (x\y)/z

So, for N = P , (P,∨, ·, 1) acts on both sides on (N,∧) by \ and /.
Thus, ((N,∧), \, /) becomes a (P,∨, ·, 1)-bimodule. This split
matches the notion of polarity. It also extend to

∨
,
∧

.

The bimodule can be viewed as a two-sorted algebra
(P,∨, ·, 1, N,∧, \, /).

The absolutely free algebra for P = N generated by P0 = N0 = V ar
(the set of propositional variables) gives the set of all formulas. The
steps of the generation process yield the substructural hierarchy.
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■ The sets Pn,Nn of formulas are defined by:
(0) P0 = N0 = the set of variables

(P1) Nn ⊆ Pn+1

(P2) α, β ∈ Pn+1 ⇒ α ∨ β, α · β, 1 ∈ Pn+1

(N1) Pn ⊆ Nn+1

(N2) α, β ∈ Nn+1 ⇒ α ∧ β ∈ Nn+1

(N3) α ∈ Pn+1, β ∈ Nn+1 ⇒ α\β, β/α, 0 ∈ Nn+1

■ Pn+1 = 〈Nn〉∨,
∏ ; Nn+1 = 〈Pn〉∧,Pn+1\,/Pn+1

■ Pn ⊆ Pn+1,Nn ⊆ Nn+1,
⋃

Pn =
⋃

Nn = Fm

■ P1-reduced:
∨∏

pi

■ N1-reduced:
∧
(p1p2 · · · pn\r/q1q2 · · · qm)

p1p2 · · · pnq1q2 · · · qm ≤ r
■ Sequent: a1, a2, . . . , an ⇒ a0 (ai ∈ Fm)

A. Ciabattoni, NG, K. Terui. From axioms to analytic rules in
nonclassical logics, Proceedings of LICS’08, 229-240, 2008.
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Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each sub-bimodule is

defined by a
∧

-closed subset that is also closed under the actions.
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Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each sub-bimodule is

defined by a
∧

-closed subset that is also closed under the actions.
Namely, it is defined by a nucleus: a closure operator γ on N such
that p ∈ P, n ∈ N implies p\n, n/p ∈ N .
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-closed subset that is also closed under the actions.
Namely, it is defined by a nucleus: a closure operator γ on N such
that p ∈ P, n ∈ N implies p\n, n/p ∈ N .

If P = N is the underlying set of a residuated lattice
A = 〈A,∧,∨, ·, \, /, 1〉, a nucleus is just a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y). (Cf. phase spaces.)
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Namely, it is defined by a nucleus: a closure operator γ on N such
that p ∈ P, n ∈ N implies p\n, n/p ∈ N .

If P = N is the underlying set of a residuated lattice
A = 〈A,∧,∨, ·, \, /, 1〉, a nucleus is just a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y). (Cf. phase spaces.)

If we define Aγ = {γ(x) : x ∈ A}, x ∨γ y = γ(x ∨ y) and
x ·γ y = γ(x · y),

Aγ = 〈Aγ ,∧,∨γ , ·γ , \, /, γ(1)〉

is also a residuated lattice.
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If P = N is the underlying set of a residuated lattice
A = 〈A,∧,∨, ·, \, /, 1〉, a nucleus is just a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y). (Cf. phase spaces.)

If we define Aγ = {γ(x) : x ∈ A}, x ∨γ y = γ(x ∨ y) and
x ·γ y = γ(x · y),

Aγ = 〈Aγ ,∧,∨γ , ·γ , \, /, γ(1)〉

is also a residuated lattice.

All complete RLs arise as submodules of P(M), where M is a
monoid, namely via nuclei on powersets (of monoids).
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-closed subset that is also closed under the actions.
Namely, it is defined by a nucleus: a closure operator γ on N such
that p ∈ P, n ∈ N implies p\n, n/p ∈ N .

If P = N is the underlying set of a residuated lattice
A = 〈A,∧,∨, ·, \, /, 1〉, a nucleus is just a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y). (Cf. phase spaces.)

If we define Aγ = {γ(x) : x ∈ A}, x ∨γ y = γ(x ∨ y) and
x ·γ y = γ(x · y),

Aγ = 〈Aγ ,∧,∨γ , ·γ , \, /, γ(1)〉

is also a residuated lattice.

All complete RLs arise as submodules of P(M), where M is a
monoid, namely via nuclei on powersets (of monoids). (Each RL can
be embedded into a complete one.)
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Namely, it is defined by a nucleus: a closure operator γ on N such
that p ∈ P, n ∈ N implies p\n, n/p ∈ N .

If P = N is the underlying set of a residuated lattice
A = 〈A,∧,∨, ·, \, /, 1〉, a nucleus is just a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y). (Cf. phase spaces.)

If we define Aγ = {γ(x) : x ∈ A}, x ∨γ y = γ(x ∨ y) and
x ·γ y = γ(x · y),

Aγ = 〈Aγ ,∧,∨γ , ·γ , \, /, γ(1)〉

is also a residuated lattice.

All complete RLs arise as submodules of P(M), where M is a
monoid, namely via nuclei on powersets (of monoids). (Each RL can
be embedded into a complete one.) Residuated frames arise from
studying submodules of P(M).
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Namely, it is defined by a nucleus: a closure operator γ on N such
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If P = N is the underlying set of a residuated lattice
A = 〈A,∧,∨, ·, \, /, 1〉, a nucleus is just a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y). (Cf. phase spaces.)

If we define Aγ = {γ(x) : x ∈ A}, x ∨γ y = γ(x ∨ y) and
x ·γ y = γ(x · y),

Aγ = 〈Aγ ,∧,∨γ , ·γ , \, /, γ(1)〉

is also a residuated lattice.

All complete RLs arise as submodules of P(M), where M is a
monoid, namely via nuclei on powersets (of monoids). (Each RL can
be embedded into a complete one.) Residuated frames arise from
studying submodules of P(M).They form relational semantics for
substructural logics
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Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each sub-bimodule is

defined by a
∧

-closed subset that is also closed under the actions.
Namely, it is defined by a nucleus: a closure operator γ on N such
that p ∈ P, n ∈ N implies p\n, n/p ∈ N .

If P = N is the underlying set of a residuated lattice
A = 〈A,∧,∨, ·, \, /, 1〉, a nucleus is just a closure operator that
satisfies γ(x) · γ(y) ≤ γ(x · y). (Cf. phase spaces.)

If we define Aγ = {γ(x) : x ∈ A}, x ∨γ y = γ(x ∨ y) and
x ·γ y = γ(x · y),

Aγ = 〈Aγ ,∧,∨γ , ·γ , \, /, γ(1)〉

is also a residuated lattice.

All complete RLs arise as submodules of P(M), where M is a
monoid, namely via nuclei on powersets (of monoids). (Each RL can
be embedded into a complete one.) Residuated frames arise from
studying submodules of P(M).They form relational semantics for
substructural logics and are the most important tool in Algebraic
Proof Theory.
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A lattice frame is a structure F = (L,R,N) where L and R are sets
and N is a binary relation from L to R.

If A is a lattice, FA = (A,A,≤) is a lattice frame.
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A lattice frame is a structure F = (L,R,N) where L and R are sets
and N is a binary relation from L to R.

If A is a lattice, FA = (A,A,≤) is a lattice frame.

For X ⊆ L and Y ⊆ R we define

X⊲ = {b ∈ R : x N b, for all x ∈ X}
Y ⊳ = {a ∈ L : a N y, for all y ∈ Y }
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A lattice frame is a structure F = (L,R,N) where L and R are sets
and N is a binary relation from L to R.

If A is a lattice, FA = (A,A,≤) is a lattice frame.

For X ⊆ L and Y ⊆ R we define

X⊲ = {b ∈ R : x N b, for all x ∈ X}
Y ⊳ = {a ∈ L : a N y, for all y ∈ Y }

The maps ⊲ : P(L) → P(R) and ⊳ : P(R) → P(L) form a Galois
connection. The map γN : P(L) → P(L), where γN (X) = X⊲⊳, is
a closure operator.
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A lattice frame is a structure F = (L,R,N) where L and R are sets
and N is a binary relation from L to R.

If A is a lattice, FA = (A,A,≤) is a lattice frame.

For X ⊆ L and Y ⊆ R we define

X⊲ = {b ∈ R : x N b, for all x ∈ X}
Y ⊳ = {a ∈ L : a N y, for all y ∈ Y }

The maps ⊲ : P(L) → P(R) and ⊳ : P(R) → P(L) form a Galois
connection. The map γN : P(L) → P(L), where γN (X) = X⊲⊳, is
a closure operator.

Lemma. If A = (A,∧,∨) is a lattice and γ is a cl.op. on L, then
(γ[A],∧,∨γ) is a lattice. [x ∨γ y = γ(x ∨ y).]



Lattice frames
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 9 / 28

A lattice frame is a structure F = (L,R,N) where L and R are sets
and N is a binary relation from L to R.

If A is a lattice, FA = (A,A,≤) is a lattice frame.

For X ⊆ L and Y ⊆ R we define

X⊲ = {b ∈ R : x N b, for all x ∈ X}
Y ⊳ = {a ∈ L : a N y, for all y ∈ Y }

The maps ⊲ : P(L) → P(R) and ⊳ : P(R) → P(L) form a Galois
connection. The map γN : P(L) → P(L), where γN (X) = X⊲⊳, is
a closure operator.

Lemma. If A = (A,∧,∨) is a lattice and γ is a cl.op. on L, then
(γ[A],∧,∨γ) is a lattice. [x ∨γ y = γ(x ∨ y).]

Corollary. If F is a lattice frame then the Galois algebra
F

+ = (γN [P(L)],∩,∪γN
) is a complete lattice.
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A lattice frame is a structure F = (L,R,N) where L and R are sets
and N is a binary relation from L to R.

If A is a lattice, FA = (A,A,≤) is a lattice frame.

For X ⊆ L and Y ⊆ R we define

X⊲ = {b ∈ R : x N b, for all x ∈ X}
Y ⊳ = {a ∈ L : a N y, for all y ∈ Y }

The maps ⊲ : P(L) → P(R) and ⊳ : P(R) → P(L) form a Galois
connection. The map γN : P(L) → P(L), where γN (X) = X⊲⊳, is
a closure operator.

Lemma. If A = (A,∧,∨) is a lattice and γ is a cl.op. on L, then
(γ[A],∧,∨γ) is a lattice. [x ∨γ y = γ(x ∨ y).]

Corollary. If F is a lattice frame then the Galois algebra
F

+ = (γN [P(L)],∩,∪γN
) is a complete lattice.

If A is a lattice, F+

A
is the Dedekind-MacNeille completion of A and

x 7→ {x}⊳ is an embedding.
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A residuated frame is a structure F = (L,R,N, ◦, ε,,�) where

■ (L,R,N) is a lattice frame,
■ (L, ◦, ε) is a monoid and
■  : L×R → R, � : R× L → R are such that

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)
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A residuated frame is a structure F = (L,R,N, ◦, ε,,�) where

■ (L,R,N) is a lattice frame,
■ (L, ◦, ε) is a monoid and
■  : L×R → R, � : R× L → R are such that

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

Theorem. If F is a frame, then γN is a nucleus on P(L, ◦, 1).
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A residuated frame is a structure F = (L,R,N, ◦, ε,,�) where

■ (L,R,N) is a lattice frame,
■ (L, ◦, ε) is a monoid and
■  : L×R → R, � : R× L → R are such that

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

Theorem. If F is a frame, then γN is a nucleus on P(L, ◦, 1). Then
F

+ = P(L, ◦, ε)γN
= (P(L)γN

,∩,∪γN
, ·γN

, \, /, γN (ε)) is a
residuated lattice called the Galois algebra of F.
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A residuated frame is a structure F = (L,R,N, ◦, ε,,�) where

■ (L,R,N) is a lattice frame,
■ (L, ◦, ε) is a monoid and
■  : L×R → R, � : R× L → R are such that

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

Theorem. If F is a frame, then γN is a nucleus on P(L, ◦, 1). Then
F

+ = P(L, ◦, ε)γN
= (P(L)γN

,∩,∪γN
, ·γN

, \, /, γN (ε)) is a
residuated lattice called the Galois algebra of F.

If A is a RL, FA = (A,A,≤, ·, 1) is a residuated frame. Moreover,
for FA, x 7→ {x}⊳ is an embedding.
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A residuated frame is a structure F = (L,R,N, ◦, ε,,�) where

■ (L,R,N) is a lattice frame,
■ (L, ◦, ε) is a monoid and
■  : L×R → R, � : R× L → R are such that

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

Theorem. If F is a frame, then γN is a nucleus on P(L, ◦, 1). Then
F

+ = P(L, ◦, ε)γN
= (P(L)γN

,∩,∪γN
, ·γN

, \, /, γN (ε)) is a
residuated lattice called the Galois algebra of F.

If A is a RL, FA = (A,A,≤, ·, 1) is a residuated frame. Moreover,
for FA, x 7→ {x}⊳ is an embedding.

Note: (L, ◦, ε) acts on R via  and � (modulo N).
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A residuated frame is a structure F = (L,R,N, ◦, ε,,�) where

■ (L,R,N) is a lattice frame,
■ (L, ◦, ε) is a monoid and
■  : L×R → R, � : R× L → R are such that

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

Theorem. If F is a frame, then γN is a nucleus on P(L, ◦, 1). Then
F

+ = P(L, ◦, ε)γN
= (P(L)γN

,∩,∪γN
, ·γN

, \, /, γN (ε)) is a
residuated lattice called the Galois algebra of F.

If A is a RL, FA = (A,A,≤, ·, 1) is a residuated frame. Moreover,
for FA, x 7→ {x}⊳ is an embedding.

Note: (L, ◦, ε) acts on R via  and � (modulo N). A frame is freely
generated by B, if (L, ◦, 1) is the free monoid B∗ and R is (bijective
to) B∗ ×B ×B∗ ≡ SB∗ ×B.
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A residuated frame is a structure F = (L,R,N, ◦, ε,,�) where

■ (L,R,N) is a lattice frame,
■ (L, ◦, ε) is a monoid and
■  : L×R → R, � : R× L → R are such that

(x ◦ y) N w ⇔ y N (x  w) ⇔ x N (w � y)

Theorem. If F is a frame, then γN is a nucleus on P(L, ◦, 1). Then
F

+ = P(L, ◦, ε)γN
= (P(L)γN

,∩,∪γN
, ·γN

, \, /, γN (ε)) is a
residuated lattice called the Galois algebra of F.

If A is a RL, FA = (A,A,≤, ·, 1) is a residuated frame. Moreover,
for FA, x 7→ {x}⊳ is an embedding.

Note: (L, ◦, ε) acts on R via  and � (modulo N). A frame is freely
generated by B, if (L, ◦, 1) is the free monoid B∗ and R is (bijective
to) B∗ ×B ×B∗ ≡ SB∗ ×B. (Given a monoid L = (L, ◦, ε), SL

denotes the sections (unary linear polynomials) of L.)

N. Galatos and P. Jipsen. Residuated frames and applications to
decidability, to appear in the Transactions of the AMS.
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xNa aNz
xNz

(CUT)
aNa

(Id)
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xNa aNz
xNz

(CUT)
aNa

(Id)

aNz bNz
a ∨ bNz

(∨L) xNa
xNa ∨ b

(∨Rℓ) xNb
xNa ∨ b

(∨Rr)
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b/aNz � x
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xNb/a
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xNa aNz
xNz

(CUT)
aNa

(Id)

aNz bNz
a ∨ bNz

(∨L) xNa
xNa ∨ b

(∨Rℓ) xNb
xNa ∨ b

(∨Rr)

aNz
a ∧ bNz

(∧Lℓ) bNz
a ∧ bNz

(∧Lr) xNa xNb
xNa ∧ b

(∧R)

a ◦ bNz
a · bNz

(·L)
xNa yNb

x ◦ yNa · b
(·R) εNz

1Nz
(1L)

εN1
(1R)

xNa bNz
a\bNx  z

(\L)
xNa  b

xNa\b
(\R)

xNa bNz
b/aNz � x

(/L)
xNb � a

xNb/a
(/R)

xNa bNz
x ◦ (a\b)Nz

xNa bN(v  c � u)

x ◦ (a\b)N(v  c � u)
xNa v ◦ b ◦ uNc
v ◦ x ◦ (a\b) ◦ uNc

So, we get the sequent calculus FL, for a, b, c ∈ Fm,
x, y, u, v ∈ Fm∗, z ∈ SL × Fm.
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x⇒ a y◦a◦z ⇒ c
y◦x◦z ⇒ c (cut) a⇒ a (Id)

y◦a◦z ⇒ c

y◦a ∧ b◦z ⇒ c
(∧Lℓ)

y◦b◦z ⇒ c

y◦a ∧ b◦z ⇒ c
(∧Lr) x⇒ a x⇒ b

x⇒ a ∧ b
(∧R)

y◦a◦z ⇒ c y◦b◦z ⇒ c

y◦a ∨ b◦z ⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨Rℓ) x⇒ b

x⇒ a ∨ b
(∨Rr)

x⇒ a y◦b◦z ⇒ c

y◦x ◦ (a\b)◦z ⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a y◦b◦z ⇒ c

y◦(b/a) ◦ x◦z ⇒ c
(/L) x ◦ a⇒ b

x⇒ b/a
(/R)

y◦a ◦ b◦z ⇒ c

y◦a · b◦z ⇒ c
(·L)

x⇒ a y ⇒ b

x ◦ y ⇒ a · b
(·R)

y ◦ z ⇒ a

y◦1◦z ⇒ a
(1L)

ε⇒ 1
(1R)

where a, b, c ∈ Fm, x, y, z ∈ Fm∗.
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FFL is the free frame generated by the formulas Fm (L = Fm∗,
R = SL × Fm), whith x N (u, a) iff ⊢FL u(x) ⇒ a.
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FFL is the free frame generated by the formulas Fm (L = Fm∗,
R = SL × Fm), whith x N (u, a) iff ⊢FL u(x) ⇒ a.

The following properties hold for FA, FFL (and FA,B, later):

1. F is a residuated frame (freely) generated by B

2. B is a (partial) algebra of the same type, (B = A,Fm)

3. N satisfies GN, for all a, b ∈ B, x, y ∈ L, z ∈ R.
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FFL is the free frame generated by the formulas Fm (L = Fm∗,
R = SL × Fm), whith x N (u, a) iff ⊢FL u(x) ⇒ a.

The following properties hold for FA, FFL (and FA,B, later):

1. F is a residuated frame (freely) generated by B

2. B is a (partial) algebra of the same type, (B = A,Fm)

3. N satisfies GN, for all a, b ∈ B, x, y ∈ L, z ∈ R.

We call such pairs (F,B) Gentzen frames. A cut-free Gentzen frame
is not assumed to satisfy the (CUT)-rule.
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FFL is the free frame generated by the formulas Fm (L = Fm∗,
R = SL × Fm), whith x N (u, a) iff ⊢FL u(x) ⇒ a.

The following properties hold for FA, FFL (and FA,B, later):

1. F is a residuated frame (freely) generated by B

2. B is a (partial) algebra of the same type, (B = A,Fm)

3. N satisfies GN, for all a, b ∈ B, x, y ∈ L, z ∈ R.

We call such pairs (F,B) Gentzen frames. A cut-free Gentzen frame
is not assumed to satisfy the (CUT)-rule.

Theorem. (NG-Jipsen) Given a Gentzen frame (F,B), the map
{}⊳ : B → F

+, b 7→ {b}⊳ is a (partial) homomorphism.
(Namely, if a, b ∈ B and a • b ∈ B (• is a connective) then
{a •B b}⊳ = {a}⊳ •F+ {b}⊳).
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FFL is the free frame generated by the formulas Fm (L = Fm∗,
R = SL × Fm), whith x N (u, a) iff ⊢FL u(x) ⇒ a.

The following properties hold for FA, FFL (and FA,B, later):

1. F is a residuated frame (freely) generated by B

2. B is a (partial) algebra of the same type, (B = A,Fm)

3. N satisfies GN, for all a, b ∈ B, x, y ∈ L, z ∈ R.

We call such pairs (F,B) Gentzen frames. A cut-free Gentzen frame
is not assumed to satisfy the (CUT)-rule.

Theorem. (NG-Jipsen) Given a Gentzen frame (F,B), the map
{}⊳ : B → F

+, b 7→ {b}⊳ is a (partial) homomorphism.
(Namely, if a, b ∈ B and a • b ∈ B (• is a connective) then
{a •B b}⊳ = {a}⊳ •F+ {b}⊳).

For cut-free Genzten frames, we get only a quasihomomorphism.
a •B b ∈ {a}⊳ •F+ {b}⊳ ⊆ {a •B b}⊳.
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For every homomorphism f : Fm → B, let f̄ : FmL → F
+ be the

homomorphism that extends f̄(p) = {f(p)}⊳ (p: variable.)

Corollary. If (F,B) is a cf Gentzen frame, for every homomorphism
f : Fm → B, we have f(a) ∈ f̄(a) ⊆ {f(a)}⊳. If we have (CUT),
then f̄(a) =↓ f(a).

We define F |= x ⇒ c by f(x) N f(c), for all f .

Theorem. If F+

FL
|= x· ≤ c, then FFL |= x ⇒ c.

Idea: For f : Fm → B, f(x) ∈ f̄(x) ⊆ f̄(c) ⊆ {f(c)}⊳, so
f(x) N f(c).

Corollary. FL is complete with respect to F
+

FL
.

Corollary (CE). FL and FL
f prove the same sequents.

Theorem. (Ciabattoni-NG-Terui) For axioms in N2, the extension of
FL is equivalent to one that admits (modular, infinitary) cut
elimination iff the corresponding variety is closed under (MacNeille)
completions iff the axiom is acyclic.
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■ DM-completion

■ Completeness of the calculus

■ Cut elimination

■ Finite model property

■ Finite embeddability property

■ (Generalized super-)amalgamation property (Transferable
injections, Congruence extension property)

■ (Craig) Interpolation property

■ Disjunction property

■ Strong separation

■ Stability under linear structural rules/equations over {∨, ·, 1}.

NG and H. Ono, APAL.

NG and P. Jipsen, TAMS.

NG and P. Jipsen, manuscript.

A. Ciabattoni, NG and K. Terui, APAL.

NG and K. Terui, manuscript.
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Idea: Express equations over {∨, ·, 1} at the frame level.
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get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.



Equations
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 16 / 28

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over joins to
get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.



Equations
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 16 / 28

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over joins to
get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).



Equations
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 16 / 28

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over joins to
get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx



Equations
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 16 / 28

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over joins to
get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)



Equations
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 16 / 28

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over joins to
get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2



Equations
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 16 / 28

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over joins to
get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2



Equations
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 16 / 28

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over joins to
get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ z x2y ≤ z yx1 ≤ z yx2 ≤ z

x1x2y ≤ z



Equations
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 16 / 28

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over joins to
get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.
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In the context of (FFL,Fm), R(ε) takes the form

x ◦ t1 ◦ y ⇒ a · · · x ◦ tn ◦ y ⇒ a
x ◦ t0 ◦ y ⇒ a

(R(ε))

We call such equations and rules simple.

Theorem. Let (F,B) be a cf Gentzen frame and let ε be a
{∨, ·, 1}-equation. Then (F,B) satisfies R(ε) iff F

+ satisfies ε.

Theorem. All extensions of FL by simple rules enjoy cut elimination.

K. Terui. Which structural rules admit cut elimination? An algebraic
criterion. J. Symbolic Logic 72 (2007), no. 3, 738-754.

N. Galatos and H. Ono. Cut elimination and strong separation for
non-associative substructural logics, APAL 161(9) (2010),
1097–1133.

N. Galatos and P. Jipsen. Residuated frames and applications to
decidability, to appear in the Transactions of the AMS.
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Theorem. Every variety V of integral RL’s (x ≤ 1) axiomatized by
equartions over {∨, ·, 1} has the finite embeddability property (FEP),
namely for every A ∈ V , every finite partial subalgebra B of A can
be (partially) embedded in a finite D ∈ V .

The frame FA,B is generated by B (L is the submonoid of A
generated by B, R = SL ×B) with x N (u, b) iff u(x) ≤A b.
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Theorem. Every variety V of integral RL’s (x ≤ 1) axiomatized by
equartions over {∨, ·, 1} has the finite embeddability property (FEP),
namely for every A ∈ V , every finite partial subalgebra B of A can
be (partially) embedded in a finite D ∈ V .

The frame FA,B is generated by B (L is the submonoid of A
generated by B, R = SL ×B) with x N (u, b) iff u(x) ≤A b. Then

■ F
+

A,B ∈ V

■ B embeds in F
+

A,B via { }⊳ : B → F
+

■ F
+

A,B is finite

N. Galatos and P. Jipsen. Residuated frames and applications to
decidability, to appear in the Transactions of the AMS.
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FL sequents stem from N1-normal formulas. FL supports the
analysis of simple structural rules, which correspond to N2-equations.
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FL sequents stem from N1-normal formulas. FL supports the
analysis of simple structural rules, which correspond to N2-equations.
To handle P3-equations, we define hypersequents, based on
P2-normal formulas: (x1 . . . xn → x0) ∨ (y1 . . . yn → y0) ∨ . . . .
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FL sequents stem from N1-normal formulas. FL supports the
analysis of simple structural rules, which correspond to N2-equations.
To handle P3-equations, we define hypersequents, based on
P2-normal formulas: (x1 . . . xn → x0) ∨ (y1 . . . yn → y0) ∨ . . . .

A hypersequent is a multiset s1 | · · · | sm of sequents si.
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FL sequents stem from N1-normal formulas. FL supports the
analysis of simple structural rules, which correspond to N2-equations.
To handle P3-equations, we define hypersequents, based on
P2-normal formulas: (x1 . . . xn → x0) ∨ (y1 . . . yn → y0) ∨ . . . .

A hypersequent is a multiset s1 | · · · | sm of sequents si.

For every rule
s1 s2

s

of FL, the system HFL is defined to contain the rule

H | s1 H | s2

H | s

where H is a (meta)variable for hyprsequents.
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FL sequents stem from N1-normal formulas. FL supports the
analysis of simple structural rules, which correspond to N2-equations.
To handle P3-equations, we define hypersequents, based on
P2-normal formulas: (x1 . . . xn → x0) ∨ (y1 . . . yn → y0) ∨ . . . .

A hypersequent is a multiset s1 | · · · | sm of sequents si.

For every rule
s1 s2

s

of FL, the system HFL is defined to contain the rule

H | s1 H | s2

H | s

where H is a (meta)variable for hyprsequents. A hyperstructural rule
is of the form

H | s′1 H | s′2 . . . H | s′n
H | s1 | · · · | sm
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A hyperresiduated frame H = (L,R,⊢, ◦, ε,,�, ǫ) is defined by

■ ⊢⊆ H = (L×R)∗. We write ⊢ h instead of h ∈⊢.

■ (L, ◦, ε) is a monoid and ǫ ∈ R.

■ For all x, y ∈ L, z ∈ R, h ∈ H,

⊢ (x ◦ y, z) | h ⇔⊢ (y, x  z) | h ⇔⊢ (x, z � y) | h.

■ ⊢ h implies ⊢ (x, y) | h for any (x, y) ∈ L×R.

■ ⊢ (x, y) | (x, y) | h implies ⊢ (x, y) | h for any (x, y) ∈ L×R.

We define r(H) = (L×H,R×H,N, •, (ε; ∅), (ǫ; ∅)), where
H = (L×R)∗. Then r(H) is a residuated frame. We define
H

+ = r(H)+. The hyper-MacNeille completion of a residuated
lattice A is H

+

A
.

(x;h1) • (y;h2) = (x ◦ y;h1 | h2)

(x;h1)  (z;h2) = (x  z;h1 | h2)

(z;h2) � (x;h1) = (z � x;h1 | h2)

(x;h1) N (z;h2) ⇔ ⊢ (x, z) | h1 | h2.
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Example. Based on HFL we define a hyperresiduated frame
HHFL = (W,W ′,⊢, ◦, ε, ǫ), where

⊢ s1 | . . . | sn ⇐⇒ ⊢HFL s1 | · · · | sn

Using the cut-free version of this frame, we can prove cut elimination
for HFL.

The Dedekind-MacNeille and the hyper-Dedekind-MacNeille
completions for N2 and P3 correspond in a strong way to modular
cut elimination and to conservativity of the infinitary logic.

A. Ciabattoni, NG, K. Terui. From axioms to analytic rules in
nonclassical logics, Proceedings of LICS’08, 229-240, 2008.

A. Ciabattoni, NG, K. Terui. Algebraic proof theory for substructural
logics: cut elimination and completions, to appear in APAL.
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Recall that 0 is of type Nn, hence ∼x,−x : Pn → Nn.
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Recall that 0 is of type Nn, hence ∼x,−x : Pn → Nn.

If we add a new type to negations ∼x,−x : Nn → Pn, then we arrive
at a new notion of sequent (multiple conclusion). The operations at
the frame level corresponding to the negations are denoted by {}∼

and {}−.

x ◦ y ⇒ z

y ⇒ x∼ ◦ z
(∼)

x ◦ y ⇒ z

x⇒ z ◦ y−
(−)
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Recall that 0 is of type Nn, hence ∼x,−x : Pn → Nn.

If we add a new type to negations ∼x,−x : Nn → Pn, then we arrive
at a new notion of sequent (multiple conclusion). The operations at
the frame level corresponding to the negations are denoted by {}∼

and {}−.

x ◦ y ⇒ z

y ⇒ x∼ ◦ z
(∼)

x ◦ y ⇒ z

x⇒ z ◦ y−
(−)

An involutive (residuated) frame is a structure of the form
F = (L = R,N, ◦, ε,∼,−), where

■ (L, ◦, ε,∼,−) is weakly bi-involutive monoid, namely
◆ (L, ◦, ε) is a monoid
◆ x∼− = x = x−∼

◆ (y∼ ◦ x∼)− = (y− ◦ x−)∼ [=: x⊕ y]
■ x ◦ y N z iff y N x∼ ⊕ z iff x N z ⊕ y−, for all x, y, z ∈ L
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Theorem The system InFL has cut elimination, FMP (and is
decidable). Its simple extensions all have cut elimination.

N. Galatos and P. Jipsen. Residuated frames and applications to
decidability, to appear in the Transactions of the AMS.

HInFLe has cut elimination (via a syntactic argument, for now).

A. Ciabattoni, L. Strassburger and K. Terui. Expanding the realm of
systematic proof theory.



DFL
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 24 / 28

Recall that ∧ : Nn ×Nn → Nn.
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Recall that ∧ : Nn ×Nn → Nn. If we add ∧ : Pn × Pn → Pn as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to ∧ is denoted by ©∧ . We obtain
distributive sequents (Giambrone, Brady), and the calculus DFL.
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Recall that ∧ : Nn ×Nn → Nn. If we add ∧ : Pn × Pn → Pn as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to ∧ is denoted by ©∧ . We obtain
distributive sequents (Giambrone, Brady), and the calculus DFL.

A distributive residuated frame (dr-frame) is a structure
F = (L,R,N, ◦,�,, ε,©∧ ,©� ,© ), where (L, ◦, ε) is a monoid
(L,©∧ ) is a semilattice, N ⊆ L×R and

■ ◦,©∧ : L2 → L, ,© : L×R → L, �,©� : R× L → R,

■ x ◦ yNz iff xNz � y iff yNx  z.

■ x©∧ yNz iff xNz©� y iff yNx© z.

■ xNw implies x©∧ yNw; and

Theorem. If F is a dr-frame then the Galois algebra
F

+ = (P(L),∩,∪, ◦, \, /, 1)γN
is a distributive residuated lattice.
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Recall that ∧ : Nn ×Nn → Nn. If we add ∧ : Pn × Pn → Pn as a
new type, then we arrive at a new notion of sequent. The operation
at the frame level corresponding to ∧ is denoted by ©∧ . We obtain
distributive sequents (Giambrone, Brady), and the calculus DFL.

A distributive residuated frame (dr-frame) is a structure
F = (L,R,N, ◦,�,, ε,©∧ ,©� ,© ), where (L, ◦, ε) is a monoid
(L,©∧ ) is a semilattice, N ⊆ L×R and

■ ◦,©∧ : L2 → L, ,© : L×R → L, �,©� : R× L → R,

■ x ◦ yNz iff xNz � y iff yNx  z.

■ x©∧ yNz iff xNz©� y iff yNx© z.

■ xNw implies x©∧ yNw; and

Theorem. If F is a dr-frame then the Galois algebra
F

+ = (P(L),∩,∪, ◦, \, /, 1)γN
is a distributive residuated lattice.

DFL has cut elimination (also, all of its extensions with
{∧,∨, ·, 1}-equations/rules). It also has the FMP.

N. Galatos and P. Jipsen. Cut elimination and the finite model
property for distributive FL, manuscript.
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Let V be a subvariety of DIRL axiomatized over {∨,∧, ·, 1}. To
establish the FEP for V , for every A in V and B a finite partial
subalgebra of A, we construct an algebra D = F

+

A,B such that

■ F
+

A,B ∈ V

■ B embeds in F
+

A,B

■ F
+

A,B is finite
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Let V be a subvariety of DIRL axiomatized over {∨,∧, ·, 1}. To
establish the FEP for V , for every A in V and B a finite partial
subalgebra of A, we construct an algebra D = F

+

A,B such that

■ F
+

A,B ∈ V

■ B embeds in F
+

A,B

■ F
+

A,B is finite

F
+

A,B is defined by taking (L, ◦,©∧ , 1) to be the {·,∧, 1}-subreduct
of A generated by B, R = SL ×B and x N (u, b) iff u(x) ≤A b.
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Let V be a subvariety of DIRL axiomatized over {∨,∧, ·, 1}. To
establish the FEP for V , for every A in V and B a finite partial
subalgebra of A, we construct an algebra D = F

+

A,B such that

■ F
+

A,B ∈ V

■ B embeds in F
+

A,B

■ F
+

A,B is finite

F
+

A,B is defined by taking (L, ◦,©∧ , 1) to be the {·,∧, 1}-subreduct
of A generated by B, R = SL ×B and x N (u, b) iff u(x) ≤A b.

Theorem. (NG) Every subvariety of DIRL axiomatized over
{∨,∧, ·, 1} has the FEP.
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We consider distributive hypersequents, namely multisets
s1 | · · · | sm, where si’s are distributive sequents.
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We consider distributive hypersequents, namely multisets
s1 | · · · | sm, where si’s are distributive sequents. We also consider
the Gentzen-style system HDFL.
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We consider distributive hypersequents, namely multisets
s1 | · · · | sm, where si’s are distributive sequents. We also consider
the Gentzen-style system HDFL.

We define distributive hyper-frames by allowing the relation ⊢ to
‘residuate’ with respect to both ◦ and ©∧ .
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We consider distributive hypersequents, namely multisets
s1 | · · · | sm, where si’s are distributive sequents. We also consider
the Gentzen-style system HDFL.

We define distributive hyper-frames by allowing the relation ⊢ to
‘residuate’ with respect to both ◦ and ©∧ .

Theorem. (Ciabbatoni-NG-Terui) The system HDFL has cut
elimination. The same holds for all extensions by simple distributive
hyper-ryles corresponding to P3-equations on the distributive
hierarchy.
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We consider distributive hypersequents, namely multisets
s1 | · · · | sm, where si’s are distributive sequents. We also consider
the Gentzen-style system HDFL.

We define distributive hyper-frames by allowing the relation ⊢ to
‘residuate’ with respect to both ◦ and ©∧ .

Theorem. (Ciabbatoni-NG-Terui) The system HDFL has cut
elimination. The same holds for all extensions by simple distributive
hyper-ryles corresponding to P3-equations on the distributive
hierarchy.

In the process we discover a distributive hyper-MacNeille completion.
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We can pick any monotone term (like ∧) and give a new type to it.



Relativising
Substructiral logics and
residuated lattices

Outline

Residuated lattices

Examples

Bi-modules

Formula hierarchy

Submodules and nuclei

Lattice frames

Residuated frames

GN

FL

Gentzen frames

Compl - CE

Frame applications

Equations

Simple rules

FEP

Hypersequents

Hyper-frames

CE for HFL

Relativizing to InFL

FMP for InFL

DFL

FEP for IDFL

CE for HDFL

Relativising

Conuclei

Nikolaos Galatos, TACL’11, Marseille, July 2011 Relativising the substructural hierarchy – 27 / 28

We can pick any monotone term (like ∧) and give a new type to it.

At the frame level we introduce a new metalogical connective and we
add a rule/condition that introduces the new term on the left from
the new connective.
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We can pick any monotone term (like ∧) and give a new type to it.

At the frame level we introduce a new metalogical connective and we
add a rule/condition that introduces the new term on the left from
the new connective.

We can either write the rule (∨L) with respect to the old context, or
with respect to the new context and assume distribution of the new
term over join. In the latter case, we work with a subvariety
(distributive RL in our example).
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We can pick any monotone term (like ∧) and give a new type to it.

At the frame level we introduce a new metalogical connective and we
add a rule/condition that introduces the new term on the left from
the new connective.

We can either write the rule (∨L) with respect to the old context, or
with respect to the new context and assume distribution of the new
term over join. In the latter case, we work with a subvariety
(distributive RL in our example).

(Ciabbatoni-NG-Terui) Then cut elimination holds, and the hierarchy
extends on this basis. Hence, we can define hypersequents over the
new structure etc.
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We can pick any monotone term (like ∧) and give a new type to it.

At the frame level we introduce a new metalogical connective and we
add a rule/condition that introduces the new term on the left from
the new connective.

We can either write the rule (∨L) with respect to the old context, or
with respect to the new context and assume distribution of the new
term over join. In the latter case, we work with a subvariety
(distributive RL in our example).

(Ciabbatoni-NG-Terui) Then cut elimination holds, and the hierarchy
extends on this basis. Hence, we can define hypersequents over the
new structure etc.

This can lead to a plethora of completions.
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We can pick any monotone term (like ∧) and give a new type to it.

At the frame level we introduce a new metalogical connective and we
add a rule/condition that introduces the new term on the left from
the new connective.

We can either write the rule (∨L) with respect to the old context, or
with respect to the new context and assume distribution of the new
term over join. In the latter case, we work with a subvariety
(distributive RL in our example).

(Ciabbatoni-NG-Terui) Then cut elimination holds, and the hierarchy
extends on this basis. Hence, we can define hypersequents over the
new structure etc.

This can lead to a plethora of completions.

We are working on the multiple conclusion case.
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Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each homomorphic

image is defined (up to isomorphism) by a co-nucleus: an interior
operator σ over N that satisfies p\σ(n) = σ(p\n).
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Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each homomorphic

image is defined (up to isomorphism) by a co-nucleus: an interior
operator σ over N that satisfies p\σ(n) = σ(p\n).

For residuated lattices A conuclei are interior operators σ such that
σ(x) · σ(y) ≤ σ(x · y), namely their images are submonoids.
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Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each homomorphic

image is defined (up to isomorphism) by a co-nucleus: an interior
operator σ over N that satisfies p\σ(n) = σ(p\n).

For residuated lattices A conuclei are interior operators σ such that
σ(x) · σ(y) ≤ σ(x · y), namely their images are submonoids.

If we define Aσ = {σ(x) : x ∈ A}, x ∧σ y = σ(x ∧ y),
x\σy = σ(x\y) and x/σy = σ(x/y),

Aσ = 〈Aσ,∧σ,∨, ·, \σ, /σ, 1〉

is also a residuated lattice.
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Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each homomorphic

image is defined (up to isomorphism) by a co-nucleus: an interior
operator σ over N that satisfies p\σ(n) = σ(p\n).

For residuated lattices A conuclei are interior operators σ such that
σ(x) · σ(y) ≤ σ(x · y), namely their images are submonoids.

If we define Aσ = {σ(x) : x ∈ A}, x ∧σ y = σ(x ∧ y),
x\σy = σ(x\y) and x/σy = σ(x/y),

Aσ = 〈Aσ,∧σ,∨, ·, \σ, /σ, 1〉

is also a residuated lattice.

(NG-Horč́ık) Conuclear frames arise from studying homomorphic
images of RRes(L), where L is a complete lattice (residuated
relations/maps on L).
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Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each homomorphic

image is defined (up to isomorphism) by a co-nucleus: an interior
operator σ over N that satisfies p\σ(n) = σ(p\n).

For residuated lattices A conuclei are interior operators σ such that
σ(x) · σ(y) ≤ σ(x · y), namely their images are submonoids.

If we define Aσ = {σ(x) : x ∈ A}, x ∧σ y = σ(x ∧ y),
x\σy = σ(x\y) and x/σy = σ(x/y),

Aσ = 〈Aσ,∧σ,∨, ·, \σ, /σ, 1〉

is also a residuated lattice.

(NG-Horč́ık) Conuclear frames arise from studying homomorphic
images of RRes(L), where L is a complete lattice (residuated
relations/maps on L). All complete RLs arise as quotients of
RRes(L). (Cayley-type theorem, Holland-type theorem.)
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Given a (P,
∨
, ·, 1)-bimodule ((N,

∧
), \, /), each homomorphic

image is defined (up to isomorphism) by a co-nucleus: an interior
operator σ over N that satisfies p\σ(n) = σ(p\n).

For residuated lattices A conuclei are interior operators σ such that
σ(x) · σ(y) ≤ σ(x · y), namely their images are submonoids.

If we define Aσ = {σ(x) : x ∈ A}, x ∧σ y = σ(x ∧ y),
x\σy = σ(x\y) and x/σy = σ(x/y),

Aσ = 〈Aσ,∧σ,∨, ·, \σ, /σ, 1〉

is also a residuated lattice.

(NG-Horč́ık) Conuclear frames arise from studying homomorphic
images of RRes(L), where L is a complete lattice (residuated
relations/maps on L). All complete RLs arise as quotients of
RRes(L). (Cayley-type theorem, Holland-type theorem.)

Are we on our way to a new kind of proof theory?
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