

A Few Pearls in the Theory of Quasi-Metric Spaces

NRIA

Jean Goubault-Larrecq

TACL — July 26-30, 2011

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

Outline

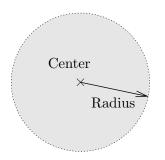
1 Introduction

- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- 8 Notions of Completion
- 9 Conclusion

Metric Spaces



Definition (Metric)

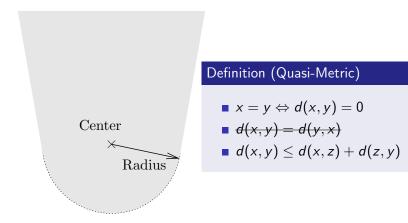
$$x = y \Leftrightarrow d(x, y) = 0$$

$$d(x,y) = d(y,x)$$

$$d(x,y) \leq d(x,z) + d(z,y)$$

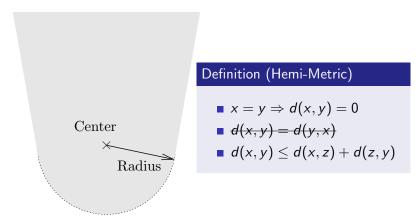
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Quasi-Metric Spaces



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hemi-Metric Spaces



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Goals of this Talk

- 1 Quasi-, Hemi-Metrics a Natural Extension of Metrics
- 2 Most Classical Theorems Adapt

... proved very recently.

- 3 Non-Determinism and Probabilistic Choice
- **4** Simulation Hemi-Metrics

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

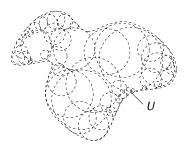
◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- 8 Notions of Completion
- 9 Conclusion



The Open Ball Topology

As in the symmetric case, define:



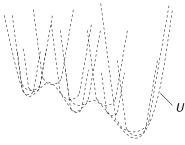
Definition (Open Ball Topology)

(日)、

An open U is a union of open balls.

The Open Ball Topology

As in the symmetric case, define:



Definition (Open Ball Topology) An open *U* is a union of open balls.

- ... but open balls are stranger.
- / Note: there are more relevant topologies, generalizing the Scott topology [Rutten96,BvBR98], but I'll try to remain simple as long as I can...

The Specialization Quasi-Ordering

Definition (\leq)

Let $x \leq y$ iff (equivalently):

every open containing x also contains y

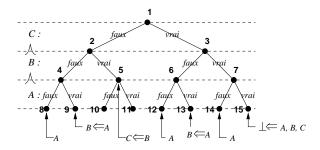
$$d(x,y)=0.$$

This would be trivial in the symmetric case.

Example: $d_{\mathbb{R}}(x, y) = \max(x - y, 0)$ on \mathbb{R} . Then \leq is the usual ordering.

Excuse Me for Turning Everything Upside-Down...

... but I'm a computer scientist. To me, trees look like this:



イロト 不得 トイヨト イヨト

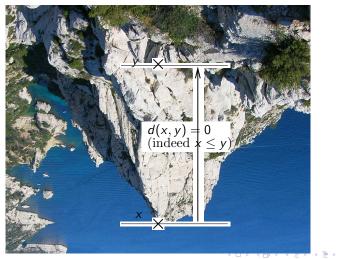
ъ

with the root on top, and the leaves at the bottom.

Excuse Me for Turning Everything Upside-Down...

NRIA

... but you should really look at hills this way:



Symmetrization

Definition (d^{sym})

If d is a quasi-metric, then

$$d^{sym}(x,y) = \max(d(x,y), \underbrace{d(y,x)}_{d^{op}(x,y)})$$

is a metric.

Example:
$$d_{\mathbb{R}}^{sym}(x, y) = |x - y|$$
 on \mathbb{R} .

Motto: A quasi-metric *d* describes

- a metric d^{sym}
- \blacksquare a partial ordering \leq
- and possibly more.

$$(x \leq y \Leftrightarrow d(x,y) = 0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

My Initial Impetus

Consider two transition systems T_1 , T_2 .

- Does T_1 simulate T_2 ? $(T_1 \le T_2)$
- Is T_1 close in behaviour to T_2 ? $(d^{sym}(T_1, T_2) \le \epsilon)$notions of *bisimulation metrics* [DGJP04,vBW04]

These questions are subsumed by computing simulation hemi-metrics between T_1 and T_2 [JGL08].

- Transition Systems

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

- Transition Systems

Non-Deterministic Transition Systems

Definition

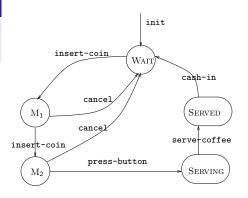
State space X Transition map $\delta : X \to \mathbb{P}(X)$

I'll assume:

- $\delta(x) \neq \emptyset$ (no deadlock)
- δ continuous (mathematically practical)
- δ(x) closed (does not restrict generality)

Lower Vietoris topology on $\mathbb{P}(X)$, generated by

 $\Diamond U = \{A \mid A \cap U \neq \emptyset\}, \quad U \text{ open}$



Transition Systems

The Hausdorff-Hoare Hemi-Metric

Under these conditions, δ is a continuous map from X to the Hoare powerdomain

$$\mathfrak{H}(X) = \{F \text{ closed, non-empty}\}$$

with lower Vietoris topology.

SI Sectification Sectification Transition Systems

The Hausdorff-Hoare Hemi-Metric

Under these conditions, δ is a continuous map from X to the Hoare powerdomain

 $\mathcal{H}(X) = \{F \text{ closed, non-empty}\}$

with lower Vietoris topology. When X, d is quasi-metric:

Definition ("One Half of the Hausdorff Metric")

$$d_{\mathcal{H}}(F,F') = \sup_{x \in F} \inf_{x' \in F'} d(x,x')$$

Theorem (JGL08)

If X^{op} is compact (more generally, precompact), then lower Vietoris = open ball topology of $d_{\mathcal{H}}$ on $\mathcal{H}(X)$

- Transition Systems

Probabilistic Transition Systems

Definition

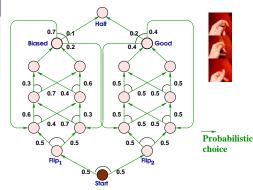
State space X Transition map $\delta: X \rightarrow \mathbf{V}_1(X)$

I'll assume:

- V₁(X) space of probabilities
- δ continuous (mathematically practical)

Weak topology on $V_1(X)$, generated by

$$[f>r] = \{\nu \in \mathbf{V}_1(X) \mid \int_x f(x)d\nu > r\}, \quad f \text{ lsc, } r \in \mathbb{R}^+$$



-Transition Systems

The Hutchinson Hemi-Metric

Call $f: X \to \mathbb{R}$ *c*-Lipschitz iff

 $\mathsf{d}_{\mathbb{R}}(f(x), f(y)) \leq c \times d(x, y)$ (i.e., $f(x) - f(y) \leq d(x, y)$)

When X, d is quasi-metric:

Definition (à la Kantorovich-Hutchinson)

$$d_{\mathrm{H}}(\nu, \nu') = \sup_{f \ 1\text{-Lipschitz}} \mathsf{d}_{\mathbb{R}}(\int_{X} f(x) d\nu, \int_{X} f(x) d\nu')$$

Theorem (JGL08)

If X is totally bounded (e.g. X^{sym} compact)

Weak = open ball topology of $d_{\rm H}$ on $\mathbf{V}_1(X)$

in the symmetric case, replace $\mathsf{d}_{\mathbb{R}}$ by $\mathsf{d}_{\mathbb{R}}^{\textit{sym}}$

... replace total boundedness by separability+completeness?

└─ Transition Systems

A Unifiying View

Represent spaces of non-det./prob. choice as previsions [JGL07], i.e., certain functionals $\underbrace{\langle X \to \mathbb{R}^+ \rangle}_{lsc} \to \mathbb{R}^+$ • $\nu \in \mathbf{V}_1(X)$ by $\lambda h \in \langle X \to \mathbb{R}^+ \rangle \cdot \int_x h(x) d\nu$ (Markov) • $F \in \mathcal{H}(X)$ by $\lambda h \in \langle X \to \mathbb{R}^+ \rangle \cdot \sup_{x \in F} h(x)$

Theorem

 $V_1(X) \cong$ linear previsions $\mathfrak{H}(X) \cong$ sup-preserving previsions

$$(F(h+h')=F(h)+F(h'))$$

Leads to natural generalization...

└─ Transition Systems

A Unifiying View

Represent spaces of non-det./prob. choice as previsions [JGL07], i.e., certain functionals $\underbrace{\langle X \to \mathbb{R}^+ \rangle}_{lsc} \to \mathbb{R}^+$ • $\nu \in \mathbf{V}_1(X)$ by $\lambda h \in \langle X \to \mathbb{R}^+ \rangle \cdot \int_x h(x) d\nu$ (Markov) • $F \in \mathcal{H}(X)$ by $\lambda h \in \langle X \to \mathbb{R}^+ \rangle \cdot \sup_{x \in F} h(x)$

Theorem

 $V_1(X) \cong$ linear previsions $\mathfrak{H}(X) \cong$ sup-preserving previsions

$$(F(h+h')=F(h)+F(h'))$$

Leads to natural generalization...

Definition and Theorem (Hoare Prevision)

 $\Delta \mathbf{P}(X) =$ sublinear previsions $(F(h+h') \leq F(h) + F(h'))$ encode both \mathcal{H} and \mathbf{V}_1 , their sequential compositions, and no more.

- Transition Systems

Mixed Non-Det./Prob. Transition Systems

Definition

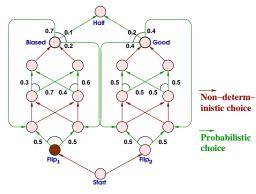
State space X Transition map $\delta: X \to \bigwedge \mathbf{P}(X)$

I'll assume:

- △ P(X) space of Hoare previsions
- δ continuous (mathematically practical)

Weak topology on $\bigwedge \mathbf{P}(X)$, generated by

 $[f > r] = \{F \in \bigwedge \mathbf{P}(X) \mid F(f) > r\}, \quad f \text{ lsc, } r \in \mathbb{R}^+$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Transition Systems

Pearl 1: The Hutchinson Hemi-Metric ... on Previsions

Motto: replace $\int_{x} f(x) d\nu$ by F(f) ("generalized average") When X, d is quasi-metric:

fication in the second se

Definition (à la Kantorovich-Hutchinson)

 $d_{\mathrm{H}}(F, F') = \sup_{f \text{ 1-Lipschitz}} d_{\mathbb{R}}(F(f), F'(f))$

Theorem (JGL08)

If X is totally bounded (e.g. X^{sym} compact)

Weak = open ball topology of $d_{\rm H}$ on $\bigwedge \mathbf{P}(X)$

Also, we retrieve the usual hemi-metrics/topologies on $\mathcal{H}(X)$, $V_1(X)$ through the encoding as previsions

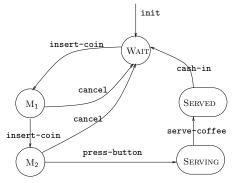
└─ Transition Systems

Prevision Transition Systems

Add action labels $\ell \in L$, to control system:

Definition (PrTS)

A prevision transition system π is a family of continuous maps $\pi_{\ell} : X \to \bigwedge \mathbf{P}(X)$, $\ell \in L$.



L is a set of actions that P has control over;

π_ℓ(x)(h) is the generalized average gain when, from state x, we play ℓ ∈ L—receiving h(y) if landed on y.

Remark. Notice the similarity with Markov chains. We just replace probabilities by previsions.

Transition Systems

Evaluating Generalized Average Payoffs

As in Markov Decision Processes $(1\frac{1}{2}$ -player games), let:

- P pick action ℓ at each step
- gets reward $r_{\ell}(x) \in \mathbb{R}$ (from state x)
- **Discount** $\gamma \in (0, 1)$

The generalized average payoff at state x in internal state q:

$$V_q(x) = \sup_{\ell} \left[r_{\ell}(x) + \gamma \widehat{\pi}_{\ell}(x) (V_{q'}) \right]$$

Generalizes classical fixpoint formula for payoff in MDPs.

- Transition Systems

Simulation Hemi-Metric

Recall
$$V_q(x) = \sup_{\ell} \left[r_{\ell}(x) + \gamma \widehat{\pi}_{\ell}(x) (V_{q'}) \right]$$

Definition (Simulation Hemi-Metric d_{π})

 $\begin{aligned} & \mathsf{d}_{\pi}(x,y) = \sup_{\ell} \left[\mathsf{d}_{\mathbb{R}}(r_{\ell}(x), r_{\ell}(y)) + \gamma \times (\mathsf{d}_{\pi})_{\mathrm{H}}(\pi_{\ell}(x), \pi_{\ell}(y)) \right] \\ & - \mathsf{a} \text{ least fixpoint over the complete lattice of all hemi-metrics on } X. \end{aligned}$

-Transition Systems

Simulation Hemi-Metric

Recall
$$V_q(x) = \sup_{\ell} \left[r_{\ell}(x) + \gamma \widehat{\pi}_{\ell}(x) (V_{q'}) \right]$$

Definition (Simulation Hemi-Metric d_{π})

 $\begin{aligned} & \frac{d_{\pi}(x,y) = \sup_{\ell} \left[d_{\mathbb{R}}(r_{\ell}(x), r_{\ell}(y)) + \gamma \times (\frac{d_{\pi}}{2})_{\mathrm{H}}(\pi_{\ell}(x), \pi_{\ell}(y)) \right] \\ & - \mathrm{a \ least \ fixpoint \ over \ the \ complete \ lattice \ of \ all \ hemi-metrics \ on \ X. \end{aligned}$

Proposition

$$V_q(x) - V_q(y) \le d_\pi(x, y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



└─ Transition Systems

Simulation Hemi-Metric

In particular, close points have near-equal payoffs

Bounding Deviation

$$|V_q(x) - V_q(y)| \leq d^{sym}_{\pi}(x,y)$$

And simulated states have higher payoffs

Simulation

Let x simulate y iff
$$x \leq^{d_{\pi}} y$$
 (i.e., $d_{\pi}(x, y) = 0$)
If $x \leq^{d_{\pi}} y$, then $V_q(x) \leq V_q(y)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

└─ Transition Systems

A Note on Bisimulation Metrics

We retrieve the bisimulation (pseudo-)metric of [DGJP04,vBW04,FPP05]) as: $d_{\pi}^{*}(x, y) = \sup_{\ell} [d_{\mathbb{R}}^{sym}(r_{\ell}(x), r_{\ell}(y)) + \gamma \times (d_{\pi}^{*})_{\mathrm{H}}(\pi_{\ell}(x), \pi_{\ell}(y))]$

- Of course, our simulation quasi-metrics are inspired by their work
- But simulation required more:

Even in metric spaces, simulation quasi-metric spaces require the theory of quasi-metric spaces, with properly generalized Hutchinson quasi-metric

└─ The Theory of Quasi-Metric Spaces

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

The Theory of Quasi-Metric Spaces

The Theory of Quasi-Metric Spaces

I hope I have convinced you there was a need to study quasi-metric spaces, not just metric spaces

- Fortunately, a lot has happened recently
- I'll mostly concentrate on notions of completeness
- But let's start with an easy pearl.

└─ The Theory of Quasi-Metric Spaces

Pearl 2: Wilson's Theorem

Remember the following classic?

Theorem (Urysohn-Tychonoff, Early 20th Century)

For countably-based spaces, metrizability \Leftrightarrow regular Hausdorff.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Proof: hard.

└─ The Theory of Quasi-Metric Spaces

Pearl 2: Wilson's Theorem

Remember the following classic?

Theorem (Urysohn-Tychonoff, Early 20th Century)

For countably-based spaces, metrizability \Leftrightarrow regular Hausdorff.

Proof: hard. We have the much simpler:

Theorem (Wilson31)

For countably-based spaces, hemi-metrizability \Leftrightarrow TRUE.

Proof: let $(U_n)_{n \in \mathbb{N}}$ be countable base. Define $d_n(x, y) = 1$ iff $x \in U_n$ and $y \notin U_n$; 0 otherwise. Together $(d_n)_{n \in \mathbb{N}}$ define the original topology. Then let $d(x, y) = \sup_{n \in \mathbb{N}} \frac{1}{2^n} d_n(x, y)$.

Outline

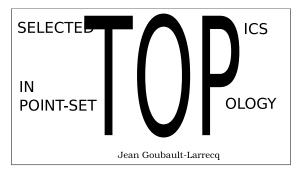
- 1 Introduction
- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

- Completeness is an important property of metric spaces.
- Many generalizations available:
 - Čech-completeness
 - Choquet-completeness
 - Dieudonné-completeness
 - Rudin-completeness
 - Smyth-completeness
 - Yoneda-completeness
 - ...
- I was looking for a unifying notion.
- I failed, but Smyth [Smyth88] and Yoneda [BvBR98] are the two most important for quasi-metric spaces.

A Shameless Ad

Most of this in Chapter 5 of:

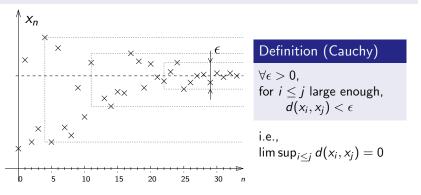


... a book on topology (mostly non-Hausdorff) with a view to domain theory (but not only).

Completeness in the Symmetric Case

Definition

A metric space is complete \Leftrightarrow every Cauchy net has a limit.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Basic Results in the Symmetric Case

The following are complete/preserve completeness:

■ ℝ^{sym}

```
(i.e., with d_{\mathbb{R}}^{sym}(x,y) = |x-y|)
```

- every compact metric space
- closed subspaces
- arbitrary coproducts
- countable topological products
- categorical products (sup metric)
- function spaces (all maps/u.cont./c-Lipschitz maps)

Complete Quasi-Metric Spaces

For quasi-metric spaces, two proposals:

Definition (Smyth-c. [Smyth88])	Definition (Yoneda-c. [BvBR98])
Every Cauchy net has a <i>d^{op}-limit</i>	Every Cauchy net has a <i>d</i> -limit
 complete metric spaces ℝ, ℝ∪ {+∞}, [a, b] 	• complete metric spaces • $\mathbb{R}, \mathbb{R} \cup \{+\infty\}, [a, b]$
$= \max_{x \in \mathcal{A}} \max$	
 symcompact spaces i.e., X^{sym} compact 	 Smyth-complete spaces e.g., symcompact spaces
finite products	categ./countable products
all coproducts	all coproducts

Maria 🛛 🕅 🕅 🕅 🕅

function spaces

■ function spaces (all/c-Lip.)

d-Limits

Used in the less demanding Yoneda-completeness:

Definition

Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy net x is a *d*-limit $\Leftrightarrow \forall y, d(x, y) = \limsup_{n \to +\infty} d(x_n, y).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example: if *d* metric, *d*-limit=ordinary limit.

d-Limits

Used in the less demanding Yoneda-completeness:

Definition

Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy net x is a *d*-limit $\Leftrightarrow \forall y, d(x, y) = \limsup_{n \to +\infty} d(x_n, y).$

Example: if *d* metric, *d*-limit=ordinary limit.

Example: given ordering \leq , $d_{\leq}(x, y) = \begin{cases} 0 & \text{if } x \leq y \\ 1 & \text{else} \end{cases}$:

Cauchy=eventually monotone, *d*-limit=sup. In this case, Yoneda-complete=dcpo.

d-Limits

Used in the less demanding Yoneda-completeness:

Definition

Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy net x is a *d*-limit $\Leftrightarrow \forall y, d(x, y) = \limsup_{n \to +\infty} d(x_n, y)$.

Example: if *d* metric, *d*-limit=ordinary limit.

Example: given ordering \leq , $d_{\leq}(x, y) = \begin{cases} 0 & \text{if } x \leq y \\ 1 & \text{else} \end{cases}$:

Cauchy=eventually monotone, *d*-limit=sup. In this case, Yoneda-complete=dcpo.

Warning: in general, *d*-limits are not limits (wrt. open ball topol.—need generalization of Scott topology [BvBR98]).

d^{op}-Limits

Used for the stronger notion of Smyth-completeness. Easier to understand topologically:

Fact

Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy net in X. Its d^{op} -limit (if any) is its ordinary limit in X^{sym} (if any).

Is there an alternate/more elegant characterizations of these notions of completeness? What do they mean?

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

- Introduced by [WeihrauchSchneider81]
- Characterize completeness through domain theory [EdalatHeckmann98]

... for metric spaces

- A natural idea:
 - Start all over again,
 - look for new relevant definitions of completeness
 - ... this time for quasi-metric spaces,
 - based on formal balls.



Formal Balls

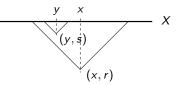
Definition

A formal ball is a pair (x, r), $x \in X$, $r \in \mathbb{R}^+$.

The poset $\mathbf{B}(X)$ of formal balls is ordered by

$$(x,r) \sqsubseteq (y,s) \Leftrightarrow d(x,y) \leq r-s$$

(Not reverse inclusion of corresponding closed balls)



Formal Balls

Definition

A formal ball is a pair (x, r), $x \in X$, $r \in \mathbb{R}^+$.

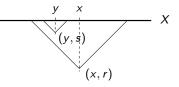
The poset $\mathbf{B}(X)$ of formal balls is ordered by

$$(x,r) \sqsubseteq (y,s) \Leftrightarrow d(x,y) \leq r-s$$

(Not reverse inclusion of corresponding closed balls)

Theorem (EdalatHeckmann98)

Let X be metric. X complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.



Pearl 3: the Kostanek-Waszkiewicz Theorem

Systification RS INRIA

Let us generalize to quasi-metric spaces. How about defining completeness as follows?

Definition (Proposal)

Let X be quasi-metric. X complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why not, but...

Pearl 3: the Kostanek-Waszkiewicz Theorem

Let us generalize to quasi-metric spaces. How about defining completeness as follows?

Definition (Proposal)

Let X be quasi-metric. X complete \Leftrightarrow **B**(X) dcpo.

Why not, but...this is a theorem:

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X Yoneda-complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

Moreover, given chain of formal balls $(x_n, r_n)_{n \in \mathbb{N}}$, with sup (x, r):

•
$$r = \inf_{n \in \mathbb{N}} r_n$$
,

- $(x_n)_{n\in\mathbb{N}}$ is Cauchy,
- x is the *d*-limit of $(x_n)_{n \in \mathbb{N}}$.

The Continuous Poset of Formal Balls

Let us return to metric spaces for a moment.

Theorem (EdalatHeckmann98)

Let X be metric. X complete $\Leftrightarrow \mathbf{B}(X)$ dcpo.

The Continuous Poset of Formal Balls

Let us return to metric spaces for a moment.

Theorem (EdalatHeckmann98)

Let X be metric. X complete $\Leftrightarrow \mathbf{B}(X)$ dcpo. Moreover,

■ **B**(*X*) is then a continuous dcpo

and
$$(x,r) \ll (y,s) \Leftrightarrow d(x,y) < r-s$$
 (not \leq)

A typical notion from domain theory:

• way-below: $B \ll B'$ iff for every chain $(B_i)_{i \in I}$ such that $B' \leq \sup_i B_i$, then $B \leq B_i$ for some *i*.

• continuous dcpo = every *B* is directed sup of all $B_i \ll B$. Example: $\overline{\mathbb{R}}^+$ ($r \ll s$ iff r = 0 or r < s)

-Formal Balls

Pearl 4: the Romaguera-Valero Theorem

Define \prec by: $(x, r) \prec (y, s) \Leftrightarrow d(x, y) < r - s$ How about defining completeness as follows? (X quasi-metric)

Definition (Proposal)

X complete $\Leftrightarrow \mathbf{B}(X)$ continuous dcpo with way-below \prec .

Why not, but...

Pearl 4: the Romaguera-Valero Theorem

Define \prec by: $(x, r) \prec (y, s) \Leftrightarrow d(x, y) < r - s$ How about defining completeness as follows? (X quasi-metric)

Definition (Proposal)

X complete \Leftrightarrow **B**(X) continuous dcpo with way-below \prec .

Why not, but...this is a theorem:

Theorem (Romaguera-Valero10)

X Smyth-complete $\Leftrightarrow \mathbf{B}(X)$ continuous dcpo with way-below \prec .

Moreover, given chain of formal balls $(x_n, r_n)_{n \in \mathbb{N}}$, with sup (x, r):

- $r = \inf_{n \in \mathbb{N}} r_n$,
- $(x_n)_{n\in\mathbb{N}}$ is Cauchy,
- x is the d^{op} -limit of $(x_n)_{n \in \mathbb{N}}$, i.e., its limit in X^{sym} .

The Gamut of Notions of Completeness

Spaces of formal balls is:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Weaker	Yoneda-complete a dcpo
	$d\mathchar`-$ a continuous d cpo
	d-algebraic Yoneda-complete a continuous dcpo with basis $(x, r), x d$ -finite
Stronger	Smyth-complete a continuous dcpo with $\ll = \prec$

└─ The Quasi-Metric Space of Formal Balls

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

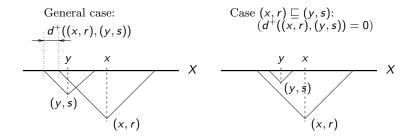
- The Quasi-Metric Space of Formal Balls

The Quasi-Metric Space of Formal Balls

Instead of considering $\mathbf{B}(X)$ as a poset, let us make it a quasi-metric space itself.

Definition (Rutten96)

Let $d^+((x,r),(y,s)) = \max(d(x,y) - r + s, 0)$



Sac

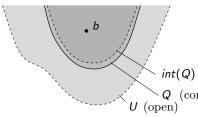
Note: \sqsubseteq is merely the specialization quasi-ordering of d^+ .

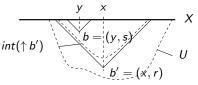
└─ The Quasi-Metric Space of Formal Balls

The C-Space of Formal Balls

Theorem

 $\mathbf{B}(X)$ is a *c*-space, i.e., for all $b \in U$ open in $\mathbf{B}(X)$, $b \in int(\uparrow b')$ for some $b' \in U$





Key: closed ball around (y, s), radius $\epsilon/2$, is $\uparrow(y, s + \epsilon/2)$

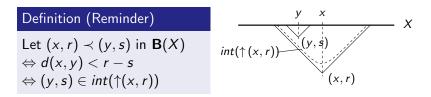
 \sim locally compact, where the interpolating compact is $\uparrow b'$ [Ershov73, Erné91]

(compact saturated)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

- The Quasi-Metric Space of Formal Balls

The Abstract Basis of Formal Balls



Fact (Keimel)

c-space = abstract basis

Theorem

 $\mathbf{B}(X), \prec$ is an abstract basis, i.e.:

- (transitivity) if $a \prec b \prec c$ then $a \prec c$
- (interpolation) if $(a_i)_{i=1}^n \prec c$ then $(a_i)_{i=1}^n \prec b \prec c$ for some b

— The Quasi-Metric Space of Formal Balls

C-Spaces and the Romaguera-Valero Thm (Pearl 5)

So B(X) is a c-space = an abstract basis **Note:** sober c-space = continuous dcpo with way-below \prec

The Quasi-Metric Space of Formal Balls

C-Spaces and the Romaguera-Valero Thm (Pearl 5)

So B(X) is a c-space = an abstract basis Note: sober c-space = continuous dcpo with way-below \prec

Theorem (Romaguera-Valero10)

X Smyth-complete $\Leftrightarrow \mathbf{B}(X)$ continuous dcpo with way-below \prec .

The Quasi-Metric Space of Formal Balls

C-Spaces and the Romaguera-Valero Thm (Pearl 5)

So B(X) is a c-space = an abstract basis Note: sober c-space = continuous dcpo with way-below \prec

Theorem (Romaguera-Valero10)

X Smyth-complete \Leftrightarrow **B**(X) continuous dcpo with way below \prec .

Theorem (JGL)

X Smyth-complete $\Leftrightarrow \mathbf{B}(X)$ sober in its open ball topology.



Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- 8 Notions of Completion
- 9 Conclusion



Notions of Completion

Can we embed any quasi-metric space in a Yoneda/Smyth-complete one?

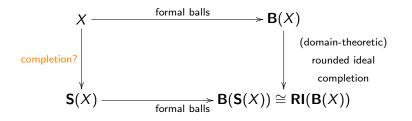
- Yes: Smyth-completion [Smyth88]
- Yes: Yoneda-completion [BvBR98]

Notions of Completion

Can we embed any quasi-metric space in a Yoneda/Smyth-complete one?

- Yes: Smyth-completion [Smyth88]
- Yes: Yoneda-completion [BvBR98]

Let us explore another way:



The Theory of Abstract Bases

A rounded ideal D in B, \prec is a non-empty subset of B s.t.:

- (down closed) if $a \prec b \in D$ then $a \in D$
- (directed) if $(a_i)_{i=1}^n \in D$ then $(a_i)_{i=1}^n \prec b$ for some $b \in D$.

Theorem (Rounded Ideal Completion)

The poset $\mathbf{RI}(B, \prec)$ of all rounded ideals, ordered by \subseteq is a continuous dcpo, with basis B.

Note: $\mathbf{RI}(\mathbf{B}(X), \prec)$ is just the sobrification of the c-space $\mathbf{B}(X)$.

The Formal Ball Completion

Definition

The formal ball completion S(X) is

■ space of rounded ideals $D \in \mathbf{RI}(\mathbf{B}(X), \prec)$... with zero aperture (inf{ $r \mid (x, r) \in D$ } = 0)

with Hausdorff-Hoare quasi-metric

$$d^+_{\mathcal{H}}(D,D') = \sup_{(x,r)\in D} \inf_{(y,s)\in D'} d^+((x,r),(y,s))$$

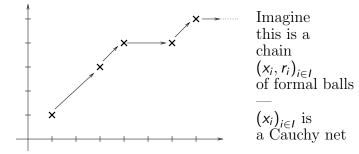
Theorem

 $\mathsf{B}(\mathsf{S}(X))\cong\mathsf{RI}(\mathsf{B}(X))$

Proof. iso maps (D, r) to D + r

... as expected.

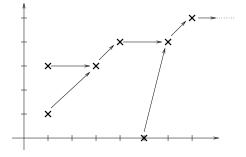
Comparison with Cauchy Completion



・ロト ・四ト ・ヨト ・ヨト

э

Comparison with Cauchy Completion

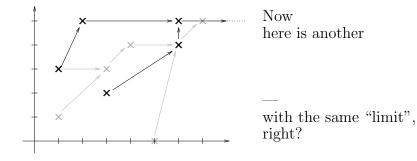


Imagine this is a directed family $(x_i, r_i)_{i \in I}$ of formal balls

 $(x_i)_{i \in I}$ is a Cauchy net

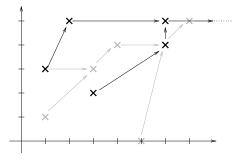
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Comparison with Cauchy Completion



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Comparison with Cauchy Completion



Instead of quotienting, (as in Smyth-completion) take the union of all these equivalent directed families

This is a rounded ideal.

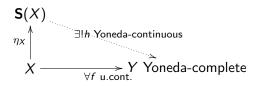
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Universal Property

Theorem

S(X) is the free Yoneda-complete space over X.

I.e., letting $\eta_X(x) = \{(y,r) \mid (y,r) \prec (x,0)\} \in \mathbf{S}(X)$ (unit):



 Warning: morphisms:
 uniformly continuous maps

 q-metric spaces
 uniformly continuous maps

 Yoneda-compl. qms
 u.c. + preserve d-limits ("Yoneda-continuity")

 (Yoneda-continuity=u.continuity in metric spaces)

Yoneda-Completion

Definition (Yoneda completion [BvBR98])

 $\mathbf{Y}(X) = D^{op}$ -closure of $\operatorname{Im}(\eta_X^{\mathbf{Y}})$ in $[X o \overline{\mathbb{R}}^+]_1$

- Very natural from Lawvere's view of quasi-metric spaces as $\overline{\mathbb{R}}^{+ op}$ -enriched categories
 - + adequate version of Yoneda Lemma

(..., i.e., $\eta_X^{\mathbf{Y}}$ is an isometric embedding)

• $\mathbf{Y}(X)$ also yields the free Yoneda-complete space over X

Formal Ball and Yoneda Completion

${\boldsymbol{\mathsf{S}}}$ and ${\boldsymbol{\mathsf{Y}}}$ both build free Yoneda-complete space

Corollary

 $\mathbf{S}(X) \cong \mathbf{Y}(X)$, naturally in X

Concretely:

$$D \in \mathbf{S}(X) \quad \mapsto \quad \lambda y \in X \cdot \limsup_{(x,r) \in D} d(y,x)$$
$$= \quad \lambda y \in X \cdot \inf_{(x,r) \in D}^{\downarrow} (d(y,x) + r)$$

Inverse much harder to characterize concretely (unique extension of η^Y_X : X → Y(X)...)

Smyth-Completeness Again (Pearl 6)

- **S** \cong **Y** is a monad on quasi-metric spaces
- but not idempotent $(S^2(X) \not\cong S(X)$, except if X metric)

Theorem (JGL)

Let X be quasi-metric. The following are equivalent:

- $\eta_X : X \to \mathbf{S}(X)$ is bijective
- $\eta_X : X \to \mathbf{S}(X)$ is an isometry
- X is Smyth-complete

Example: $X = \overline{\mathbb{R}}^+$ Y-complete, not S-complete, so $\mathbf{S}(\overline{\mathbb{R}}^+) \supseteq \overline{\mathbb{R}}^+$ **Example:** any dcpo X, with $d_{\leq}(x, y) = 0$ iff $x \leq y$, is Yoneda-complete, but $\mathbf{S}(X)$ is ideal completion of $X \ (\neq X)$

Conclusion

Outline

- 1 Introduction
- 2 The Basic Theory
- 3 Transition Systems
- 4 The Theory of Quasi-Metric Spaces
- 5 Completeness
- 6 Formal Balls
- 7 The Quasi-Metric Space of Formal Balls

- 8 Notions of Completion
- 9 Conclusion

Conclusion

- Quasi-metrics needed for simulation
- Many theorems from the metric case adapt, e.g.

"weak = open ball topol. of d_{H} on $\mathbf{V}_1(X)$ "

And even generalize, e.g.

"weak = open ball topol. of d_{H} on $\bigwedge \mathbf{P}(X)$ "

- Many recent advances.
- Demonstrated through

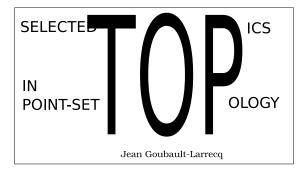
completeness for quasi-metric spaces now clarified through

the unifying notion of formal balls

 Many other topics: fixpoint theorems [Rutten96], generalized Scott topology [BvBR98], Kantorovich-Rubinstein Theorem revisited [JGL08], models of Polish spaces [Martin03], etc.

Conclusion

And Remember...



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで