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Definition (Metric)

x = y ⇔ d(x , y) = 0

d(x , y) = d(y , x)

d(x , y) ≤ d(x , z) + d(z , y)
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Quasi-

Hemi-Metric Spaces

Center

Radius

Definition (Hemi-Metric)

x = y ⇒ d(x , y) = 0

d(x , y) = d(y , x)

d(x , y) ≤ d(x , z) + d(z , y)
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Introduction

Goals of this Talk

1 Quasi-, Hemi-Metrics a Natural Extension of Metrics

2 Most Classical Theorems Adapt
. . . proved very recently.

3 Non-Determinism and Probabilistic Choice

4 Simulation Hemi-Metrics
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Quasi-Metric Spaces

The Basic Theory

The Open Ball Topology

As in the symmetric case, define:

U

Definition (Open Ball Topology)

An open U is a union of open
balls.

. . . but open balls are stranger.

Note: there are more relevant topolo-
gies, generalizing the Scott topology
[Rutten96,BvBR98], but I’ll try to re-
main simple as long as I can. . .
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The Basic Theory

The Specialization Quasi-Ordering

Definition (≤)

Let x ≤ y iff (equivalently):

every open containing x also contains y

d(x , y) = 0.

This would be trivial in the symmetric case.

Example: dℝ(x , y) = max(x − y , 0) on ℝ.
Then ≤ is the usual ordering.
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The Basic Theory

Excuse Me for Turning Everything Upside-Down. . .

. . . but I’m a computer scientist. To me, trees look like this:

B      A
B      A

faux vrai

faux vrai faux vrai

faux faux faux fauxvrai vrai vrai vrai

C :

B :

A :

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

A C      B A A
A, B, C

with the root on top, and the leaves at the bottom.
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The Basic Theory

Excuse Me for Turning Everything Upside-Down. . .

. . . but you should really look at hills this way:

y

x

d(x , y) = 0
(indeed x ≤ y)



Quasi-Metric Spaces

The Basic Theory

Symmetrization

Definition (d sym)

If d is a quasi-metric, then

d sym(x , y) = max(d(x , y), d(y , x)︸ ︷︷ ︸
dop(x ,y)

)

is a metric.

Example: dsym
ℝ (x , y) = ∣x − y ∣ on ℝ.

Motto: A quasi-metric d describes

a metric d sym

a partial ordering ≤ (x ≤ y ⇔ d(x , y) = 0)

and possibly more.
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The Basic Theory

My Initial Impetus

Consider two transition systems T1, T2.

Does T1 simulate T2? (T1 ≤ T2)

Is T1 close in behaviour to T2? (d sym(T1,T2) ≤ �)
. . . notions of bisimulation metrics [DGJP04,vBW04]

These questions are subsumed by computing simulation
hemi-metrics between T1 and T2 [JGL08].
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Quasi-Metric Spaces

Transition Systems

Non-Deterministic Transition Systems

Definition

State space X
Transition map � : X → ℙ(X )

I’ll assume:

�(x) ∕= ∅ (no deadlock)

� continuous
(mathematically
practical)

�(x) closed (does not
restrict generality)

Wait

M1

M2

init

insert-coin

cancel

insert-coin

cancel

press-button

serve-coffee

cash-in

Serving

Served

Lower Vietoris topology on ℙ(X ), generated by

♢U = {A ∣ A ∩ U ∕= ∅}, U open



Quasi-Metric Spaces

Transition Systems

The Hausdorff-Hoare Hemi-Metric

Under these conditions, � is a continuous map from X to the
Hoare powerdomain

ℋ(X ) = {F closed, non-empty}
with lower Vietoris topology.

When X , d is quasi-metric:

Definition (“One Half of the Hausdorff Metric”)

dℋ(F ,F ′) = sup
x∈F

inf
x ′∈F ′

d(x , x ′)

Theorem (JGL08)

If X op is compact (more generally, precompact), then

lower Vietoris = open ball topology of dℋ on ℋ(X )
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Transition Systems

Probabilistic Transition Systems

Definition

State space X
Transition map
� : X → V1(X )

I’ll assume:

V1(X ) space of
probabilities

� continuous
(mathematically
practical)
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Weak topology on V1(X ), generated by

[f > r ] = {� ∈ V1(X ) ∣
∫
x

f (x)d� > r}, f lsc, r ∈ ℝ+
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Transition Systems

The Hutchinson Hemi-Metric

Call f : X → ℝ c-Lipschitz iff

dℝ(f (x), f (y)) ≤ c × d(x , y) (i.e., f (x)− f (y) ≤ d(x , y))

When X , d is quasi-metric:

Definition (à la Kantorovich-Hutchinson)

dH(�, � ′) = supf 1-Lipschitz dℝ(
∫
x f (x)d�,

∫
x f (x)d� ′)

Theorem (JGL08)

If X is totally bounded (e.g. X sym compact)

Weak = open ball topology of dH on V1(X )

in the symmetric case, replace dℝ by dsym
ℝ

. . . replace total boundedness by separability+completeness?
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Transition Systems

A Unifiying View

Represent spaces of non-det./prob. choice as previsions [JGL07],
i.e., certain functionals ⟨X → ℝ+⟩︸ ︷︷ ︸

lsc

→ ℝ+

� ∈ V1(X ) by �h ∈ ⟨X → ℝ+⟩ ⋅
∫
x h(x)d� (Markov)

F ∈ ℋ(X ) by �h ∈ ⟨X → ℝ+⟩ ⋅ supx∈F h(x)

Theorem

V1(X ) ∼= linear previsions (F (h + h′) = F (h) + F (h′))
ℋ(X ) ∼= sup-preserving previsions

Leads to natural generalization. . .

Definition and Theorem (Hoare Prevision)
a

P(X ) = sublinear previsions (F (h + h′) ≤ F (h) + F (h′))
encode both ℋ and V1, their sequential compositions, and no more.
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Transition Systems

Mixed Non-Det./Prob. Transition Systems

Definition

State space X
Transition map
� : X →

a
P(X )

I’ll assume:
a
P(X ) space of Hoare

previsions

� continuous
(mathematically
practical)
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Transition Systems

Pearl 1: The Hutchinson Hemi-Metric . . . on Previsions

Motto: replace
∫
x f (x)d� by F (f ) (“generalized average”)

When X , d is quasi-metric:

Definition (à la Kantorovich-Hutchinson)

dH(F ,F ′) = supf 1-Lipschitz dℝ(F (f ),F ′(f ))

Theorem (JGL08)

If X is totally bounded (e.g. X sym compact)

Weak = open ball topology of dH on
a
P(X )

Also, we retrieve the usual hemi-metrics/topologies on ℋ(X ),
V1(X ) through the encoding as previsions
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Transition Systems

Prevision Transition Systems

Add action labels ℓ ∈ L, to
control system:

Definition (PrTS)

A prevision transition system
� is a family of continuous
maps �ℓ : X →

a
P(X ),

ℓ ∈ L.

Wait

M1

M2

init

insert-coin

cancel

insert-coin

cancel

press-button

serve-coffee

cash-in

Serving

Served

L is a set of actions that P has control over;

�ℓ(x)(h) is the generalized average gain when, from state x ,
we play ℓ ∈ L—receiving h(y) if landed on y .

Remark. Notice the similarity with Markov chains. We just
replace probabilities by previsions.
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Transition Systems

Evaluating Generalized Average Payoffs

As in Markov Decision Processes (11
2 -player games), let:

P pick action ℓ at each step

gets reward rℓ(x) ∈ ℝ (from state x)

Discount  ∈ (0, 1)

The generalized average payoff at state x in internal state q:

Vq(x) = sup
ℓ

[
rℓ(x) + �̂ℓ(x)(Vq′)

]
Generalizes classical fixpoint formula for payoff in MDPs.



Quasi-Metric Spaces

Transition Systems

Simulation Hemi-Metric

Recall Vq(x) = supℓ
[
rℓ(x) + �̂ℓ(x)(Vq′)

]
Definition (Simulation Hemi-Metric d�)

d�(x , y) = supℓ [dℝ(rℓ(x), rℓ(y)) +  × (d�)H(�ℓ(x), �ℓ(y))]
—a least fixpoint over the complete lattice of all hemi-metrics on X .

Proposition

Vq(x)− Vq(y) ≤ d�(x , y)
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Transition Systems

Simulation Hemi-Metric

In particular, close points have near-equal payoffs

Bounding Deviation

∣Vq(x)− Vq(y)∣ ≤ d sym
� (x , y)

And simulated states have higher payoffs

Simulation

Let x simulate y iff x ≤d� y (i.e., d�(x , y) = 0)
If x ≤d� y , then Vq(x) ≤ Vq(y).
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Transition Systems

A Note on Bisimulation Metrics

We retrieve the bisimulation (pseudo-)metric of
[DGJP04,vBW04,FPP05]) as:
d∗�(x , y) = supℓ [dsym

ℝ (rℓ(x), rℓ(y)) +  × (d∗�)H(�ℓ(x), �ℓ(y))]

Of course, our simulation quasi-metrics are inspired by their
work

But simulation required more:

Even in metric spaces, simulation quasi-metric spaces require
the theory of quasi-metric spaces, with properly generalized

Hutchinson quasi-metric
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The Theory of Quasi-Metric Spaces

The Theory of Quasi-Metric Spaces

I hope I have convinced you there was a need to study
quasi-metric spaces, not just metric spaces

Fortunately, a lot has happened recently

I’ll mostly concentrate on notions of completeness

But let’s start with an easy pearl.
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The Theory of Quasi-Metric Spaces

Pearl 2: Wilson’s Theorem

Remember the following classic?

Theorem (Urysohn-Tychonoff, Early 20th Century)

For countably-based spaces, metrizability ⇔ regular Hausdorff.

Proof: hard.

We have the much simpler:

Theorem (Wilson31)

For countably-based spaces, hemi-metrizability ⇔ True.

Proof: let (Un)n∈ℕ be countable base.
Define dn(x , y) = 1 iff x ∈ Un and y ∕∈ Un; 0 otherwise.
Together (dn)n∈ℕ define the original topology.
Then let d(x , y) = supn∈ℕ

1
2n dn(x , y).
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Completeness

Completeness

Completeness is an important property of metric spaces.

Many generalizations available:

Čech-completeness
Choquet-completeness
Dieudonné-completeness
Rudin-completeness
Smyth-completeness
Yoneda-completeness
. . .

I was looking for a unifying notion.

I failed, but Smyth [Smyth88] and Yoneda [BvBR98] are the
two most important for quasi-metric spaces.



Quasi-Metric Spaces

Completeness

A Shameless Ad

Most of this in Chapter 5 of:

. . . a book on topology (mostly non-Hausdorff)
with a view to domain theory (but not only).



Quasi-Metric Spaces

Completeness

Completeness in the Symmetric Case

Definition

A metric space is complete ⇔ every Cauchy net has a limit.

n302520151050

xn

� Definition (Cauchy)

∀� > 0,
for i ≤ j large enough,

d(xi , xj) < �

i.e.,
lim supi≤j d(xi , xj) = 0



Quasi-Metric Spaces

Completeness

Basic Results in the Symmetric Case

The following are complete/preserve completeness:

ℝsym (i.e., with dsymℝ (x , y) = ∣x − y ∣)
every compact metric space

closed subspaces

arbitrary coproducts

countable topological products

categorical products (sup metric)

function spaces (all maps/u.cont./c-Lipschitz maps)



Quasi-Metric Spaces

Completeness

Complete Quasi-Metric Spaces

For quasi-metric spaces, two proposals:

Definition (Smyth-c. [Smyth88])

Every Cauchy net has a dop-limit

complete metric spaces

ℝ, ℝ ∪ {+∞}, [a, b]
. . . with

symcompact spaces
i.e., X sym compact

finite products

all coproducts

function spaces

Definition (Yoneda-c. [BvBR98])

Every Cauchy net has a d-limit

complete metric spaces

ℝ, ℝ ∪ {+∞}, [a, b]
dℝ(x , y) = max(x − y , 0)

Smyth-complete spaces
e.g., symcompact spaces

categ./countable products

all coproducts

function spaces (all/c-Lip.)



Quasi-Metric Spaces

Completeness

d-Limits

Used in the less demanding Yoneda-completeness:

Definition

Let (xn)n∈ℕ be a Cauchy net
x is a d-limit ⇔ ∀y , d(x , y) = lim supn→+∞ d(xn, y).

Example: if d metric, d-limit=ordinary limit.

Example: given ordering ≤, d≤(x , y) =

{
0 if x ≤ y
1 else

:

Cauchy=eventually monotone, d-limit=sup.
In this case, Yoneda-complete=dcpo.

Warning: in general, d-limits are not limits (wrt. open ball
topol.—need generalization of Scott topology [BvBR98]).
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Completeness

dop-Limits

Used for the stronger notion of Smyth-completeness.
Easier to understand topologically:

Fact

Let (xn)n∈ℕ be a Cauchy net in X .
Its dop-limit (if any) is its ordinary limit in X sym (if any).

Is there an alternate/more elegant characterizations of these
notions of completeness? What do they mean?
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Formal Balls

Formal Balls

Introduced by [WeihrauchSchneider81]

Characterize completeness through domain theory
[EdalatHeckmann98]

. . . for metric spaces

A natural idea:

Start all over again,
look for new relevant definitions of completeness

. . . this time for quasi-metric spaces,
based on formal balls.



Quasi-Metric Spaces

Formal Balls

Formal Balls

Definition

A formal ball is a pair (x , r), x ∈ X , r ∈ ℝ+.

The poset B(X ) of formal balls is
ordered by

(x , r) ⊑ (y , s)⇔ d(x , y) ≤ r − s

(Not reverse inclusion of
corresponding closed balls)

(y , s)

(x , r)

y x
X

Theorem (EdalatHeckmann98)

Let X be metric. X complete ⇔ B(X ) dcpo.
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Formal Balls

Pearl 3: the Kostanek-Waszkiewicz Theorem

Let us generalize to quasi-metric spaces.
How about defining completeness as follows?

Definition (Proposal)

Let X be quasi-metric. X complete ⇔ B(X ) dcpo.

Why not, but. . .

this is a theorem:

Theorem (Kostanek-Waszkiewicz10)

Let X be quasi-metric. X Yoneda-complete ⇔ B(X ) dcpo.

Moreover, given chain of formal balls (xn, rn)n∈ℕ, with sup (x , r):

r = infn∈ℕ rn,

(xn)n∈ℕ is Cauchy,

x is the d-limit of (xn)n∈ℕ.
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Formal Balls

The Continuous Poset of Formal Balls

Let us return to metric spaces for a moment.

Theorem (EdalatHeckmann98)

Let X be metric. X complete ⇔ B(X ) dcpo.

Moreover,

B(X ) is then a continuous dcpo

and (x , r)≪ (y , s)⇔ d(x , y) < r − s (not ≤)

A typical notion from domain theory:

way-below: B ≪ B ′ iff for every chain (Bi )i∈I such that
B ′ ≤ supi Bi , then B ≤ Bi for some i .

continuous dcpo = every B is directed sup of all Bi ≪ B.

Example: ℝ+
(r ≪ s iff r = 0 or r < s)
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way-below: B ≪ B ′ iff for every chain (Bi )i∈I such that
B ′ ≤ supi Bi , then B ≤ Bi for some i .

continuous dcpo = every B is directed sup of all Bi ≪ B.

Example: ℝ+
(r ≪ s iff r = 0 or r < s)
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Formal Balls

Pearl 4: the Romaguera-Valero Theorem

Define ≺ by: (x , r) ≺ (y , s)⇔ d(x , y) < r − s
How about defining completeness as follows? (X quasi-metric)

Definition (Proposal)

X complete ⇔ B(X ) continuous dcpo with way-below ≺.

Why not, but. . .

this is a theorem:

Theorem (Romaguera-Valero10)

X Smyth-complete ⇔ B(X ) continuous dcpo with way-below ≺.

Moreover, given chain of formal balls (xn, rn)n∈ℕ, with sup (x , r):

r = infn∈ℕ rn,

(xn)n∈ℕ is Cauchy,

x is the dop-limit of (xn)n∈ℕ, i.e., its limit in X sym.
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The Gamut of Notions of Completeness

Stronger

Weaker

Smyth-complete

Yoneda-complete

d-continuous Yoneda-complete

d-algebraic Yoneda-complete

Spaces of formal balls is:

a dcpo

a continuous dcpo

a continuous dcpo with basis
(x , r), x d-finite

a continuous dcpo
with ≪=≺
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The Quasi-Metric Space of Formal Balls

The Quasi-Metric Space of Formal Balls

Instead of considering B(X ) as a poset, let us make it a
quasi-metric space itself.

Definition (Rutten96)

Let d+((x , r), (y , s)) = max(d(x , y)− r + s, 0)

(x , r)

x
X

y

General case:

d+((x , r), (y , s))

(y , s)
(y , s)

(x , r)

y x
X

Case (x , r) ⊑ (y , s):
(d+((x , r), (y , s)) = 0)

Note: ⊑ is merely the specialization quasi-ordering of d+.
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The C-Space of Formal Balls

Theorem

B(X ) is a c-space, i.e., for all
b ∈ U open in B(X ),
b ∈ int(↑ b′) for some b′ ∈ U

int(↑ b′)
b = (y , s)

b′ = (x , r)

y x
X

U

Key: closed ball around (y , s), radius
�/2, is ↑(y , s + �/2)

b

U

int(Q)

Q (compact saturated)
(open)

∼ locally compact, where the
interpolating compact is ↑ b′

[Ershov73, Erné91]
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The Abstract Basis of Formal Balls

Definition (Reminder)

Let (x , r) ≺ (y , s) in B(X )
⇔ d(x , y) < r − s
⇔ (y , s) ∈ int(↑(x , r))

(y , s)

(x , r)

y x
X

int(↑ (x , r))

Fact (Keimel)

c-space = abstract basis

Theorem

B(X ),≺ is an abstract basis, i.e.:

(transitivity) if a ≺ b ≺ c then a ≺ c

(interpolation) if (ai )
n
i=1 ≺ c then (ai )

n
i=1 ≺ b ≺ c for some b
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The Quasi-Metric Space of Formal Balls

C-Spaces and the Romaguera-Valero Thm (Pearl 5)

So B(X ) is a c-space = an abstract basis
Note: sober c-space = continuous dcpo with way-below ≺

Theorem (Romaguera-Valero10)

Theorem (JGL)

X Smyth-complete ⇔ B(X ) sober in its open ball topology.
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Notions of Completion

Can we embed any quasi-metric space in a
Yoneda/Smyth-complete one?

Yes: Smyth-completion [Smyth88]

Yes: Yoneda-completion [BvBR98]

Let us explore another way:

X
formal balls //

completion?

��

B(X )

(domain-theoretic)

rounded ideal

completion
��

S(X )
formal balls

// B(S(X )) ∼= RI(B(X ))
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Notions of Completion

The Theory of Abstract Bases

A rounded ideal D in B,≺ is a non-empty subset of B s.t.:

(down closed) if a ≺ b ∈ D then a ∈ D

(directed) if (ai )
n
i=1 ∈ D then (ai )

n
i=1 ≺ b for some b ∈ D.

Theorem (Rounded Ideal Completion)

The poset RI(B,≺) of all rounded ideals, ordered by ⊆ is a
continuous dcpo, with basis B.

Note: RI(B(X ),≺) is just the sobrification of the c-space B(X ).
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Notions of Completion

The Formal Ball Completion

Definition

The formal ball completion S(X ) is

space of rounded ideals D ∈ RI(B(X ),≺)
. . . with zero aperture (inf{r ∣ (x , r) ∈ D} = 0)

with Hausdorff-Hoare quasi-metric

d+
ℋ(D,D ′) = sup(x ,r)∈D inf(y ,s)∈D′ d+((x , r), (y , s))

Theorem

B(S(X )) ∼= RI(B(X ))

Proof. iso maps (D, r) to D + r . . . as expected.
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Notions of Completion

Comparison with Cauchy Completion

—

(xi , ri)i∈I

this is a
Imagine

of formal balls

a Cauchy net
(xi)i∈I is

chain
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Notions of Completion

Comparison with Cauchy Completion

—

(xi , ri)i∈I

family
this is a directed
Imagine

of formal balls

a Cauchy net
(xi)i∈I is
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Notions of Completion

Comparison with Cauchy Completion

—

Now

right?
with the same “limit”,

here is another
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Notions of Completion

Comparison with Cauchy Completion

of all these equivalent
directed families
—
This is a
rounded ideal.

take the union

Instead of quotienting,
(as in Smyth-completion)
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Notions of Completion

Universal Property

Theorem

S(X ) is the free Yoneda-complete space over X .

I.e., letting �X (x) = {(y , r) ∣ (y , r) ≺ (x , 0)} ∈ S(X ) (unit):

S(X )

∃!h Yoneda-continuous

**
X ∀f u.cont.

//

�X

OO

Y Yoneda-complete

Warning: morphisms:
q-metric spaces uniformly continuous maps
Yoneda-compl. qms u.c. + preserve d-limits (“Yoneda-continuity”)

(Yoneda-continuity=u.continuity in metric spaces)



Quasi-Metric Spaces

Notions of Completion

Yoneda-Completion

Let [X → ℝ+
]1 = {1-Lipschitz maps : X → ℝ+}, with sup

quasi-metric D(f , g) = supx∈X d(f (x), g(x)).

Let �YX (x) = d( , x) : X → [X → ℝ+
]1

Definition (Yoneda completion [BvBR98])

Y(X ) = Dop-closure of Im(�YX ) in [X → ℝ+
]1

Very natural from Lawvere’s view of quasi-metric spaces as

ℝ+op
-enriched categories

+ adequate version of Yoneda Lemma
(. . . , i.e., �YX is an isometric embedding)

Y(X ) also yields the free Yoneda-complete space over X
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Formal Ball and Yoneda Completion

S and Y both build free Yoneda-complete space

Corollary

S(X ) ∼= Y(X ), naturally in X

Concretely:

D ∈ S(X ) 7→ �y ∈ X ⋅ lim sup(x ,r)∈D d(y , x)

= �y ∈ X ⋅ inf↓(x ,r)∈D(d(y , x) + r)

Inverse much harder to characterize concretely
(unique extension of �YX : X → Y(X ). . . )
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Notions of Completion

Smyth-Completeness Again (Pearl 6)

S ∼= Y is a monad on quasi-metric spaces

but not idempotent (S2(X ) ∕∼= S(X ), except if X metric)

Theorem (JGL)

Let X be quasi-metric. The following are equivalent:

�X : X → S(X ) is bijective

�X : X → S(X ) is an isometry

X is Smyth-complete

Example: X = ℝ+
Y-complete, not S-complete, so S(ℝ+

) ⊋ ℝ+

Example: any dcpo X , with d≤(x , y) = 0 iff x ≤ y , is
Yoneda-complete, but S(X ) is ideal completion of X ( ∕= X )
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Conclusion

Quasi-metrics needed for simulation

Many theorems from the metric case adapt, e.g.

“weak = open ball topol. of dH on V1(X )”

And even generalize, e.g.

“weak = open ball topol. of dH on
a

P(X )”

Many recent advances.

Demonstrated through

completeness for quasi-metric spaces now clarified
through

the unifying notion of formal balls

Many other topics: fixpoint theorems [Rutten96], generalized
Scott topology [BvBR98], Kantorovich-Rubinstein Theorem
revisited [JGL08], models of Polish spaces [Martin03], etc.
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Conclusion

And Remember. . .
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