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He was born into a very well known family. 
 
Leo was named after his father, who was a well-known 
movie director in Georgia. 
 
His mother was an actress. 
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instant cult movie. It is popular among the Georgians up until now.  
 
Leo was very fond of the movie, and recalled often how he helped 
his father in shooting different scenes of the movie. 
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He was very much interested in the laws that govern 
the world around us. So he decided to study physics 
seriously. 
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He majored in physics and graduated in 1958. 
 
Upon his graduation, he joined the Institute of Physics of the Georgian Academy  
of Sciences. 
 
He worked at the institute for 5 years. 
 
During this period of time his interests started to switch to mathematics, its foundations, 
and computer science, which at the time was a new and trendy branch of mathematics. 
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Leo joined the institute from the very first day of its existence, and 
played a key role in its development. 
 
The 1960s is the time when Leo’s main ideas started to form.  
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where 𝑎𝑖→𝑏𝑖 is calculated in H. 
 
As was shown by McKinsey and Tarski, it is this basic correspondence between Heyting 
algebras and S4-algebras that allows one to prove that Gödel’s translation of IPC into S4  
is full and faithful. 



Leo set to understand in-depth the structure of Heyting algebras and S4-algebras. 



Leo set to understand in-depth the structure of Heyting algebras and S4-algebras. 
 
S4-algebras are Boolean algebras with an additional unary operator; and Heyting 
algebras are special sublattices of S4-algebras (consisting of their open elements). 



Leo set to understand in-depth the structure of Heyting algebras and S4-algebras. 
 
S4-algebras are Boolean algebras with an additional unary operator; and Heyting 
algebras are special sublattices of S4-algebras (consisting of their open elements). 
 
Stone duality states that each Boolean algebra is represented as the Boolean algebra 
of clopen (closed and open) subsets of a Stone space (zero-dimensional compact 
Hausdorff space). 



Leo set to understand in-depth the structure of Heyting algebras and S4-algebras. 
 
S4-algebras are Boolean algebras with an additional unary operator; and Heyting 
algebras are special sublattices of S4-algebras (consisting of their open elements). 
 
Stone duality states that each Boolean algebra is represented as the Boolean algebra 
of clopen (closed and open) subsets of a Stone space (zero-dimensional compact 
Hausdorff space). 
 
The Kripke-Jonsson-Tarski representation states that each S4-algebra is represented as  
a subalgebra of the S4-algebra (P(X),◊𝑅), where (X,R) is a Kripke frame with R reflexive 
and transitive and  

◊𝑅 𝐴 = 𝑅
−1 𝐴 = *𝑥 ∈ 𝑋: 𝑥𝑅𝑎 for some 𝑎 ∈ 𝐴+ 

 



Leo set to understand in-depth the structure of Heyting algebras and S4-algebras. 
 
S4-algebras are Boolean algebras with an additional unary operator; and Heyting 
algebras are special sublattices of S4-algebras (consisting of their open elements). 
 
Stone duality states that each Boolean algebra is represented as the Boolean algebra 
of clopen (closed and open) subsets of a Stone space (zero-dimensional compact 
Hausdorff space). 
 
The Kripke-Jonsson-Tarski representation states that each S4-algebra is represented as  
a subalgebra of the S4-algebra (P(X),◊𝑅), where (X,R) is a Kripke frame with R reflexive 
and transitive and  

◊𝑅 𝐴 = 𝑅
−1 𝐴 = *𝑥 ∈ 𝑋: 𝑥𝑅𝑎 for some 𝑎 ∈ 𝐴+ 

 
Leo realized that these two representations can be put together to obtain a full duality 
for S4-algebras, and as a result for Heyting algebras as well. 
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All this (and many other interesting results) were contained in the following influential paper: 
 
Leo Esakia, Topological Kripke models, Soviet Math. Dokl., 15 (1974), 147—151. 
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I will only mention two relevant results here: 
 
Leo and Slava proved that there are exactly five critical (pre-tabular) logics above 
S4. This result was important in drawing a line between the upper part of the  
lattice of normal extensions of S4, which is relatively easy to study, and it’s lower 
part, which is highly complex. 
 
Leo and Revaz developed an elegant coloring technique for deciding whether or  
not a given Heyting or S4-algebra is finitely generated. This yielded an insight into 
the complex structure of finitely generated free Heyting and S4-algebras. This area 
is highly active now, and there will be several talks at the conference addressing  
similar issues. 
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• The other in relation with extending the algebraization of IPC and its extensions to their  
predicate counterparts, and their one-variable fragments, which can be thought 
of as intuitionitsic modal logics (with quantified modalities). 
 
• One last topic that I’ll mention concerned the concept of nucleus that has its origin in  
point-free topology, but can be thought of as an intuitionistic modality, and Leo was involved 
in developing the formal systems of logic to talk and reason about nuclei.  
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For several generations of Georgian mathematicians Leo remained a constant source 
of inspiration. His knowledge of mathematics was legendary. He was like a walking 
library. He was always there to provide most detailed explanations and exact references 
on pretty much any topic. 
 
He was always full of new ideas, and managed to stay positive during the hard times, 
when math seemed to be the last thing on most of peoples minds, including the very 
difficult 1990s, which were filled with civil wars and economical hardships. 
 
We all got used that Leo would be always there, no matter what, but slowly his health 
started to deteriorate. It became painfully apparent in the late 2000s. 
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This is how we remember Leo, surrounded by his students, 
who admired him. Leo being in his usual great mood, full of  
energy, and great math ideas. 





Many of us are greatly indebted to him, including this great conference series 

 
TACL  

 
If it wasn’t for Leo, TACL wouldn’t have been what it is now. 
 



Thank you, Leo! 


