An extension of Stone duality to fuzzy topologies and MV-algebras

Ciro Russo
Dipartimento di Matematica
Università di Salerno, Italy

Topology, Algebra, and Categories in Logic

Marseille
July 26–30, 2011
“In these days the angel of topology and the devil of abstract algebra fight for the soul of every individual discipline of mathematics.”

Hermann Weyl (1885–1955)
Outline

1. MV-algebras and their reducts
2. Semisimple and hyperarchimedean MV-algebras
3. MV-topologies
4. Stone MV-spaces and semisimple MV-algebras
Outline

1. MV-algebras and their reducts
2. Semisimple and hyperarchimedean MV-algebras
3. MV-topologies
4. Stone MV-spaces and semisimple MV-algebras
Definition

An MV-algebra $\langle A, \oplus, \ast, 0 \rangle$ is an algebra of type (2,1,0) such that

- $\langle A, \oplus, 0 \rangle$ is a commutative monoid,
- $(x^*)^* = x$,
- $x \oplus 0^* = 0^*$,
- $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

An MV-algebra $\langle [0, 1], \oplus, \ast, 0 \rangle$, with $x \oplus y := \min\{x + y, 1\}$ and $x^* := 1 - x$, is an MV-algebra, called standard. It generates the variety of MV-algebras both as a variety and as a quasi-variety.
MV-algebras

Definition

An MV-algebra $\langle A, \oplus, *, 0 \rangle$ is an algebra of type (2,1,0) such that

- $\langle A, \oplus, 0 \rangle$ is a commutative monoid,
- $(x^*)^* = x$,
- $x \oplus 0^* = 0^*$, and
- $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

The MV-algebra $[0, 1]$

$\langle [0, 1], \oplus, *, 0 \rangle$, with $x \oplus y := \min\{x + y, 1\}$ and $x^* := 1 - x$, is an MV-algebra, called standard.
MV-algebras

Definition

An MV-algebra $\langle A, \oplus, *, 0 \rangle$ is an algebra of type (2,1,0) such that

- $\langle A, \oplus, 0 \rangle$ is a commutative monoid,
- $(x^*)^* = x$,
- $x \oplus 0^* = 0^*$,
- $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

The MV-algebra $[0, 1]$

$\langle [0, 1], \oplus, *, 0 \rangle$, with $x \oplus y := \min\{x + y, 1\}$ and $x^* := 1 - x$, is an MV-algebra, called standard. It generates the variety of MV-algebras both as a variety and as a quasi-variety.
Further operations and properties

Operations

- $x \leq y$ if and only if $x^* \oplus y = 1$,
- $1 = 0^*$,
- $x \odot y = (x^* \oplus y^*)^*$,
- \leq defines a structure of bounded lattice.
Further operations and properties

Operations

- $x \leq y$ if and only if $x^* \oplus y = 1$,
- $1 = 0^*$,
- $x \odot y = (x^* \oplus y^*)^*$,
- \leq defines a structure of bounded lattice.

Properties

- \oplus, \odot and \wedge distribute over any existing join.
- \oplus, \odot and \vee distribute over any existing meet.
- De Morgan laws hold both for weak and strong conjunction and disjunction:
 - $x \wedge y = (x^* \vee y^*)^*$ and $x \vee y = (x^* \wedge y^*)^*$,
 - $x \odot y = (x^* \oplus y^*)^*$ and $x \oplus y = (x^* \odot y^*)^*$.
Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

$\text{Boole} \subseteq \text{MV}$
Boole ⊆ MV

Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

The Boolean center

Let A be an MV-algebra.

- $a \in A$ is called **idempotent** or **Boolean** if $a \oplus a = a$.
Boole ⊆ MV

Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

The Boolean center

Let A be an MV-algebra.

- $a \in A$ is called idempotent or Boolean if $a \oplus a = a$.
- $a \oplus a = a$ iff $a \odot a = a$.

Ciro Russo
TACL 2011
Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

The Boolean center

Let A be an MV-algebra.

- $a \in A$ is called idempotent or Boolean if $a \oplus a = a$.
- $a \oplus a = a$ iff $a \odot a = a$.
- a is Boolean iff a^* is.
Boole \subseteq MV

Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

The Boolean center

Let A be an MV-algebra.

- $a \in A$ is called **idempotent** or **Boolean** if $a \oplus a = a$.
- $a \oplus a = a$ iff $a \otimes a = a$.
- a is Boolean iff a^* is.
- $B(A) = \{a \in A \mid a \oplus a = a\}$ is a Boolean algebra, called the **Boolean center** of A. It is, in fact, the largest Boolean subalgebra of A.

\[B(A) = \{a \in A \mid a \oplus a = a\} \]
Reducts of MV-algebras

[Di Nola–Gerla B., 2005]

For any MV-algebra A, $\langle A, \lor, \circ, 0, 1 \rangle$ and $\langle A, \land, \oplus, 1, 0 \rangle$ are (commutative, unital, additively idempotent) semirings, isomorphic under the negation.

So, if A is complete, $\langle A, \lor, \circ, 0, 1 \rangle$ and $\langle A, \land, \oplus, 1, 0 \rangle$ are isomorphic (commutative, unital) quantales.
For any MV-algebra A, $\langle A, \vee, \odot, 0, 1 \rangle$ and $\langle A, \wedge, \oplus, 1, 0 \rangle$ are (commutative, unital, additively idempotent) semirings, isomorphic under the negation.

So, if A is complete, $\langle A, \vee, \odot, 0, 1 \rangle$ and $\langle A, \wedge, \oplus, 1, 0 \rangle$ are isomorphic (commutative, unital) quantales.

Moreover, also $\langle A, \vee, \oplus, 0 \rangle$ and $\langle A, \wedge, \odot, 1 \rangle$ are isomorphic semirings and, if A is complete, $\langle A, \vee, \oplus, 0 \rangle$ and $\langle A, \wedge, \odot, 1 \rangle$ are isomorphic quantales.
Outline

1. MV-algebras and their reducts
2. Semisimple and hyperarchimedean MV-algebras
3. MV-topologies
4. Stone MV-spaces and semisimple MV-algebras
Definition (from Universal Algebra)

An algebra \(A \) is called \textit{semisimple} if it is subdirect product of simple algebras.
Semisimple algebras

Definition (from Universal Algebra)

An algebra A is called **semisimple** if it is subdirect product of simple algebras.

Proposition

An MV-algebra A is semisimple if and only if
$\text{Rad } A := \bigcap \text{Max } A = \{0\}$.

Semisimple algebras

Definition (from Universal Algebra)

An algebra A is called **semisimple** if it is subdirect product of simple algebras.

Proposition

An **MV-algebra** A is semisimple if and only if

$\text{Rad } A := \bigcap \text{Max } A = \{0\}$.

\mathcal{MV}^{ss}

The class of semisimple **MV-algebras** form a full subcategory of \mathcal{MV} that we shall denote by \mathcal{MV}^{ss}.
Semisimple algebras

Definition (from Universal Algebra)

An algebra A is called **semisimple** if it is subdirect product of simple algebras.

Proposition

An MV-algebra A is semisimple if and only if

$$\text{Rad } A := \bigcap \text{Max } A = \{0\}.$$

MV^{ss}

The class of semisimple MV-algebras form a full subcategory of MV that we shall denote by MV^{ss}.

It is worth noticing that, although MV^{ss} is NOT a variety (it is closed under S and P, but not under H), it contains $[0, 1]$, Boole, and free, projective, σ-complete and complete MV-algebras.
Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0, 1]^{\text{Max} A}$, for any $A \in \mathcal{MV}^{\text{ss}}$.
Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0, 1]^{\text{Max} A}$, for any $A \in \mathcal{M}V^{\text{ss}}$.

Sketch of the proof.

- For any $M \in \text{Max} A$, A/M is simple.
Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

\[A \text{ is isomorphic to a subalgebra of } [0, 1]^{\text{Max} A}, \text{ for any } A \in \mathcal{MV}^{ss}. \]

Sketch of the proof.

- For any \(M \in \text{Max} A \), \(A/M \) is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of \([0, 1]\).
Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of \([0, 1]^{\text{Max } A}\), for any \(A \in \mathcal{MV}^{\text{ss}}\).

Sketch of the proof.

- For any \(M \in \text{Max } A\), \(A/M\) is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of \([0, 1]\).
- So there exists a unique embedding \(\nu_M : A/M \rightarrow [0, 1]\).
Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of \([0, 1]^{\text{Max} A}\), for any \(A \in \mathcal{MV}^{ss}\).

Sketch of the proof.

- For any \(M \in \text{Max} A\), \(A/M\) is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of \([0, 1]\).
- So there exists a unique embedding \(\iota_M : A/M \rightarrow [0, 1]\).
- Let \(\varphi_M : A \rightarrow A/M\) be the natural projection.
Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0, 1]^{\text{Max } A}$, for any $A \in \mathcal{MV}^{ss}$.

Sketch of the proof.

- For any $M \in \text{Max } A$, A/M is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of $[0, 1]$.
- So there exists a unique embedding $\nu_M : A/M \rightarrow [0, 1]$.
- Let $\varphi_M : A \rightarrow A/M$ be the natural projection.
- $\forall a \in A$, let $\hat{a} : M \in \text{Max } A \mapsto \nu_M(\varphi_M(a)) \in [0, 1]$.
Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

* A is isomorphic to a subalgebra of $[0, 1]^{\text{Max} A}$, for any $A \in \mathcal{M}V^{ss}$.

Sketch of the proof.

- For any $M \in \text{Max} A$, A/M is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of $[0, 1]$.
- So there exists a unique embedding $\iota_M : A/M \rightarrow [0, 1]$.
- Let $\varphi_M : A \rightarrow A/M$ be the natural projection.
- $\forall a \in A$, let $\hat{a} : M \in \text{Max} A \mapsto \iota_M(\varphi_M(a)) \in [0, 1]$.
- The map $\iota : a \in A \mapsto \hat{a} \in [0, 1]^{\text{Max} A}$ is an MV-algebra embedding.
Hyperarchimedean algebras

Definition

Let A be an MV-algebra. An element $a \in A$ is archimedean if it satisfies the following equivalent conditions:

1. there exists a positive integer n such that $na \in B(A)$;
2. there exists a positive integer n such that $a^* \lor na = 1$;
3. there exists a positive integer n such that $na = (n + 1)a$.
Hyperarchimedean algebras

Definition

Let A be an MV-algebra. An element $a \in A$ is **archimedean** if it satisfies the following equivalent conditions:

1. there exists a positive integer n such that $na \in B(A)$;
2. there exists a positive integer n such that $a^* \lor na = 1$;
3. there exists a positive integer n such that $na = (n+1)a$.

Definition

An MV-algebra A is called **hyperarchimedean** if all of its elements are archimedean.
Open sets

\[\langle X, \Omega \rangle \text{ topological space} \]

\[\langle \{0, 1\}^X, \lor, \land, *, 0, 1 \rangle \text{ is a complete Boolean algebra.} \]

\[\langle X, \Omega \rangle \text{ MV-topological space} \]

\[\langle [0, 1]^X, \lor, \land, \oplus, \odot, *, 0, 1 \rangle \text{ is a complete MV-algebra.} \]
Open sets

\[\langle X, \Omega \rangle \text{ topological space} \]
\[\langle \{0, 1\}^X, \lor, \land, *, 0, 1 \rangle \text{ is a complete Boolean algebra.} \]

- \[\langle \Omega, \lor, 0 \rangle \text{ is a sup-sublattice of } \langle \{0, 1\}^X, \lor, 0 \rangle, \]

\[\langle X, \Omega \rangle \text{ MV-topological space} \]
\[\langle [0, 1]^X, \lor, \land, \oplus, \odot, *, 0, 1 \rangle \text{ is a complete MV-algebra.} \]

- \[\langle \Omega, \lor, \oplus, 0 \rangle \text{ is a subquantale of } \langle [0, 1]^X, \lor, \oplus, 0 \rangle, \]
Open sets

\[\langle X, \Omega \rangle \text{ topological space} \]
\[\langle \{0, 1\}^X, \lor, \land, *, 0, 1 \rangle \text{ is a complete Boolean algebra.} \]

\[\langle \Omega, \lor, 0 \rangle \text{ is a sup-sublattice of } \langle \{0, 1\}^X, \lor, 0 \rangle, \]
\[\langle \Omega, \land, 1 \rangle \text{ is a meet-subsemilattice of } \langle \{0, 1\}^X, \land, 1 \rangle. \]

\[\langle X, \Omega \rangle \text{ MV-topological space} \]
\[\langle [0, 1]^X, \lor, \land, \oplus, \otimes, *, 0, 1 \rangle \text{ is a complete MV-algebra.} \]

\[\langle \Omega, \lor, \oplus, 0 \rangle \text{ is a subquantale of } \langle [0, 1]^X, \lor, \oplus, 0 \rangle, \]
\[\langle \Omega, \land, \otimes, 1 \rangle \text{ is a subsemiring of } \langle [0, 1]^X, \land, \otimes, 1 \rangle. \]
Continuous maps

Preimage of a function

Let X, Y be sets and $f : X \to Y$ a map. If we identify the subsets of X and Y with their membership functions, the preimage of f is

$$f^\leftarrow : \chi \in \{0, 1\}^Y \mapsto \chi \circ f \in \{0, 1\}^X.$$
Continuous maps

Preimage of a function

Let X, Y be sets and $f : X \rightarrow Y$ a map. If we identify the subsets of X and Y with their membership functions, the preimage of f is

$$f^{-} : \chi \in \{0, 1\}^Y \rightarrow \chi \circ f \in \{0, 1\}^X.$$

Analogously, the fuzzy preimage of f is defined by

$$f^{-} : \chi \in [0, 1]^Y \rightarrow \chi \circ f \in [0, 1]^X.$$
Continuous maps

Preimage of a function

Let X, Y be sets and $f : X \rightarrow Y$ a map. If we identify the subsets of X and Y with their membership functions, the preimage of f is

$$f \leftarrow : \chi \in \{0, 1\}^Y \mapsto \chi \circ f \in \{0, 1\}^X.$$

Analogously, the fuzzy preimage of f is defined by

$$f \leftarrow : \chi \in [0, 1]^Y \mapsto \chi \circ f \in [0, 1]^X.$$

MV-continuity

So, if $\langle X, \Omega_X \rangle$ and $\langle Y, \Omega_Y \rangle$ are MV-spaces, $f : X \rightarrow Y$ is said to be MV-continuous if $f \leftarrow [\Omega_Y] \subseteq \Omega_X.$
Examples and bases

- $\langle X, \{0, 1\} \rangle$ and $\langle X, [0, 1]^X \rangle$ are MV-topological spaces.
Examples and bases

- \langle X, \{0, 1\} \rangle and \langle X, [0, 1]^X \rangle are MV-topological spaces.
- Any topology is an MV-topology.
Examples and bases

- \langle X, \{0, 1\} \rangle and \langle X, [0, 1]^X \rangle are MV-topological spaces.
- Any topology is an MV-topology.
- Let \(d : X \rightarrow [0, +\infty[\) be a metric on \(X \) and \(\alpha \) a fuzzy point of \(X \) with support \(x \). For any \(r \in \mathbb{R}^+ \), the open ball \(B_r(\alpha) \) is
 \[
 B_r(\alpha)(y) := \begin{cases}
 \alpha(x) & \text{if } d(x, y) < r \\
 0 & \text{if } d(x, y) \geq r
 \end{cases}.
 \]
Examples and bases

- $\langle X, \{0, 1\} \rangle$ and $\langle X, [0, 1]^X \rangle$ are MV-topological spaces.
- Any topology is an MV-topology.
- Let $d : X \longrightarrow [0, +\infty[$ be a metric on X and α a fuzzy point of X with support x. For any $r \in \mathbb{R}^+$, the open ball $B_r(\alpha)$ is

$$B_r(\alpha)(y) := \begin{cases}
\alpha(x) & \text{if } d(x, y) < r \\
0 & \text{if } d(x, y) \geq r
\end{cases}$$

The family of fuzzy subsets of X that are joins of open balls is an MV-topology on X that is said to be induced by d.
Examples and bases

- $\langle X, \{0, 1\} \rangle$ and $\langle X, [0, 1]^X \rangle$ are MV-topological spaces.
- Any topology is an MV-topology.
- Let $d : X \to [0, +\infty[$ be a metric on X and α a fuzzy point of X with support x. For any $r \in \mathbb{R}^+$, the open ball $B_r(\alpha)$ is defined as:
 \[
 B_r(\alpha)(y) := \begin{cases}
 \alpha(x) & \text{if } d(x, y) < r \\
 0 & \text{if } d(x, y) \geq r
 \end{cases}
 \]
 The family of fuzzy subsets of X that are joins of open balls is an MV-topology on X that is said to be induced by d.

Definition

$T = \langle X, \Omega \rangle \in \mathcal{MVTop}$. $B \subseteq \Omega$ is called a base for T if, for all $o \in \Omega$, $o = \bigvee_{i \in I} b_i$, with $\{b_i\}_{i \in I} \subseteq B$.
The shadow topology

Definition

For any MV-space $T = \langle X, \Omega \rangle$, let $B(\Omega) := \Omega \cap \{0, 1\}^X$.
The shadow topology

Definition

For any MV-space $T = \langle X, \Omega \rangle$, let $B(\Omega) := \Omega \cap \{0, 1\}^X$. $Sh T = \langle X, B(\Omega) \rangle$ is a topology in the classical sense, called the shadow of T.
The shadow topology

Definition

For any MV-space $T = \langle X, \Omega \rangle$, let $B(\Omega) := \Omega \cap \{0, 1\}^X$. The shadow of T is $Sh_T = \langle X, B(\Omega) \rangle$, which is a topology in the classical sense, called the shadow of T.

Sh is a functor

Top is a full subcategory of $\mathcal{MN}\mathrm{Top}$.
The shadow topology

Definition

For any MV-space $T = \langle X, \Omega \rangle$, let $B(\Omega) := \Omega \cap \{0, 1\}^X$. Sh $T = \langle X, B(\Omega) \rangle$ is a topology in the classical sense, called the **shadow** of T.

Sh is a functor

\mathcal{T}_{op} is a full subcategory of $\mathcal{MV}_{\text{Top}}$. The mapping Sh : $\mathcal{MV}_{\text{Top}} \rightarrow \mathcal{T}_{\text{op}}$ is a functor. It is, in fact, the left-inverse of the inclusion $\mathcal{T}_{\text{op}} \subseteq \mathcal{MV}_{\text{Top}}$.
The shadow topology

Definition

For any MV-space $\mathbf{T} = \langle X, \Omega \rangle$, let $B(\Omega) := \Omega \cap \{0, 1\}^X$. $\text{Sh} \mathbf{T} = \langle X, B(\Omega) \rangle$ is a topology in the classical sense, called the **shadow** of \mathbf{T}.

Sh is a functor

Top is a full subcategory of $\mathcal{MV}\text{Top}$. The mapping $\text{Sh} : \mathcal{MV}\text{Top} \rightarrow \text{Top}$ is a functor. It is, in fact, the left-inverse of the inclusion $\text{Top} \subseteq \mathcal{MV}\text{Top}$.

The shadow of the MV-topology induced by a metric d is the topology induced by d.
Outline

1. MV-algebras and their reducts
2. Semisimple and hyperarchimedean MV-algebras
3. MV-topologies
4. Stone MV-spaces and semisimple MV-algebras
A more complex situation

Due to the presence of two intersection and two union operations, compactness and each separation axiom can have at least two different MV-versions.
Compactness

A more complex situation

Due to the presence of two intersection and two union operations, compactness and each separation axiom can have at least two different MV-versions.

Compact spaces

An MV-space \(\langle X, \Omega \rangle \) is said to be

- weakly compact if any open covering of \(X \) contains an additive covering, i.e., for any \(\Omega' \subseteq \Omega \) such that \(\bigvee \Omega' = 1 \), there exists a finite subset \(\{o_1, \ldots, o_n\} \) of \(\Omega' \) such that \(o_1 \oplus \cdots \oplus o_n = 1 \);
Compactness

A more complex situation

Due to the presence of two intersection and two union operations, compactness and each separation axiom can have at least two different MV-versions.

Compact spaces

An MV-space $\langle X, \Omega \rangle$ is said to be

- **weakly compact** if any open covering of X contains an additive covering, i.e., for any $\Omega' \subseteq \Omega$ such that $\bigvee \Omega' = 1$, there exists a finite subset $\{o_1, \ldots, o_n\}$ of Ω' such that $o_1 \oplus \cdots \oplus o_n = 1$;

- **compact** if any open covering of X contains a finite covering.
Separation

T\textsubscript{2} axioms

An MV-space \(T = \langle X, \Omega \rangle \) is said to be weakly separated (or weakly Hausdorff) if for \(x \neq y \in X \), there exist \(o_x, o_y \in \Omega \) such that:

(i) \(o_x(x) = o_y(y) = 1 \),

(ii) \(o_x(y) = o_y(x) = 0 \),

(iii) \(o_x \circ o_y = 0 \).
Separation

T_2 axioms

An MV-space $T = \langle X, \Omega \rangle$ is said to be weakly separated (or weakly Hausdorff) if for $x \neq y \in X$, there exist $o_x, o_y \in \Omega$ such that:

(i) $o_x(x) = o_y(y) = 1$,
(ii) $o_x(y) = o_y(x) = 0$,
(iii) $o_x \odot o_y = 0$.

T is said to be separated if, for any $x \neq y \in X$, there exist $o_x, o_y \in \Omega$ satisfying (i) and

(iv) $o_x \wedge o_y = 0$.

T_2 definition do not need fuzzy points.
Remark

Separation implies weak separation and they both collapse to classical \(T_2 \) in the case of crisp topologies. The same holds for compactness.
Remark

Separation implies weak separation and they both collapse to classical T_2 in the case of crisp topologies. The same holds for compactness.

Clopens and zero-dimensionality

Let $T = \langle X, \Omega \rangle$ be an MV-space and $\Xi = \Omega^*$ be the family of closed fuzzy subsets. We denote by Clop T the family $\Omega \cap \Xi$ of clopen fuzzy subsets of X. Clop $T \in \mathcal{MV}^{ss}$, for any MV-space T.
Stone MV-spaces

Remark

Separation implies weak separation and they both collapse to classical T_2 in the case of crisp topologies. The same holds for compactness.

Clopens and zero-dimensionality

Let $T = \langle X, \Omega \rangle$ be an MV-space and $\Xi = \Omega^*$ be the family of closed fuzzy subsets. We denote by Clop T the family $\Omega \cap \Xi$ of clopen fuzzy subsets of X. Clop $T \in \mathcal{MV}^{ss}$, for any MV-space T. T is called zero-dimensional if Clop T is a base for it.
Remark

Separation implies weak separation and they both collapse to classical T_2 in the case of crisp topologies. The same holds for compactness.

Clopens and zero-dimensionality

Let $\mathbf{T} = \langle X, \Omega \rangle$ be an MV-space and $\Xi = \Omega^*$ be the family of closed fuzzy subsets. We denote by $\text{Clop } \mathbf{T}$ the family $\Omega \cap \Xi$ of clopen fuzzy subsets of X. $\text{Clop } \mathbf{T} \in \mathcal{MV}^{ss}$, for any MV-space \mathbf{T}. \mathbf{T} is called zero-dimensional if $\text{Clop } \mathbf{T}$ is a base for it.

Definition

A Stone MV-space is an MV-space which is weakly compact, weakly separated and zero-dimensional.
The MV-space $\langle \text{Max } A, \Omega_A \rangle$

Remark

The category \mathcal{M}_Stone of Stone MV-spaces, with MV-continuous maps as morphisms, is a full subcategory of \mathcal{M}_Top.
The MV-space $\langle \text{Max } A, \Omega_A \rangle$

Remark

The category $\mathcal{MV}_\text{Stone}$ of Stone MV-spaces, with MV-continuous maps as morphisms, is a full subcategory of \mathcal{MV}_Top.

The Maximal MV-spectrum

Let A be a semisimple MV-algebra. By Belluce representation theorem, there exists a canonical embedding $\iota : A \to [0, 1]^{\text{Max } A}$.
The MV-space $\langle \text{Max } A, \Omega_A \rangle$

Remark

The category $\mathcal{MV}^{\text{Stone}}$ of Stone MV-spaces, with MV-continuous maps as morphisms, is a full subcategory of $\mathcal{MV}^{\text{Top}}$.

The Maximal MV-spectrum

Let A be a semisimple MV-algebra. By Belluce representation theorem, there exists a canonical embedding $\iota : A \rightarrow [0, 1]^{\text{Max } A}$. Then $\iota[A]$ generates, as a base, an MV-topology on $\text{Max } A$. The family of open sets of such a space is denoted by Ω_A.

Ciro Russo TACL 2011
Remark

The category $\mathcal{MV}_{\text{Stone}}$ of Stone MV-spaces, with MV-continuous maps as morphisms, is a full subcategory of $\mathcal{MV}_{\text{Top}}$.

The Maximal MV-spectrum

Let A be a semisimple MV-algebra. By Belluce representation theorem, there exists a canonical embedding $\iota : A \rightarrow [0, 1]^{\Max A}$. Then $\iota[A]$ generates, as a base, an MV-topology on $\Max A$. The family of open sets of such a space is denoted by Ω_A.

So, for any semisimple MV-algebra A, $\langle \Max A, \Omega_A \rangle$ denotes the MV-topological space on $\Max A$ having (an isomorphic copy of) A as a base.
A (proper) extension of Stone duality

Theorem

The mappings

\[\Phi : \mathcal{T} \in \mathcal{MV}_{\text{Top}} \rightarrow \text{Clop } \mathcal{T} \in \mathcal{MV}^{\text{ss}} \]
\[\Psi : A \in \mathcal{MV}^{\text{ss}} \rightarrow \langle \text{Max } A, \Omega_A \rangle \in \mathcal{MV}_{\text{Top}} \]

define two contravariant functors.

They yield a duality between \(\mathcal{MV}^{\text{ss}} \) and \(\mathcal{MV}_{\text{Stone}} \), that is for every semisimple MV-algebra \(A \), \(\Psi_A \) is a Stone MV-space and \(A \) is isomorphic to the clopen algebra of such a space; conversely, every Stone MV-space \(\mathcal{T} = \langle X, \Omega \rangle \) is homeomorphic to \(\Psi \Phi \mathcal{T} \).

The restriction of such a duality to Boolean algebras and Stone spaces coincide with the classical Stone duality.

\[\Phi \text{Sh} = B \Phi \] and \[\Psi B = \text{Sh } \Psi \].

Ciro Russo TACL 2011
A (proper) extension of Stone duality

Theorem

1. The mappings

\[\Phi : \mathcal{MVT}_{\text{Top}} \ni T \mapsto \text{Clop} T \in \mathcal{MVS}_{\text{ss}} \]

\[\Psi : \mathcal{MVS}_{\text{ss}} \ni A \mapsto \langle \text{Max } A, \Omega_A \rangle \in \mathcal{MVT}_{\text{Top}} \]

define two contravariant functors.

2. They yield a duality between \(\mathcal{MVS}_{\text{ss}} \) and \(\mathcal{MVS}_{\text{Stone}} \), that is
A (proper) extension of Stone duality

Theorem

1. The mappings

\[\Phi : \mathcal{T} \in \mathcal{MV}_{\text{Top}} \mapsto \text{Clop } \mathcal{T} \in \mathcal{MV}^{ss} \]
\[\Psi : A \in \mathcal{MV}^{ss} \mapsto \langle \text{Max } A, \Omega_A \rangle \in \mathcal{MV}_{\text{Top}} \]

define two contravariant functors.

2. They yield a duality between \(\mathcal{MV}^{ss} \) and \(\mathcal{MV}_{\text{Stone}} \), that is

- for every semisimple MV-algebra \(A \), \(\Psi A \) is a Stone MV-space
 and \(A \) is isomorphic to the clopen algebra of such a space;
A (proper) extension of Stone duality

Theorem

1. **The mappings**
 \[
 \Phi : \mathcal{T} \in \mathcal{MV_{Top}} \mapsto \text{Clop} \mathcal{T} \in \mathcal{MV_{ss}}
 \]
 \[
 \Psi : A \in \mathcal{MV_{ss}} \mapsto \langle \text{Max } A, \Omega_A \rangle \in \mathcal{MV_{Top}}
 \]

 define two contravariant functors.

2. **They yield a duality between** \(\mathcal{MV_{ss}} \) **and** \(\mathcal{MV_{Stone}} \), **that is**
 - for every semisimple MV-algebra \(A \), \(\Psi A \) is a Stone MV-space and \(A \) is isomorphic to the clopen algebra of such a space;
 - conversely, every Stone MV-space \(\mathcal{T} = \langle X, \Omega \rangle \) is homeomorphic to \(\Psi \Phi \mathcal{T} \).
A (proper) extension of Stone duality

Theorem

1. The mappings
\[\Phi : \mathcal{T} \in \mathcal{MV}_{\text{Top}} \mapsto \text{Clop} \mathcal{T} \in \mathcal{MV}_{\text{ss}} \]
\[\Psi : A \in \mathcal{MV}_{\text{ss}} \mapsto \langle \text{Max} A, \Omega_A \rangle \in \mathcal{MV}_{\text{Top}} \]

define two contravariant functors.

2. They yield a duality between \(\mathcal{MV}_{\text{ss}} \) and \(\mathcal{MV}_{\text{Stone}} \), that is
 - for every semisimple MV-algebra \(A \), \(\Psi A \) is a Stone MV-space and \(A \) is isomorphic to the clopen algebra of such a space;
 - conversely, every Stone MV-space \(\mathcal{T} = \langle X, \Omega \rangle \) is homeomorphic to \(\Psi \Phi \mathcal{T} \).

3. The restriction of such a duality to Boolean algebras and Stone spaces coincide with the classical Stone duality.

4. \(\Phi \text{Sh} = B \Phi \) and \(\Psi B = \text{Sh} \Psi \).
Graphically

Horizontal arrows: equivalences
Vertical arrows: inclusions of full subcategories and their left-inverses

Corollary
Separated Stone MV-spaces are dual to hyperarchimedean MV-algebras.
Graphically

Horizonal arrows: equivalences
Vertical arrows: inclusions of full subcategories and their left-inverses

Corollary

Separated Stone MV-spaces are dual to hyperarchimedean MV-algebras.
The category Boole_n

Objects of Boole_n are pairs $B_n = \langle B, (J_i)_{i=1}^{n-1} \rangle$ where B is a Boolean algebra and $(J_i)_{i=1}^{n-1}$ is a sequence of $n - 1$ ideals of B such that

1. $J_i = J_{n-i}$ for all $i = 1, \ldots, n - 1$, and
2. $J_h \cap J_{i-h} \subseteq J_i$, for all $i = 2, \ldots, n - 1$ and $h = 1, \ldots, i - 1$.

A morphism $f : \langle B, (J_i)_{i=1}^{n-1} \rangle \longrightarrow \langle B', (J'_i)_{i=1}^{n-1} \rangle$ is a Boolean algebra homomorphism from B to B' s.t. $f[J_i] \subseteq J'_i$ for all i.
The category \mathbf{Boole}_n

Objects of \mathbf{Boole}_n are pairs $B_n = \langle B, (J_i)_{i=1}^{n-1} \rangle$ where B is a Boolean algebra and $(J_i)_{i=1}^{n-1}$ is a sequence of $n-1$ ideals of B such that

1. $J_i = J_{n-i}$ for all $i = 1, \ldots, n-1$, and
2. $J_h \cap J_{i-h} \subseteq J_i$, for all $i = 2, \ldots, n-1$ and $h = 1, \ldots, i-1$.

A morphism $f : \langle B, (J_i)_{i=1}^{n-1} \rangle \longrightarrow \langle B', (J'_i)_{i=1}^{n-1} \rangle$ is a Boolean algebra homomorphism from B to B' s.t. $f[J_i] \subseteq J'_i$ for all i.

Now, let \mathcal{MV}_n denote the subvariety $\mathcal{V}(S_n)$ of \mathcal{MV} generated by the $(n+1)$-element chain $S_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$.
n-valued MV-algebras

The category Boole_n

Objects of Boole_n are pairs $B_n = \langle B, (J_i)_{i=1}^{n-1} \rangle$ where B is a Boolean algebra and $(J_i)_{i=1}^{n-1}$ is a sequence of $n-1$ ideals of B such that

1. $J_i = J_{n-i}$ for all $i = 1, \ldots, n-1$, and
2. $J_h \cap J_{i-h} \subseteq J_i$, for all $i = 2, \ldots, n-1$ and $h = 1, \ldots, i-1$.

A morphism $f : \langle B, (J_i)_{i=1}^{n-1} \rangle \longrightarrow \langle B', (J'_i)_{i=1}^{n-1} \rangle$ is a Boolean algebra homomorphism from B to B' s.t. $f[J_i] \subseteq J'_i$ for all i.

Now, let \mathcal{MV}_n denote the subvariety $\mathcal{V}(S_n)$ of \mathcal{MV} generated by the $(n+1)$-element chain $S_n = \{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}$.

Theorem [Di Nola–Lettieri, 2000] (reformulated)
The categories \mathcal{MV}_n and Boole_n are equivalent.
MV_n and Stone spaces

A purely topological duality for n-valued MV-algebras is achieved through the introduction of the category of Stone spaces with distinguished open sets.
A purely topological duality for n-valued MV-algebras is achieved through the introduction of the category of Stone spaces with distinguished open sets.

The category Stone_n

Objects of Stone_n are pairs $\tau_n = \langle \langle X, \Omega \rangle, (o_i)_{i=1}^{n-1} \rangle$ where $\langle X, \Omega \rangle$ is a Stone space and $(o_i)_{i=1}^{n-1}$ is a sequence of open subsets s.t.

1. $o_i = o_{n-i}$ for all $i = 1, \ldots, n-1$, and
2. $o_h \cap o_{i-h} \subseteq o_i$, for all $i = 2, 3, \ldots, n-1$ and $h = 1, \ldots, i-1$.

A morphism $f : \langle \langle X, \Omega \rangle, (o_i)_{i=1}^{n-1} \rangle \rightarrow \langle \langle X', \Omega' \rangle, (o'_i)_{i=1}^{n-1} \rangle$ is a continuous map from X to X' such that $f^{\leftarrow}[o'_i] \subseteq o_i$ for all i.
Theorem

The categories $\mathcal{B}oule_n$ and Stone_n are dually equivalent.
Theorem

The categories \mathcal{Boole}_n and \mathcal{Stone}_n are dually equivalent.

Corollary

$\mathcal{M}\mathcal{V}_n$ is dually equivalent to \mathcal{Stone}_n.

MV$_n$ and *Stone*$_n$
Theorem

The categories Boole_n and Stone_n are dually equivalent.

Corollary

\mathcal{MV}_n is dually equivalent to Stone_n.

From an MV-topological viewpoint, \mathcal{MV}_n is dual to the category $\mathcal{MV}_n^{\text{Stone}}$ of Stone MV-spaces of fuzzy sets with S_n-valued membership functions.
The categories \mathcal{Boole}_n and Stone_n are dually equivalent.

Corollary

\mathcal{MV}_n is dually equivalent to Stone_n.

From an MV-topological viewpoint, \mathcal{MV}_n is dual to the category $\mathcal{MV}_n\text{Stone}$ of Stone MV-spaces of fuzzy sets with S_n-valued membership functions.

Corollary

Stone_n and $\mathcal{MV}_n\text{Stone}$ are equivalent.
“Point set topology is a disease from which the human race will soon recover.”

Jules Henri Poincaré (1854–1912)
Thank you!
References

