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“In these days the angel of topology and the devil of abstract
algebra fight for the soul of every individual discipline of
mathematics.”

Hermann Weyl (1885–1955)
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MV-algebras

Definition

An MV-algebra 〈A,⊕,∗ , 0〉 is an algebra of type (2,1,0) such that

〈A,⊕, 0〉 is a commutative monoid,

(x∗)∗ = x ,

x ⊕ 0∗ = 0∗,

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x .

The MV-algebra [0, 1]

〈[0, 1],⊕,∗ , 0〉, with x ⊕ y := min{x + y , 1} and x∗ := 1− x , is an
MV-algebra, called standard. It generates the variety of
MV-algebras both as a variety and as a quasi-variety.

Ciro Russo TACL 2011



MV-algebras and their reducts
Semisimple and hyperarchimedean MV-algebras

MV-topologies
Stone MV-spaces and semisimple MV-algebras

MV-algebras
MV and Boolean algebras

MV-algebras

Definition

An MV-algebra 〈A,⊕,∗ , 0〉 is an algebra of type (2,1,0) such that

〈A,⊕, 0〉 is a commutative monoid,

(x∗)∗ = x ,

x ⊕ 0∗ = 0∗,

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x .

The MV-algebra [0, 1]

〈[0, 1],⊕,∗ , 0〉, with x ⊕ y := min{x + y , 1} and x∗ := 1− x , is an
MV-algebra, called standard.

It generates the variety of
MV-algebras both as a variety and as a quasi-variety.

Ciro Russo TACL 2011



MV-algebras and their reducts
Semisimple and hyperarchimedean MV-algebras

MV-topologies
Stone MV-spaces and semisimple MV-algebras

MV-algebras
MV and Boolean algebras

MV-algebras

Definition

An MV-algebra 〈A,⊕,∗ , 0〉 is an algebra of type (2,1,0) such that

〈A,⊕, 0〉 is a commutative monoid,

(x∗)∗ = x ,

x ⊕ 0∗ = 0∗,

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x .

The MV-algebra [0, 1]

〈[0, 1],⊕,∗ , 0〉, with x ⊕ y := min{x + y , 1} and x∗ := 1− x , is an
MV-algebra, called standard. It generates the variety of
MV-algebras both as a variety and as a quasi-variety.

Ciro Russo TACL 2011



MV-algebras and their reducts
Semisimple and hyperarchimedean MV-algebras

MV-topologies
Stone MV-spaces and semisimple MV-algebras

MV-algebras
MV and Boolean algebras

Further operations and properties

Operations

x ≤ y if and only if x∗ ⊕ y = 1,

1 = 0∗,

x � y = (x∗ ⊕ y∗)∗,

≤ defines a structure of bounded lattice.

Properties

⊕, � and ∧ distribute over any existing join.

⊕, � and ∨ distribute over any existing meet.

De Morgan laws hold both for weak and strong conjunction
and disjunction:

x ∧ y = (x∗ ∨ y∗)∗ and x ∨ y = (x∗ ∧ y∗)∗,
x � y = (x∗ ⊕ y∗)∗ and x ⊕ y = (x∗ � y∗)∗.
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MV and Boolean algebras

Boole ⊆MV
Boolean algebras form a subvariety of the variety of MV-algebras.
They are the MV-algebras satisfying the equation x ⊕ x = x .

The Boolean center

Let A be an MV-algebra.

a ∈ A is called idempotent or Boolean if a⊕ a = a.

a⊕ a = a iff a� a = a.

a is Boolean iff a∗ is.

B(A) = {a ∈ A | a⊕ a = a} is a Boolean algebra, called the
Boolean center of A. It is, in fact, the largest Boolean
subalgebra of A.
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Reducts of MV-algebras

[Di Nola–Gerla B., 2005]

For any MV-algebra A, 〈A,∨,�, 0, 1〉 and 〈A,∧,⊕, 1, 0〉 are
(commutative, unital, additively idempotent) semirings, isomorphic
under the negation.

So, if A is complete, 〈A,
∨
,�, 0, 1〉 and 〈A,

∧
,⊕, 1, 0〉 are

isomorphic (commutative, unital) quantales.

Moreover, also 〈A,∨,⊕, 0〉 and 〈A,∧,�, 1〉 are isomorphic
semirings and, if A is complete, 〈A,

∨
,⊕, 0〉 and 〈A,

∧
,�, 1〉 are

isomorphic quantales.
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Semisimple algebras

Definition (from Universal Algebra)

An algebra A is called semisimple if it is subdirect product of
simple algebras.

Proposition

An MV-algebra A is semisimple if and only if
Rad A :=

⋂
Max A = {0}.

MVss

The class of semisimple MV-algebras form a full subcategory of
MV that we shall denote by MVss.
It is worth noticing that, although MVss is NOT a variety (it is
closed under S and P, but not under H), it contains [0, 1], Boole,
and free, projective, σ-complete and complete MV-algebras.
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Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of [0, 1]MaxA, for any A ∈MVss.

Sketch of the proof.

For any M ∈ Max A, A/M is simple.

[Chang, 1959]: Any simple MV-algebra is an archimedean
chain, hence it is isomorphic to a (unique) subalgebra of [0, 1].

So there exists a unique embedding ιM : A/M −→ [0, 1].

Let ϕM : A −→ A/M be the natural projection.

∀a ∈ A, let â : M ∈ Max A 7−→ ιM(ϕM(a)) ∈ [0, 1].

The map ι : a ∈ A 7−→ â ∈ [0, 1]MaxA is an MV-algebra
embedding.
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Hyperarchimedean algebras

Definition

Let A be an MV-algebra. An element a ∈ A is archimedean if it
satisfies the following equivalent conditions:

1 there exists a positive integer n such that na ∈ B(A);

2 there exists a positive integer n such that a∗ ∨ na = 1;

3 there exists a positive integer n such that na = (n + 1)a.

Definition

An MV-algebra A is called hyperarchimedean if all of its elements
are archimedean.
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Open sets

〈X ,Ω〉 topological space

〈{0, 1}X ,
∨
,
∧
,∗ , 0, 1〉 is a complete Boolean algebra.

〈Ω,
∨
, 0〉 is a sup-sublattice of 〈{0, 1}X ,

∨
, 0〉,

〈Ω,∧, 1〉 is a meet-subsemilattice of 〈{0, 1}X ,∧, 1〉.

〈X ,Ω〉 MV-topological space

〈[0, 1]X ,
∨
,
∧
,⊕,�,∗ , 0, 1〉 is a complete MV-algebra.

〈Ω,
∨
,⊕, 0〉 is a subquantale of 〈[0, 1]X ,

∨
,⊕, 0〉,

〈Ω,∧,�, 1〉 is a subsemiring of 〈[0, 1]X ,∧,�, 1〉.
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The category MVTop
The shadow topology

Continuous maps

Preimage of a function

Let X ,Y be sets and f : X −→ Y a map. If we identify the subsets
of X and Y with their membership functions, the preimage of f is

f← : χ ∈ {0, 1}Y 7−→ χ ◦ f ∈ {0, 1}X .

Analogously, the fuzzy preimage of f is defined by

f

 

: χ ∈ [0, 1]Y 7−→ χ ◦ f ∈ [0, 1]X .

MV-continuity

So, if 〈X ,ΩX 〉 and 〈Y ,ΩY 〉 are MV-spaces, f : X −→ Y is said to
be MV-continuous if f

 

[ΩY ] ⊆ ΩX .
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Examples and bases

〈X , {0, 1}〉 and 〈X , [0, 1]X 〉 are MV-topological spaces.

Any topology is an MV-topology.

Let d : X −→ [0,+∞[ be a metric on X and α a fuzzy point
of X with support x . For any r ∈ R+, the open ball Br (α) is

Br (α)(y) :=

{
α(x) if d(x , y) < r
0 if d(x , y) ≥ r

.

The family of fuzzy subsets of X that are joins of open balls is
an MV-topology on X that is said to be induced by d .

Definition

T = 〈X ,Ω〉 ∈ MVTop. B ⊆ Ω is called a base for T if, for all
o ∈ Ω, o =

∨
i∈I bi , with {bi}i∈I ⊆ B.
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The shadow topology

Definition

For any MV-space T = 〈X ,Ω〉, let B(Ω) := Ω ∩ {0, 1}X .

ShT = 〈X ,B(Ω)〉 is a topology in the classical sense, called the
shadow of T.

Sh is a functor

Top is a full subcategory of MVTop. The mapping
Sh : MVTop −→ Top is a functor. It is, in fact, the left-inverse of
the inclusion Top ⊆ MVTop.

The shadow of the MV-topology induced by a metric d is the
topology induced by d .
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Outline

1 MV-algebras and their reducts

2 Semisimple and hyperarchimedean MV-algebras

3 MV-topologies

4 Stone MV-spaces and semisimple MV-algebras
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Compactness

A more complex situation

Due to the presence of two intersection and two union operations,
compactness and each separation axiom can have at least two
different MV-versions.

Compact spaces

An MV-space 〈X ,Ω〉 is said to be

weakly compact if any open covering of X contains an additive
covering, i.e., for any Ω′ ⊆ Ω such that

∨
Ω′ = 1, there exists

a finite subset {o1, . . . , on} of Ω′ such that o1 ⊕ · · · ⊕ on = 1;

compact if any open covering of X contains a finite covering.
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Separation

T2 axioms

An MV-space T = 〈X ,Ω〉 is said to be weakly separated (or weakly
Hausdorff) if for x 6= y ∈ X , there exist ox , oy ∈ Ω such that:

(i) ox(x) = oy (y) = 1,

(ii) ox(y) = oy (x) = 0,

(iii) ox � oy = 0.

T is said to be separated if, for any x 6= y ∈ X , there exist
ox , oy ∈ Ω satisfying (i) and

(iv) ox ∧ oy = 0.

T2 definition do not need fuzzy points.
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Stone MV-spaces

Remark

Separation implies weak separation and they both collapse to
classical T2 in the case of crisp topologies. The same holds for
compactness.

Clopens and zero-dimensionality

Let T = 〈X ,Ω〉 be an MV-space and Ξ = Ω∗ be the family of
closed fuzzy subsets. We denote by ClopT the family Ω ∩ Ξ of
clopen fuzzy subsets of X . ClopT ∈MVss, for any MV-space T.

T is called zero-dimensional if ClopT is a base for it.

Definition

A Stone MV-space is an MV-space which is weakly compact,
weakly separated and zero-dimensional.
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The MV-space 〈MaxA,ΩA〉

Remark

The category MVStone of Stone MV-spaces, with MV-continuous
maps as morphisms, is a full subcategory of MVTop.

The Maximal MV-spectrum

Let A be a semisimple MV-algebra. By Belluce representation
theorem, there exists a canonical embedding ι : A −→ [0, 1]MaxA.
Then ι[A] generates, as a base, an MV-topology on Max A. The
family of open sets of such a space is denoted by ΩA.
So, for any semisimple MV-algebra A, 〈Max A,ΩA〉 denotes the
MV-topological space on Max A having (an isomorphic copy of) A
as a base.
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A (proper) extension of Stone duality

Theorem

1 The mappings

Φ : T ∈ MVTop 7−→ ClopT ∈ MVss

Ψ : A ∈ MVss 7−→ 〈Max A,ΩA〉 ∈ MVTop

define two contravariant functors.

2 They yield a duality between MVss and MVStone, that is

for every semisimple MV-algebra A, ΨA is a Stone MV-space
and A is isomorphic to the clopen algebra of such a space;
conversely, every Stone MV-space T = 〈X ,Ω〉 is
homeomorphic to ΨΦT.

3 The restriction of such a duality to Boolean algebras and
Stone spaces coincide with the classical Stone duality.

4 Φ Sh = B Φ and Ψ B = Sh Ψ.
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Graphically

MVss
Ψ //

B

��

MVStoneop

Sh

��

Φ
oo

Boole

⊆

OO

Ψ�

// Stoneop

⊆

OO

Φ�oo

Horizontal arrows: equivalences
Vertical arrows: inclusions of full subcategories and their left-inverses

Corollary

Separated Stone MV-spaces are dual to hyperarchimedean MV-algebras.
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n-valued MV-algebras

The category Boolen

Objects of Boolen are pairs Bn = 〈B, (Ji )
n−1
i=1 〉 where B is a Boolean

algebra and (Ji )
n−1
i=1 is a sequence of n − 1 ideals of B such that

1 Ji = Jn−i for all i = 1, . . . , n − 1, and

2 Jh ∩ Ji−h ⊆ Ji , for all i = 2, . . . , n − 1 and h = 1, . . . , i − 1.

A morphism f : 〈B, (Ji )
n−1
i=1 〉 −→ 〈B ′, (J ′i )

n−1
i=1 〉 is a Boolean algebra

homomorphism from B to B ′ s.t. f [Ji ] ⊆ J ′i for all i .

Now, let MVn denote the subvariety V(Sn) of MV generated by
the (n + 1)-element chain Sn = {0, 1

n , . . . ,
n−1
n , 1}.

Theorem [Di Nola–Lettieri, 2000] (reformulated)

The categories MVn and Boolen are equivalent.
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MVn and Stone spaces

A purely topological duality for n-valued MV-algebras is achieved
through the introduction of the category of Stone spaces with
distinguished open sets.

The category Stonen

Objects of Stonen are pairs τn = 〈〈X ,Ω〉, (oi )
n−1
i=1 〉 where 〈X ,Ω〉 is

a Stone space and (oi )
n−1
i=1 is a sequence of open subsets s.t.

1 oi = on−i for all i = 1, . . . , n − 1, and

2 oh ∩ oi−h ⊆ oi , for all i = 2, 3, . . . , n − 1 and h = 1, . . . , i − 1.

A morphism f : 〈〈X ,Ω〉, (oi )
n−1
i=1 〉 −→ 〈〈X ′,Ω′〉, (o ′i )

n−1
i=1 〉 is a

continuous map from X to X ′ such that f←[o ′i ] ⊆ oi for all i .
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MVStonen and Stonen

Theorem

The categories Boolen and Stonen are dually equivalent.

Corollary

MVn is dually equivalent to Stonen.

From an MV-topological viewpoint, MVn is dual to the category
MVnStone of Stone MV-spaces of fuzzy sets with Sn-valued
membership functions.

Corollary

Stonen and MVnStone are equivalent.
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“Point set topology is a disease from which the human race will
soon recover.”

Jules Henri Poincaré (1854–1912)
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Thank you!
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