An extension of Stone duality to fuzzy topologies and MV-algebras

CIRO RUSSO Dipartimento di Matematica Università di Salerno, Italy

TOPOLOGY, ALGEBRA, AND CATEGORIES IN LOGIC

MARSEILLE

July 26-30, 2011

Ciro Russo TACL 2011

くロン (行) (下) (日) (日)

E

"In these days the angel of topology and the devil of abstract algebra fight for the soul of every individual discipline of mathematics."

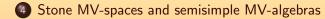
Hermann Weyl (1885–1955)

イロッ イボッ イヨッ イ ヨッ

Outline

- MV-algebras and their reducts
- 2 Semisimple and hyperarchimedean MV-algebras

3 MV-topologies



Outline

MV-algebras MV and Boolean algebras

2 Semisimple and hyperarchimedean MV-algebras

3 MV-topologies

4 Stone MV-spaces and semisimple MV-algebras

イロッ イボッ イヨッ イヨッ

MV-algebras

MV-algebras MV and Boolean algebras

Definition

An MV-algebra $\langle A,\oplus,^*,0\rangle$ is an algebra of type (2,1,0) such that

• $\langle A, \oplus, 0 \rangle$ is a commutative monoid,

•
$$(x^*)^* = x$$
,

•
$$x \oplus 0^* = 0^*$$
,

•
$$(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x.$$

イロン 不得 とくほう 不良 とうほう

MV-algebras

MV-algebras MV and Boolean algebras

Definition

An MV-algebra $\langle A,\oplus,^*,0\rangle$ is an algebra of type (2,1,0) such that

- $\langle A, \oplus, 0 \rangle$ is a commutative monoid,
- $(x^*)^* = x$,
- $x \oplus 0^* = 0^*$,
- $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x.$

The MV-algebra [0, 1]

 $\langle [0,1], \oplus, *, 0 \rangle$, with $x \oplus y := \min\{x + y, 1\}$ and $x^* := 1 - x$, is an MV-algebra, called standard.

Э

<ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MV-algebras

MV-algebras MV and Boolean algebras

Definition

An MV-algebra $\langle A,\oplus,^*,0\rangle$ is an algebra of type (2,1,0) such that

- $\langle A, \oplus, 0 \rangle$ is a commutative monoid,
- $(x^*)^* = x$,
- $x \oplus 0^* = 0^*$,
- $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x.$

The MV-algebra [0, 1]

 $\langle [0,1], \oplus, *, 0 \rangle$, with $x \oplus y := \min\{x + y, 1\}$ and $x^* := 1 - x$, is an MV-algebra, called standard. It generates the variety of MV-algebras both as a variety and as a quasi-variety.

(日) (四) (日) (日)

Э

MV-algebras MV and Boolean algebras

Further operations and properties

Operations

- $x \leq y$ if and only if $x^* \oplus y = 1$,
- $1 = 0^*$,
- $x \odot y = (x^* \oplus y^*)^*$,
- $\bullet \leq$ defines a structure of bounded lattice.

イロン 不得 とくほう 不良 とうほう

MV-algebras MV and Boolean algebras

Further operations and properties

Operations

- $x \leq y$ if and only if $x^* \oplus y = 1$,
- 1 = 0^{*},
- $x \odot y = (x^* \oplus y^*)^*$,
- ullet \leq defines a structure of bounded lattice.

Properties

- $\bullet \ \oplus, \ \odot \ \text{and} \ \land \ \text{distribute over any existing join.}$
- $\bullet \ \oplus, \ \odot \ \text{and} \ \lor \ \text{distribute over any existing meet.}$
- De Morgan laws hold both for weak and strong conjunction and disjunction:
 - $x \wedge y = (x^* \vee y^*)^*$ and $x \vee y = (x^* \wedge y^*)^*$,
 - $x \odot y = (x^* \oplus y^*)^*$ and $x \oplus y = (x^* \odot y^*)^*$.

MV-algebras MV and Boolean algebras

MV and Boolean algebras

$\mathcal{B}\mathsf{oole} \subseteq \mathcal{MV}$

Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

くロ とく 行 とく ゴ とく コ とう

MV-algebras MV and Boolean algebras

MV and Boolean algebras

$\mathcal{B}\mathsf{oole} \subseteq \mathcal{MV}$

Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

The Boolean center

Let A be an MV-algebra.

• $a \in A$ is called idempotent or Boolean if $a \oplus a = a$.

MV-algebras MV and Boolean algebras

MV and Boolean algebras

$\mathcal{B}\mathsf{oole} \subseteq \mathcal{MV}$

Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

The Boolean center

Let A be an MV-algebra.

- $a \in A$ is called idempotent or Boolean if $a \oplus a = a$.
- $a \oplus a = a$ iff $a \odot a = a$.

Ciro Russo TACL 2011

MV-algebras MV and Boolean algebras

MV and Boolean algebras

$\mathcal{B}\mathsf{oole} \subseteq \mathcal{MV}$

Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

The Boolean center

Let A be an MV-algebra.

- $a \in A$ is called idempotent or Boolean if $a \oplus a = a$.
- $a \oplus a = a$ iff $a \odot a = a$.
- *a* is Boolean iff *a*^{*} is.

Ciro Russo TACL 2011

MV-algebras MV and Boolean algebras

MV and Boolean algebras

$\mathcal{B}\mathsf{oole} \subseteq \mathcal{MV}$

Boolean algebras form a subvariety of the variety of MV-algebras. They are the MV-algebras satisfying the equation $x \oplus x = x$.

The Boolean center

Let A be an MV-algebra.

- $a \in A$ is called idempotent or Boolean if $a \oplus a = a$.
- $a \oplus a = a$ iff $a \odot a = a$.
- *a* is Boolean iff *a*^{*} is.
- B(A) = {a ∈ A | a ⊕ a = a} is a Boolean algebra, called the Boolean center of A. It is, in fact, the largest Boolean subalgebra of A.

MV-algebras MV and Boolean algebras

Reducts of MV-algebras

[Di Nola–Gerla B., 2005]

For any MV-algebra A, $\langle A, \vee, \odot, 0, 1 \rangle$ and $\langle A, \wedge, \oplus, 1, 0 \rangle$ are (commutative, unital, additively idempotent) semirings, isomorphic under the negation.

So, if A is complete, $\langle A, \bigvee, \odot, 0, 1 \rangle$ and $\langle A, \bigwedge, \oplus, 1, 0 \rangle$ are isomorphic (commutative, unital) quantales.

イロト イポト イヨト イヨト

MV-algebras MV and Boolean algebras

Reducts of MV-algebras

[Di Nola–Gerla B., 2005]

For any MV-algebra A, $\langle A, \lor, \odot, 0, 1 \rangle$ and $\langle A, \land, \oplus, 1, 0 \rangle$ are (commutative, unital, additively idempotent) semirings, isomorphic under the negation.

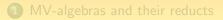
So, if A is complete, $\langle A, \bigvee, \odot, 0, 1 \rangle$ and $\langle A, \bigwedge, \oplus, 1, 0 \rangle$ are isomorphic (commutative, unital) quantales.

Moreover, also $\langle A, \lor, \oplus, 0 \rangle$ and $\langle A, \land, \odot, 1 \rangle$ are isomorphic semirings and, if A is complete, $\langle A, \bigvee, \oplus, 0 \rangle$ and $\langle A, \bigwedge, \odot, 1 \rangle$ are isomorphic quantales.

イロト (日) (日) (日)

Outline

Semisimple algebras Belluce theorem Hyperarchimedean algebras



2 Semisimple and hyperarchimedean MV-algebras

3 MV-topologies

4 Stone MV-spaces and semisimple MV-algebras

イロッ イボッ イヨッ イヨッ

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple algebras

Definition (from Universal Algebra)

An algebra A is called semisimple if it is subdirect product of simple algebras.

イロン イボン イヨン イヨン

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple algebras

Definition (from Universal Algebra)

An algebra A is called semisimple if it is subdirect product of simple algebras.

Proposition

An MV-algebra A is semisimple if and only if Rad $A := \bigcap Max A = \{0\}.$

・ロッ ・行 ・ ・ ロッ

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple algebras

Definition (from Universal Algebra)

An algebra A is called semisimple if it is subdirect product of simple algebras.

Proposition

An MV-algebra A is semisimple if and only if Rad $A := \bigcap Max A = \{0\}.$

$\mathcal{M}\mathcal{V}^{ss}$

The class of semisimple MV-algebras form a full subcategory of \mathcal{MV} that we shall denote by \mathcal{MV}^{ss} .

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple algebras

Definition (from Universal Algebra)

An algebra A is called semisimple if it is subdirect product of simple algebras.

Proposition

An MV-algebra A is semisimple if and only if Rad $A := \bigcap Max A = \{0\}.$

\mathcal{MV}^{ss}

The class of semisimple MV-algebras form a full subcategory of \mathcal{MV} that we shall denote by \mathcal{MV}^{ss} . It is worth noticing that, although \mathcal{MV}^{ss} is NOT a variety (it is closed under S and P, but not under H), it contains [0, 1], \mathcal{B} oole, and free, projective, σ -complete and complete MV-algebras.

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0,1]^{Ma \times A}$, for any $A \in \mathcal{MV}^{ss}$.

イロン 不得 とくほう 不良 とうほう

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0,1]^{\mathsf{Max}\,\mathsf{A}}$, for any $\mathsf{A}\in\mathcal{MV}^{\mathsf{ss}}.$

Sketch of the proof.

• For any $M \in Max A$, A/M is simple.

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0,1]^{\mathsf{Max}\,\mathsf{A}}$, for any $\mathsf{A}\in\mathcal{MV}^{\mathsf{ss}}.$

- For any $M \in Max A$, A/M is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of [0,1].

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0,1]^{\mathsf{Max}\,\mathsf{A}}$, for any $\mathsf{A}\in\mathcal{MV}^{\mathsf{ss}}.$

- For any $M \in Max A$, A/M is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of [0,1].
- So there exists a unique embedding $\iota_M : A/M \longrightarrow [0,1]$.

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0,1]^{\mathsf{Max}\,\mathsf{A}}$, for any $\mathsf{A}\in\mathcal{MV}^{\mathsf{ss}}.$

- For any $M \in Max A$, A/M is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of [0,1].
- So there exists a unique embedding $\iota_M : A/M \longrightarrow [0,1]$.
- Let $\varphi_M : A \longrightarrow A/M$ be the natural projection.

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0,1]^{\mathsf{Max}\,\mathsf{A}}$, for any $\mathsf{A}\in\mathcal{MV}^{\mathsf{ss}}.$

- For any $M \in Max A$, A/M is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of [0,1].
- So there exists a unique embedding $\iota_M : A/M \longrightarrow [0,1]$.
- Let $\varphi_M : A \longrightarrow A/M$ be the natural projection.
- $\forall a \in A$, let $\hat{a} : M \in \operatorname{Max} A \mapsto \iota_M(\varphi_M(a)) \in [0, 1].$

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Semisimple MV-algebras are algebras of fuzzy sets

Theorem [Belluce, 1986]

A is isomorphic to a subalgebra of $[0,1]^{\mathsf{Max}\,\mathsf{A}}$, for any $\mathsf{A}\in\mathcal{MV}^{\mathsf{ss}}.$

- For any $M \in Max A$, A/M is simple.
- [Chang, 1959]: Any simple MV-algebra is an archimedean chain, hence it is isomorphic to a (unique) subalgebra of [0,1].
- So there exists a unique embedding $\iota_M : A/M \longrightarrow [0,1]$.
- Let $\varphi_M : A \longrightarrow A/M$ be the natural projection.
- $\forall a \in A$, let $\hat{a} : M \in Max A \mapsto \iota_M(\varphi_M(a)) \in [0, 1].$
- The map $\iota : a \in A \longmapsto \hat{a} \in [0, 1]^{Max A}$ is an MV-algebra embedding.

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Hyperarchimedean algebras

Definition

Let A be an MV-algebra. An element $a \in A$ is archimedean if it satisfies the following equivalent conditions:

- there exists a positive integer *n* such that $na \in B(A)$;
- **2** there exists a positive integer *n* such that $a^* \lor na = 1$;
- there exists a positive integer *n* such that na = (n + 1)a.

イロト イポト イニト イニト

Semisimple algebras Belluce theorem Hyperarchimedean algebras

Hyperarchimedean algebras

Definition

Let A be an MV-algebra. An element $a \in A$ is archimedean if it satisfies the following equivalent conditions:

• there exists a positive integer *n* such that $na \in B(A)$;

2 there exists a positive integer *n* such that $a^* \lor na = 1$;

• there exists a positive integer *n* such that na = (n + 1)a.

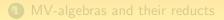
Definition

An MV-algebra A is called hyperarchimedean if all of its elements are archimedean.

イロン (型) (ヨ) (ヨ)

Outline

The category ${}^{\mathcal{MV}\mathcal{T}}$ op The shadow topology



2 Semisimple and hyperarchimedean MV-algebras

3 MV-topologies

4 Stone MV-spaces and semisimple MV-algebras

イロッ イボッ イヨッ イヨッ

The category ${}^{{\cal M}{\cal V}}{\cal T}$ op The shadow topology

< D > < A >

E 6 4 E 6

Open sets

$\langle X, \Omega angle$ topological space

 $\langle \{0,1\}^X, \bigvee, \bigwedge,^*, \mathbf{0}, \mathbf{1} \rangle$ is a complete Boolean algebra.

$\langle X, \Omega \rangle$ MV-topological space

 $\langle [0,1]^{\chi}, \bigvee, \bigwedge, \oplus, \odot,^*, \mathbf{0}, \mathbf{1} \rangle$ is a complete MV-algebra.

Ciro Russo TACL 2011

The category ${}^{{\cal M}{\cal V}}{\cal T}$ op The shadow topology

Open sets

$\langle X, \Omega angle$ topological space

 $\langle \{0,1\}^X, \bigvee, \bigwedge,^*, \mathbf{0}, \mathbf{1} \rangle$ is a complete Boolean algebra.

• $\langle \Omega, \bigvee, \mathbf{0} \rangle$ is a sup-sublattice of $\langle \{0, 1\}^X, \bigvee, \mathbf{0} \rangle$,

$\langle X, \Omega \rangle$ MV-topological space

 $\langle [0,1]^{\chi}, \bigvee, \bigwedge, \oplus, \odot, *, \mathbf{0}, \mathbf{1} \rangle$ is a complete MV-algebra.

• $\langle \Omega, \bigvee, \oplus, \mathbf{0} \rangle$ is a subquantale of $\langle [0, 1]^X, \bigvee, \oplus, \mathbf{0} \rangle$,

The category ${}^{{\cal M}{\cal V}}{\cal T}$ op The shadow topology

Open sets

$\langle X, \Omega angle$ topological space

 $\langle \{0,1\}^X, \bigvee, \bigwedge,^*, \mathbf{0}, \mathbf{1} \rangle$ is a complete Boolean algebra.

- $\langle \Omega, \bigvee, \mathbf{0} \rangle$ is a sup-sublattice of $\langle \{0, 1\}^X, \bigvee, \mathbf{0} \rangle$,
- $\langle \Omega, \wedge, \mathbf{1} \rangle$ is a meet-subsemilattice of $\langle \{0, 1\}^X, \wedge, \mathbf{1} \rangle$.

$\langle X, \Omega \rangle$ MV-topological space

 $\langle [0,1]^{X}, \bigvee, \bigwedge, \oplus, \odot, *, 0, 1 \rangle$ is a complete MV-algebra.

- $\langle \Omega, \bigvee, \oplus, \mathbf{0} \rangle$ is a subquantale of $\langle [0, 1]^X, \bigvee, \oplus, \mathbf{0} \rangle$,
- $\langle \Omega, \wedge, \odot, \mathbf{1} \rangle$ is a subsemiring of $\langle [0, 1]^X, \wedge, \odot, \mathbf{1} \rangle$.

ヘロッ ヘ戸 マ イヨッ

The category \mathcal{MVT} op The shadow topology

Continuous maps

Preimage of a function

Let X, Y be sets and $f : X \longrightarrow Y$ a map. If we identify the subsets of X and Y with their membership functions, the preimage of f is

$$f^{\leftarrow}: \chi \in \{0,1\}^Y \longmapsto \chi \circ f \in \{0,1\}^X.$$

イロン 不得 とくほう イヨン

The category ${}^{\mathcal{MV}}\mathcal{T}$ op The shadow topology

Continuous maps

Preimage of a function

Let X, Y be sets and $f : X \longrightarrow Y$ a map. If we identify the subsets of X and Y with their membership functions, the preimage of f is

$$f^{\leftarrow}: \chi \in \{0,1\}^Y \longmapsto \chi \circ f \in \{0,1\}^X.$$

Analogously, the fuzzy preimage of f is defined by

$$f^{\leftarrow}: \chi \in [0,1]^Y \longmapsto \chi \circ f \in [0,1]^X.$$

(日)

The category ${}^{{\cal M}{\cal V}}{\cal T}$ op The shadow topology

Continuous maps

Preimage of a function

Let X, Y be sets and $f : X \longrightarrow Y$ a map. If we identify the subsets of X and Y with their membership functions, the preimage of f is

$$f^{\leftarrow}: \chi \in \{0,1\}^Y \longmapsto \chi \circ f \in \{0,1\}^X.$$

Analogously, the fuzzy preimage of f is defined by

$$f^{\leftarrow}: \chi \in [0,1]^Y \longmapsto \chi \circ f \in [0,1]^X.$$

MV-continuity

So, if $\langle X, \Omega_X \rangle$ and $\langle Y, \Omega_Y \rangle$ are MV-spaces, $f : X \longrightarrow Y$ is said to be MV-continuous if $f^{\leftarrow}[\Omega_Y] \subseteq \Omega_X$.

< 口 > < 同 > < 三 > < 三 >

The category $^{\mathcal{MV}\mathcal{T}op}$ The shadow topology

Examples and bases

• $\langle X, \{\mathbf{0}, \mathbf{1}\} \rangle$ and $\langle X, [0, 1]^X \rangle$ are MV-topological spaces.

イロン 不得 とくほう 不良 とうほう

The category $^{\mathcal{MV}\mathcal{T}op}$ The shadow topology

Examples and bases

- $\langle X, \{0,1\} \rangle$ and $\langle X, [0,1]^X \rangle$ are MV-topological spaces.
- Any topology is an MV-topology.

イロッ 不得 アイボン イロン 一日

The category ${}^{{\cal M}{\cal V}}{\cal T}{}^{{\sf op}}$ The shadow topology

Examples and bases

• $\langle X, \{\mathbf{0}, \mathbf{1}\} \rangle$ and $\langle X, [0, 1]^X \rangle$ are MV-topological spaces.

• Any topology is an MV-topology.

• Let $d: X \longrightarrow [0, +\infty[$ be a metric on X and α a fuzzy point of X with support x. For any $r \in \mathbb{R}^+$, the open ball $B_r(\alpha)$ is $B_r(\alpha)(y) := \begin{cases} \alpha(x) & \text{if } d(x, y) < r \\ 0 & \text{if } d(x, y) \ge r \end{cases}$.

イロン イポン イヨン イヨン 三日

The category ${}^{{\cal M}{\cal V}}{\cal T}{}^{{\sf op}}$ The shadow topology

Examples and bases

• $\langle X, \{\mathbf{0}, \mathbf{1}\} \rangle$ and $\langle X, [0, 1]^X \rangle$ are MV-topological spaces.

• Any topology is an MV-topology.

• Let $d: X \longrightarrow [0, +\infty[$ be a metric on X and α a fuzzy point of X with support x. For any $r \in \mathbb{R}^+$, the open ball $B_r(\alpha)$ is $B_r(\alpha)(y) := \begin{cases} \alpha(x) & \text{if } d(x,y) < r \\ 0 & \text{if } d(x,y) \ge r \end{cases}$. The family of fuzzy subsets of X that are joins of open balls is

an MV-topology on X that is said to be induced by d.

イロト イポト イニト イニト

The category ${}^{\mathcal{MV}}\mathcal{T}$ op The shadow topology

Examples and bases

• $\langle X, \{\mathbf{0}, \mathbf{1}\} \rangle$ and $\langle X, [0, 1]^X \rangle$ are MV-topological spaces.

• Any topology is an MV-topology.

Let d : X → [0, +∞[be a metric on X and α a fuzzy point of X with support x. For any r ∈ ℝ⁺, the open ball B_r(α) is B_r(α)(y) := { α(x) if d(x, y) < r 0 if d(x, y) ≥ r .

The family of fuzzy subsets of X that are joins of open balls is an MV-topology on X that is said to be induced by d.

Definition

 $\mathbf{T} = \langle X, \Omega \rangle \in {}^{\mathcal{MV}}\mathcal{T}$ op. $B \subseteq \Omega$ is called a base for \mathbf{T} if, for all $o \in \Omega$, $o = \bigvee_{i \in I} b_i$, with $\{b_i\}_{i \in I} \subseteq B$.

・ロッ ・行 ・ ・ ティー・

Э

The category ${}^{\mathcal{MV}}\mathcal{T}$ op The shadow topology

The shadow topology

Definition

For any MV-space $\mathbf{T} = \langle X, \Omega \rangle$, let $\mathsf{B}(\Omega) := \Omega \cap \{0, 1\}^X$.

The category ${}^{\mathcal{MV}}\mathcal{T}$ op The shadow topology

The shadow topology

Definition

For any MV-space $\mathbf{T} = \langle X, \Omega \rangle$, let $B(\Omega) := \Omega \cap \{0, 1\}^X$. Sh $\mathbf{T} = \langle X, B(\Omega) \rangle$ is a topology in the classical sense, called the shadow of \mathbf{T} .

イロッ 不得 アイボン イロン 一日

The category ${}^{\mathcal{MV}}\mathcal{T}op$ The shadow topology

The shadow topology

Definition

For any MV-space $\mathbf{T} = \langle X, \Omega \rangle$, let $B(\Omega) := \Omega \cap \{0, 1\}^X$. Sh $\mathbf{T} = \langle X, B(\Omega) \rangle$ is a topology in the classical sense, called the shadow of \mathbf{T} .

Sh is a functor

 \mathcal{T} op is a full subcategory of $\mathcal{MV}\mathcal{T}$ op.

The category ${}^{\mathcal{MV}}\mathcal{T}op$ The shadow topology

The shadow topology

Definition

For any MV-space $\mathbf{T} = \langle X, \Omega \rangle$, let $B(\Omega) := \Omega \cap \{0, 1\}^X$. Sh $\mathbf{T} = \langle X, B(\Omega) \rangle$ is a topology in the classical sense, called the shadow of \mathbf{T} .

Sh is a functor

Top is a full subcategory of \mathcal{MV} Top. The mapping Sh : \mathcal{MV} Top \longrightarrow Top is a functor. It is, in fact, the left-inverse of the inclusion Top $\subseteq \mathcal{MV}$ Top.

The category ${}^{\mathcal{MV}}\mathcal{T}op$ The shadow topology

The shadow topology

Definition

For any MV-space $\mathbf{T} = \langle X, \Omega \rangle$, let $B(\Omega) := \Omega \cap \{0, 1\}^X$. Sh $\mathbf{T} = \langle X, B(\Omega) \rangle$ is a topology in the classical sense, called the shadow of \mathbf{T} .

Sh is a functor

Top is a full subcategory of \mathcal{MV} Top. The mapping Sh : \mathcal{MV} Top \longrightarrow Top is a functor. It is, in fact, the left-inverse of the inclusion Top $\subseteq \mathcal{MV}$ Top.

The shadow of the MV-topology induced by a metric d is the topology induced by d.

< 口 > < 同 > < 三 > < 三 >

Outline

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

4 Stone MV-spaces and semisimple MV-algebras

くロン (行) (注) (注)

Compactness

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

A more complex situation

Due to the presence of two intersection and two union operations, compactness and each separation axiom can have at least two different MV-versions.

・ロト (吊) (日) (日)

Compactness

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

A more complex situation

Due to the presence of two intersection and two union operations, compactness and each separation axiom can have at least two different MV-versions.

Compact spaces

An MV-space $\langle X, \Omega \rangle$ is said to be

weakly compact if any open covering of X contains an additive covering, i.e., for any Ω' ⊆ Ω such that ∨Ω' = 1, there exists a finite subset {o₁,..., o_n} of Ω' such that o₁ ⊕ ··· ⊕ o_n = 1;

<ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Compactness

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

A more complex situation

Due to the presence of two intersection and two union operations, compactness and each separation axiom can have at least two different MV-versions.

Compact spaces

An MV-space $\langle X, \Omega \rangle$ is said to be

- weakly compact if any open covering of X contains an additive covering, i.e., for any Ω' ⊆ Ω such that ∨Ω' = 1, there exists a finite subset {o₁,..., o_n} of Ω' such that o₁ ⊕ ··· ⊕ o_n = 1;
- compact if any open covering of X contains a finite covering.

・ロッ ・雪ッ ・ヨッ

Separation

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

T_2 axioms

An MV-space $\mathbf{T} = \langle X, \Omega \rangle$ is said to be weakly separated (or weakly Hausdorff) if for $x \neq y \in X$, there exist $o_x, o_y \in \Omega$ such that:

(i)
$$o_x(x) = o_y(y) = 1$$
,
(ii) $o_x(y) = o_y(x) = 0$,
(iii) $o_x \odot o_y = 0$.

Ciro Russo TACL 2011

< D > < P > < E > < E >

Separation

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

T_2 axioms

An MV-space $\mathbf{T} = \langle X, \Omega \rangle$ is said to be weakly separated (or weakly Hausdorff) if for $x \neq y \in X$, there exist $o_x, o_y \in \Omega$ such that:

(i)
$$o_x(x) = o_y(y) = 1$$
,

(ii)
$$o_x(y) = o_y(x) = 0$$

(iii)
$$o_x \odot o_y = \mathbf{0}$$
.

T is said to be separated if, for any $x \neq y \in X$, there exist $o_x, o_y \in \Omega$ satisfying (i) and (iv) $o_x \wedge o_y = \mathbf{0}$.

 T_2 definition do not need fuzzy points.

イロト イポト イニト イニト

Stone MV-spaces

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

Remark

Separation implies weak separation and they both collapse to classical T_2 in the case of crisp topologies. The same holds for compactness.

イロン 不良 イモン イヨン

Stone MV-spaces

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

Remark

Separation implies weak separation and they both collapse to classical T_2 in the case of crisp topologies. The same holds for compactness.

Clopens and zero-dimensionality

Let $\mathbf{T} = \langle X, \Omega \rangle$ be an MV-space and $\Xi = \Omega^*$ be the family of closed fuzzy subsets. We denote by Clop \mathbf{T} the family $\Omega \cap \Xi$ of clopen fuzzy subsets of X. Clop $\mathbf{T} \in \mathcal{MV}^{ss}$, for any MV-space \mathbf{T} .

Ciro Russo TACL 2011

イロト イヨト イヨト イヨト

Stone MV-spaces

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

Remark

Separation implies weak separation and they both collapse to classical T_2 in the case of crisp topologies. The same holds for compactness.

Clopens and zero-dimensionality

Let $\mathbf{T} = \langle X, \Omega \rangle$ be an MV-space and $\Xi = \Omega^*$ be the family of closed fuzzy subsets. We denote by Clop **T** the family $\Omega \cap \Xi$ of clopen fuzzy subsets of X. Clop $\mathbf{T} \in \mathcal{MV}^{ss}$, for any MV-space **T**. **T** is called zero-dimensional if Clop **T** is a base for it.

Stone MV-spaces

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

Remark

Separation implies weak separation and they both collapse to classical T_2 in the case of crisp topologies. The same holds for compactness.

Clopens and zero-dimensionality

Let $\mathbf{T} = \langle X, \Omega \rangle$ be an MV-space and $\Xi = \Omega^*$ be the family of closed fuzzy subsets. We denote by Clop **T** the family $\Omega \cap \Xi$ of clopen fuzzy subsets of X. Clop $\mathbf{T} \in \mathcal{MV}^{ss}$, for any MV-space **T**. **T** is called zero-dimensional if Clop **T** is a base for it.

Definition

A Stone MV-space is an MV-space which is weakly compact, weakly separated and zero-dimensional.

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

The MV-space $\langle Max A, \Omega_A \rangle$

Remark

The category ${}^{\mathcal{MV}}\mathcal{S}$ tone of Stone MV-spaces, with MV-continuous maps as morphisms, is a full subcategory of ${}^{\mathcal{MV}}\mathcal{T}$ op.

イロッ 不得 アイボン イロン 一日

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

The MV-space $\langle Max A, \Omega_A \rangle$

Remark

The category ${}^{\mathcal{MV}}\mathcal{S}$ tone of Stone MV-spaces, with MV-continuous maps as morphisms, is a full subcategory of ${}^{\mathcal{MV}}\mathcal{T}$ op.

The Maximal MV-spectrum

Let A be a semisimple MV-algebra. By Belluce representation theorem, there exists a canonical embedding $\iota: A \longrightarrow [0, 1]^{\text{Max}A}$.

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

The MV-space $\langle Max A, \Omega_A \rangle$

Remark

The category ${}^{\mathcal{MV}}\mathcal{S}$ tone of Stone MV-spaces, with MV-continuous maps as morphisms, is a full subcategory of ${}^{\mathcal{MV}}\mathcal{T}$ op.

The Maximal MV-spectrum

Let A be a semisimple MV-algebra. By Belluce representation theorem, there exists a canonical embedding $\iota : A \longrightarrow [0, 1]^{\text{Max}A}$. Then $\iota[A]$ generates, as a base, an MV-topology on Max A. The family of open sets of such a space is denoted by Ω_A .

メロト メポト メヨト メヨト

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

The MV-space $\langle Max A, \Omega_A \rangle$

Remark

The category ${}^{\mathcal{MV}}\mathcal{S}$ tone of Stone MV-spaces, with MV-continuous maps as morphisms, is a full subcategory of ${}^{\mathcal{MV}}\mathcal{T}$ op.

The Maximal MV-spectrum

Let A be a semisimple MV-algebra. By Belluce representation theorem, there exists a canonical embedding $\iota : A \longrightarrow [0, 1]^{Max A}$. Then $\iota[A]$ generates, as a base, an MV-topology on Max A. The family of open sets of such a space is denoted by Ω_A . So, for any semisimple MV-algebra A, $\langle Max A, \Omega_A \rangle$ denotes the MV-topological space on Max A having (an isomorphic copy of) A as a base.

・ロッ ・雪ッ ・ヨッ

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

A (proper) extension of Stone duality

Theorem

The mappings

define two contravariant functors.

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

A (proper) extension of Stone duality

Theorem

The mappings

define two contravariant functors.

2 They yield a duality between \mathcal{MV}^{ss} and \mathcal{MVS}^{st} tone, that is

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

A (proper) extension of Stone duality

Theorem

The mappings

define two contravariant functors.

2 They yield a duality between \mathcal{MV}^{ss} and \mathcal{MVS} tone, that is

 for every semisimple MV-algebra A, ΨA is a Stone MV-space and A is isomorphic to the clopen algebra of such a space;

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

A (proper) extension of Stone duality

Theorem

The mappings

define two contravariant functors.

2 They yield a duality between \mathcal{MV}^{ss} and \mathcal{MVS}^{st} tone, that is

- for every semisimple MV-algebra A, ΨA is a Stone MV-space and A is isomorphic to the clopen algebra of such a space;
- conversely, every Stone MV-space T = (X, Ω) is homeomorphic to ΨΦT.

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

A (proper) extension of Stone duality

Theorem

The mappings

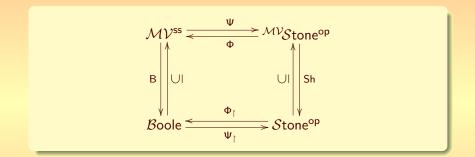
define two contravariant functors.

2 They yield a duality between \mathcal{MV}^{ss} and \mathcal{MVS}^{st} tone, that is

- for every semisimple MV-algebra A, ΨA is a Stone MV-space and A is isomorphic to the clopen algebra of such a space;
- conversely, every Stone MV-space T = (X, Ω) is homeomorphic to ΨΦT.
- The restriction of such a duality to Boolean algebras and Stone spaces coincide with the classical Stone duality.
- $\Phi Sh = B \Phi$ and $\Psi B = Sh \Psi$.

Graphically

Stone MV-spaces Stone duality extended Finite-valued MV-algebras



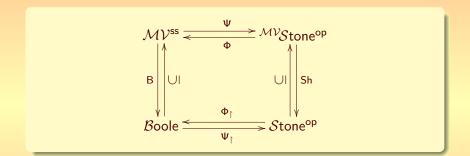
Horizontal arrows: equivalences Vertical arrows: inclusions of full subcategories and their left-inverses

Ciro Russo TACL 2011

メロン メポン メモン メニン

Graphically

Stone MV-spaces Stone duality extended Finite-valued MV-algebras



Horizontal arrows: equivalences Vertical arrows: inclusions of full subcategories and their left-inverses

Corollary

Separated Stone MV-spaces are dual to hyperarchimedean MV-algebras.

Ciro Russo TACL 2011

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

n-valued MV-algebras

The category \mathcal{B} oole_n

Objects of \mathcal{B} oole_n are pairs $B_n = \langle B, (J_i)_{i=1}^{n-1} \rangle$ where B is a Boolean algebra and $(J_i)_{i=1}^{n-1}$ is a sequence of n-1 ideals of B such that **1** $J_i = J_{n-i}$ for all i = 1, ..., n-1, and **2** $J_h \cap J_{i-h} \subseteq J_i$, for all i = 2, ..., n-1 and h = 1, ..., i-1. A morphism $f : \langle B, (J_i)_{i=1}^{n-1} \rangle \longrightarrow \langle B', (J'_i)_{i=1}^{n-1} \rangle$ is a Boolean algebra homomorphism from B to B' s.t. $f[J_i] \subseteq J'_i$ for all i.

(D) (A) (A) (A)

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

n-valued MV-algebras

The category \mathcal{B} oole_n

Objects of \mathcal{B} oole_n are pairs $B_n = \langle B, (J_i)_{i=1}^{n-1} \rangle$ where B is a Boolean algebra and $(J_i)_{i=1}^{n-1}$ is a sequence of n-1 ideals of B such that $J_i = J_{n-i}$ for all i = 1, ..., n-1, and $J_h \cap J_{i-h} \subseteq J_i$, for all i = 2, ..., n-1 and h = 1, ..., i-1.

A morphism $f : \langle B, (J_i)_{i=1}^{n-1} \rangle \longrightarrow \langle B', (J'_i)_{i=1}^{n-1} \rangle$ is a Boolean algebra homomorphism from B to B' s.t. $f[J_i] \subseteq J'_i$ for all i.

Now, let \mathcal{MV}_n denote the subvariety $\mathcal{V}(S_n)$ of \mathcal{MV} generated by the (n+1)-element chain $S_n = \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}.$

イロッ 不得 アイボン イロン 一日

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

n-valued MV-algebras

The category \mathcal{B} oole_n

Objects of \mathcal{B} oole_n are pairs $B_n = \langle B, (J_i)_{i=1}^{n-1} \rangle$ where B is a Boolean algebra and $(J_i)_{i=1}^{n-1}$ is a sequence of n-1 ideals of B such that

$$J_i = J_{n-i}$$
 for all $i = 1, ..., n-1$, and

2 $J_h \cap J_{i-h} \subseteq J_i$, for all i = 2, ..., n-1 and h = 1, ..., i-1.

A morphism $f : \langle B, (J_i)_{i=1}^{n-1} \rangle \longrightarrow \langle B', (J'_i)_{i=1}^{n-1} \rangle$ is a Boolean algebra homomorphism from B to B' s.t. $f[J_i] \subseteq J'_i$ for all i.

Now, let \mathcal{MV}_n denote the subvariety $\mathcal{V}(S_n)$ of \mathcal{MV} generated by the (n+1)-element chain $S_n = \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$.

Theorem [Di Nola-Lettieri, 2000] (reformulated)

The categories \mathcal{MV}_n and $\mathcal{B}oole_n$ are equivalent.

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

\mathcal{MV}_n and Stone spaces

A purely topological duality for *n*-valued MV-algebras is achieved through the introduction of the category of Stone spaces with distinguished open sets.

イロッ イボッ イヨッ イヨッ

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

\mathcal{MV}_n and Stone spaces

A purely topological duality for *n*-valued MV-algebras is achieved through the introduction of the category of Stone spaces with distinguished open sets.

The category $Stone_n$

Objects of Stone_n are pairs $\tau_n = \langle \langle X, \Omega \rangle, (o_i)_{i=1}^{n-1} \rangle$ where $\langle X, \Omega \rangle$ is a Stone space and $(o_i)_{i=1}^{n-1}$ is a sequence of open subsets s.t.

$$lacksim o_i = o_{n-i}$$
 for all $i = 1, \dots, n-1$, and

 $o_h \cap o_{i-h} \subseteq o_i$, for all $i = 2, 3, \dots, n-1$ and $h = 1, \dots, i-1$.

A morphism $f : \langle \langle X, \Omega \rangle, (o_i)_{i=1}^{n-1} \rangle \longrightarrow \langle \langle X', \Omega' \rangle, (o'_i)_{i=1}^{n-1} \rangle$ is a continuous map from X to X' such that $f^{\leftarrow}[o'_i] \subseteq o_i$ for all i.

メロト (月) (三) (三)

 ${}^{\mathcal{MV}}\mathcal{S}$ tone_n and \mathcal{S} tone_n

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

Theorem

The categories $Boole_n$ and $Stone_n$ are dually equivalent.

イロッ 不得 アイボン イロン 一日

 $^{\mathcal{MV}}St$ one_n and Stone_n

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

Theorem

The categories $Boole_n$ and $Stone_n$ are dually equivalent.

Corollary

 \mathcal{MV}_n is dually equivalent to \mathcal{S} tone_n.

くロン (行) (下) (日) (日)

Э

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

${}^{\mathcal{MV}}\!\mathcal{S}$ tone_n and \mathcal{S} tone_n

Theorem

The categories $Boole_n$ and $Stone_n$ are dually equivalent.

Corollary

 \mathcal{MV}_n is dually equivalent to \mathcal{S} tone_n.

From an MV-topological viewpoint, \mathcal{MV}_n is dual to the category \mathcal{MV}_nS tone of Stone MV-spaces of fuzzy sets with S_n -valued membership functions.

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

${}^{\mathcal{MV}}\!\mathcal{S}$ tone_n and \mathcal{S} tone_n

Theorem

The categories $Boole_n$ and $Stone_n$ are dually equivalent.

Corollary

 \mathcal{MV}_n is dually equivalent to \mathcal{S} tone_n.

From an MV-topological viewpoint, \mathcal{MV}_n is dual to the category \mathcal{MV}_nS tone of Stone MV-spaces of fuzzy sets with S_n -valued membership functions.

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

"Point set topology is a disease from which the human race will soon recover."

Jules Henri Poincaré (1854–1912)

E

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

THANK YOU!

Ciro Russo TACL 2011

イロト (行) (注) (注) (注) (注)

Stone MV-spaces Stone duality extended Finite-valued MV-algebras

References

- [Belluce, 1986], Semisimple algebras of infinite valued logic and bold fuzzy set theory, *Can. J. Math.*, **38**/6, 1356–1379, 1986.
- [Chang, 1959], A new proof of the completeness of the Łukasiewicz axioms, *Trans. Amer. Math. Soc.*, **93**, 74–90, 1959.
- [Di Nola–Gerla B., 2005], Algebras of Łukasiewicz's logic and their semiring reducts, Contemp. Math., **377**, 289–318, Amer. Math. Soc., 2005.
- [Di Nola–Lettieri, 2000], One chain generated varieties of MV-algebras, *Journal of Algebra*, **225**, 667–697, 2000.
- [Di Nola–Russo], Topological dualities for finite-valued MV-algebras, in preparation.
- [Russo], An extension of Stone duality to fuzzy topologies and MV-algebras, submitted, arXiv:1102.2000v2 [math.LO].

イロン 不得 とくほと くほど