The word problem in semiconcept algebras

Philippe Balbiani

Institut de recherche en informatique de Toulouse

Aims of this talk

To present a short introduction to formal concept analysis

To define and to study concept algebras

To sketch a proof that the word problem in semiconcept algebras is PSPACE-complete

Formal concept analysis

Formal concept analysis

A context for the planets

	small	medium	large	near	far	yes	no
Mercury	\times			\times			\times
Venus	\times			\times			\times
Earth	\times			\times		\times	
Mars	\times			\times		\times	
Jupiter			\times		\times	\times	
Saturn			\times		\times	\times	
Uranus		\times			\times	\times	
Neptune		\times			\times	\times	
Pluto	\times				\times	\times	

Formal concept analysis

A context for the planets

Objects: the nine planets (Mercury, Venus, etc)
Attributes: the seven properties (small, medium, etc)
Concepts: ordered pairs (A, B) where

- A is a set of planets
- B is a set of properties
- A should contain just those planets sharing all the properties in B
- B should contain just those properties shared by all the planets in A

Formal concept analysis

A context for the planets

	small	medium	large	near	far	yes	no
Mercury	\otimes			\otimes			\times
Venus	\otimes			\otimes			\times
Earth	\otimes			\otimes		\times	
Mars	\otimes			\otimes		\times	
Jupiter			\times		\times	\times	
Saturn			\times		\times	\times	
Uranus		\times			\times	\times	
Neptune		\times			\times	\times	
Pluto	\times				\times	\times	

Formal concept analysis

Contexts and concepts

Contexts, objects and attributes
Contexts: triples $\mathcal{S}=(O b j, A t t, I)$ where $O b j$ and $A t t$ are nonempty sets and $I \subseteq O b j \times A t t$
\mathcal{S}-objects: elements of $\operatorname{Obj}(X, Y$, etc)
\mathcal{S}-attributes: elements of Att (x, y, etc)

Formal concept analysis

Contexts and concepts
Polars and concepts
\mathcal{S}-polars: for $A \subseteq$ Obj and $B \subseteq A t t$, define

- $A^{\prime}=\{x \in$ Att: for all $X \in A, I(X, x)\}$
- $B^{\prime}=\{X \in$ Obj: for all $x \in B, I(X, x)\}$
\mathcal{S}-concepts: pairs (A, B) where $A \subseteq O b j$ - the extent - and $B \subseteq A t t$ - the intent - are such that
- $B^{\prime}=A$
- $A^{\prime}=B$

Concept lattice of a context $\mathcal{S}=($ Obj, Att, $I)$
$\mathcal{C}(\mathcal{S})$: set of all \mathcal{S}-concepts

$$
\leq:\left(A_{1}, B_{1}\right) \leq\left(A_{2}, B_{2}\right) \Longleftrightarrow A_{1} \subseteq A_{2} \text { and } B_{1} \supseteq B_{2}
$$

Formal concept analysis

Returning to the planets

	small	medium	large	near	far	yes	no
1: Mercury	\otimes			\otimes			\otimes
2: Venus	\otimes			\otimes			\otimes
3: Earth	\times			\times		\times	
4: Mars	\times			\times		\times	
5: Jupiter			\times		\times	\times	
6: Saturn			\times		\times	\times	
7: Uranus		\times			\times	\times	
8: Neptune		\times			\times	\times	
9: Pluto	\times				\times	\times	

The concept (\{1, 2\}, \{small, near, no $\}$)

Formal concept analysis

Returning to the planets

	small	medium	large	near	far	yes	no
1: Mercury	\times			\times			\times
2: Venus	\times			\times			\times
3: Earth	\otimes			\otimes		\otimes	
4: Mars	\otimes			\otimes		\otimes	
5: Jupiter			\times		\times	\times	
6: Saturn			\times		\times	\times	
7: Uranus		\times			\times	\times	
8: Neptune		\times			\times	\times	
9: Pluto	\times				\times	\times	

The concept ($\{3,4\}$, $\{$ small, near, yes $\}$)

Formal concept analysis

Returning to the planets

Concept algebras

Concept algebras

Join, meet and complement of concepts in context $\mathcal{S}=($ Obj, Att, I)

Join of concepts $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$

- $\left(\left(A_{1} \cup A_{2}\right)^{\prime \prime}, B_{1} \cap B_{2}\right)$

Meet of concepts $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$

- $\left(A_{1} \cap A_{2},\left(B_{1} \cup B_{2}\right)^{\prime \prime}\right)$

Complement of concept (A, B)

- $($ Obj $\backslash A,-)$?
- $(-, A t t \backslash B)$?

No since • is not always an extent

- $\left((O b j \backslash A)^{\prime \prime},(O b j \backslash A)^{\prime}\right)$? No since • may intersect A
- $\left((A t t \backslash B)^{\prime},(A t t \backslash B)^{\prime \prime}\right)$? No since • may intersect B

Concept algebras

Empedocle's conception of the four elements

	cold	moist	dry	warm
water	\times	\times		
earth	\times		\times	
air		\times		\times
fire			\times	\times

Concept algebras

Concept lattice of Empedocle's conception of the four elements

Concept algebras

Concepts and semiconcepts

Contexts

- $\mathcal{S}=(O b j, A t t, I)$ be a context
- $A \subseteq O b j$ be a set of objects
- $B \subseteq$ Att be a set of attributes

Concepts

- (A, B) is a \mathcal{S}-concept iff $B^{\prime}=A$ and $A^{\prime}=B$

Semiconcepts

- (A, B) is a \mathcal{S}-semiconcept iff $B^{\prime}=A$ or $A^{\prime}=B$

Concept algebras

Semiconcept algebra: example

	a	b
1		\times
2	\times	\times

Concept algebras

Semiconcept algebra of context $\mathcal{S}=(O b j$, Att, $I)$

Structure $\mathcal{A}(\mathcal{S})=\left(A^{\mathcal{S}}, \perp_{l}^{\mathcal{S}}, T_{r}^{\mathcal{S}}, T_{l}^{\mathcal{S}}, \perp_{r}^{\mathcal{S}}, \neg_{l}^{\mathcal{S}}, \neg_{r}^{\mathcal{S}}, \vee_{l}^{\mathcal{S}}, \wedge_{r}^{\mathcal{S}}, \wedge_{l}^{\mathcal{S}}, \vee_{r}^{\mathcal{S}}\right)$ where $A^{\mathcal{S}}$ is the set of all \mathcal{S} 's semiconcepts and

- $\perp_{I}^{\mathcal{S}}=(\emptyset, A t t)$
- $T_{r}^{S}=(O b j, \emptyset)$
- $T_{l}^{S}=(O b j, O b j)$
- $\perp_{r}^{\mathcal{S}}=\left(A t t^{\prime}, A t t\right)$
- $\neg_{l}^{\mathcal{S}}(A, B)=\left(O b j \backslash A,(O b j \backslash A)^{\prime}\right)$
- $\neg_{r}^{\mathcal{S}}(A, B)=\left((\operatorname{Att} \backslash B)^{\prime}, A t t \backslash B\right)$
- $\left(A_{1}, B_{1}\right) \vee_{1}^{\mathcal{S}}\left(A_{2}, B_{2}\right)=\left(A_{1} \cup A_{2},\left(A_{1} \cup A_{2}\right)^{\prime}\right)$
- $\left(A_{1}, B_{1}\right) \wedge_{r}^{S}\left(A_{2}, B_{2}\right)=\left(\left(B_{1} \cup B_{2}\right)^{\prime}, B_{1} \cup B_{2}\right)$
- $\left(A_{1}, B_{1}\right) \wedge_{l}^{\mathcal{S}}\left(A_{2}, B_{2}\right)=\left(A_{1} \cap A_{2},\left(A_{1} \cap A_{2}\right)^{\prime}\right)$
- $\left(A_{1}, B_{1}\right) \vee_{r}^{\mathcal{S}}\left(A_{2}, B_{2}\right)=\left(\left(B_{1} \cap B_{2}\right)^{\prime}, B_{1} \cap B_{2}\right)$

Concept algebras

Semiconcept algebra: example

	a	b
1		\times
2	\times	\times

Concept algebras

Semiconcept algebra: equational theory

- \wedge_{l} is $A C$
- \wedge_{l} distributes over \vee_{1}
- $\neg_{I}\left(x \wedge_{I} x\right)=\neg_{I} x$
- $x \wedge_{l}\left(y \wedge_{l} y\right)=x \wedge_{l} y$
- $x \wedge_{l}\left(x \vee_{l} y\right)=x \wedge_{l} x$
- $x \wedge_{I}\left(x \vee_{r} y\right)=x \wedge_{I} x$
- $\neg_{l}\left(\neg_{\prime} x \wedge_{I} \neg_{l} y\right)=x \vee_{I} y$
- $\neg_{\text {I }} \perp_{\text {l }}=\mathrm{T}_{\text {l }}$
- $\neg_{l} T_{r}=\perp_{l}$
- $\top_{r} \wedge_{l} T_{r}=T_{l}$
- $x \wedge_{l} \neg_{l} x=\perp_{l}$
- $\neg_{\rho} \neg_{l}\left(x \wedge_{I} y\right)=x \wedge_{l} y$
V_{r} is $A C$
\vee_{r} distributes over \wedge_{r}
$\neg_{r}\left(x \vee_{r} x\right)=\neg_{r} x$
$x \vee_{r}\left(y \vee_{r} y\right)=x \vee_{r} y$
$x \vee_{r}\left(x \wedge_{r} y\right)=x \vee_{r} x$
$x \vee_{r}\left(x \wedge_{r} y\right)=x \vee_{r} x$
$\neg_{r}\left(\neg_{r} x \vee_{r} \neg_{r} y\right)=x \wedge_{r} y$
$\neg_{r} \top_{r}=\perp_{r}$
$\neg_{r} \perp_{l}=\top_{r}$
$\perp_{l} \vee_{r} \perp_{l}=\perp_{r}$
$x \vee_{r} \neg_{r} x=\top_{r}$
$\neg_{r} \neg_{r}\left(x \vee_{r} y\right)=x \vee_{r} y$
$\left(x \vee_{r} x\right) \wedge_{I}\left(x \vee_{r} x\right)=\left(x \wedge_{I} x\right) \vee_{r}\left(x \wedge_{I} x\right)$
$x \wedge_{I} x=x$ or $x \vee_{r} x=x$

Concept algebras

Semiconcept algebra: representation theorem

Let $\mathcal{S}=(O b j, A t t, I)$ be a context

- If $A^{\mathcal{S}}$ is the set of all \mathcal{S} 's semiconcepts then the structure $\mathcal{A}(\mathcal{S})=\left(A^{\mathcal{S}}, \perp_{l}^{\mathcal{S}}, \top_{r}^{\mathcal{S}}, \neg_{l}^{\mathcal{S}}, \neg_{r}^{\mathcal{S}}, \vee_{l}^{\mathcal{S}}, \wedge_{r}^{\mathcal{S}}\right)$ is a semiconcept algebra

Let $\mathcal{A}=\left(A, \perp_{l}, \top_{r}, \neg_{l}, \neg_{r}, \vee_{l}, \wedge_{r}\right)$ be a semiconcept algebra

- There exists a context $\mathcal{S}(\mathcal{A})=\left(O b j^{\mathcal{A}}\right.$, Att $\left.^{\mathcal{A}}, \mathcal{I}^{\mathcal{A}}\right)$ such that \mathcal{A} is embeddable into the structure $\mathcal{A}(\mathcal{S}(\mathcal{A}))=\left(A^{\mathcal{S}(\mathcal{A})}\right.$, $\left.\perp_{l}^{\mathcal{S}(\mathcal{A})}, \top_{r}^{\mathcal{S}(\mathcal{A})}, \neg_{l}^{\mathcal{S}(\mathcal{A})}, \neg_{r}^{\mathcal{S}(\mathcal{A})}, \vee_{1}^{\mathcal{S}(\mathcal{A})}, \wedge_{r}^{\mathcal{S}(\mathcal{A})}\right)$

The word problem in semiconcept algebras

The word problem in semiconcept algebras

 SyntaxWe define terms as follows

- $s::=x\left|0_{l}\right| 1_{r}|-s|-_{r} s\left|\left(s \sqcup_{l} t\right)\right|\left(s \sqcap_{r} t\right)$

We define the following abbreviations

- $1_{l}::=-0_{l}$
- $0_{r}::=-r 1_{r}$
- $\left(s \sqcap_{,} t\right)::=-\jmath\left(-/ s \sqcup_{\jmath}-, t\right)$
- $\left(s \sqcup_{r} t\right)::=-r\left(-r s \sqcap_{r}-r t\right)$

The word problem in semiconcept algebras

Semantics

A valuation based on a semiconcept algebra $\mathcal{A}=\left(A, \perp_{l}, \top_{r}\right.$,
$\left.\neg_{l}, \neg_{r}, \vee_{l}, \wedge_{r}\right)$ is a function

- $\theta: x \mapsto \theta(x) \in A$
θ induces a function $\bar{\theta}: s \mapsto \bar{\theta}(s) \in A$ as follows:
- $\bar{\theta}(x)=\theta(x)$
- $\bar{\theta}\left(0_{l}\right)=\perp_{l}$
- $\bar{\theta}\left(1_{r}\right)=T_{r}$
- $\bar{\theta}(-, s)=\neg / \bar{\theta}(s)$
- $\bar{\theta}\left(-{ }_{r} s\right)=\neg_{r} \bar{\theta}(s)$
- $\bar{\theta}\left(s \sqcup_{1} t\right)=\bar{\theta}(s) \vee_{1} \bar{\theta}(t)$
- $\bar{\theta}\left(s \sqcap_{r} t\right)=\bar{\theta}(s) \wedge_{r} \bar{\theta}(t)$

The word problem in semiconcept algebras

The word problem

Input:

- Terms s, t

Output:

- Decide whether $s \nsucceq t$, i.e. whether there exists a valuation θ based on a semiconcept algebra $\mathcal{A}=\left(A, \perp_{l}, \top_{r}, \neg /,, \neg_{r}\right.$, $\left.\vee_{l}, \wedge_{r}\right)$ such that $\bar{\theta}(s) \neq \bar{\theta}(t)$

Computational complexity:

- The word problem in semiconcept algebras is PSPACE-complete

The word problem in semiconcept algebras

Solving the word problem
K^{2} : a basic 2-sorted modal logic:

- Syntax:
- $F::=P|\perp| \neg F|(F \vee G)| \square f$
- $f::=p|\perp| \neg f|(f \vee g)| \square F$
- Semantics:
- $\mathcal{M}=(\mathcal{S}, V)$ where $\mathcal{S}=(O b j, A t t, I)$ is a context and:
- $V: P \mapsto V(P) \subseteq O b j$
- $v: p \mapsto v(p) \subseteq$ Att
- $\mathcal{M}, X \equiv P$ iff $X \in V(P)$
- $\mathcal{M}, x \vDash p$ iff $x \in v(p)$
- $\mathcal{M}, X \models \square f$ iff for all $x \in$ Att, if $\mathcal{M}, x \models f$ then $X I x$
- $\mathcal{M}, x \models \square F$ iff for all $X \in O b j$, if $\mathcal{M}, X \models F$ then $X I x$
- The satisfiability problem for K^{2} is PSPACE-complete

The word problem in semiconcept algebras

 Solving the word problemRestriction of the syntax of K^{2} :

- $F::=P|\perp| \neg F|(F \vee G)| \square f$
- $f::=\perp|\neg f|(f \vee g) \mid \square F$

Syntax of the word problem:

- $s::=x\left|0_{l}\right| 1_{r}|-/ s|-_{r} s\left|\left(s \sqcup_{l} t\right)\right|\left(s \sqcap_{r} t\right)$

The word problem in semiconcept algebras

 Solving the word problemA reduction from K^{2} to the word problem:

- $T\left(P_{i}\right)=x_{i}$
- $T(\perp)=0$,

$$
t(\perp)=1_{r}
$$

- $T(\neg F)=-, T(F)$
$t(\neg f)=-r t(f)$
- $T(F \vee G)=T(F) \sqcup_{/} T(G)$
$t(f \vee g)=t(f) \sqcap_{r} t(g)$
- $T(\square f)=-\jmath-\jmath-r-r t(f)$
$t(\square F)=-r-r-\jmath-। T(F)$
F is satisfiable iff $T(F) \not \nsim 0$,

The word problem in semiconcept algebras

 Solving the word problemSyntax of the word problem:

- $s::=x\left|0_{l}\right| 1_{r}|-s|-_{r} s\left|\left(s \sqcup_{l} t\right)\right|\left(s \sqcap_{r} t\right)$

Syntax of K^{2} :

- $F::=P|\perp| \neg F|(F \vee G)| \square f$
- $f::=p|\perp| \neg f|(f \vee g)| \square F$

The word problem in semiconcept algebras

 Solving the word problemA reduction from the word problem to K^{2} :

- $F\left(x_{i}\right)=P_{i}$

$$
f\left(x_{i}\right)=p_{i}
$$

- $F\left(0_{l}\right)=\perp$ $f\left(0_{l}\right)=\square \perp$
- $F\left(1_{r}\right)=\square \perp$

$$
f\left(1_{r}\right)=\perp
$$

- $F(-, s)=\neg F(s)$ $f(-, s)=\square \neg F(s)$
- $F(-r s)=\square \neg f(s)$
$f(-r s)=\neg f(s)$
- $F\left(s \sqcup_{1} t\right)=F(s) \vee F(t)$ $f\left(s \sqcup_{l} t\right)=\square(F(s) \vee F(t))$
- $F\left(s \sqcap_{r} t\right)=\square(f(s) \vee f(t)) \quad f\left(s \sqcap_{r} t\right)=f(s) \vee f(t)$
$s \not \approx t$ iff $\neg(F(s) \leftrightarrow F(t))$ is p-satisfiable or $\neg(f(s) \leftrightarrow f(t))$ is p-satisfiable

Conclusion

What we have done

- PSPACE-completeness of the word problem in semiconcept algebras

Open problems

- Tableaux-based procedure for deciding the word problem in semiconcept algebras
- Unifiability of terms in semiconcept algebras

Bibliography

- Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press (2002, Second Edition).
- Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer-Verlag (1999).
- Herrmann, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of semiconcepts and double Boolean algebras. Technische Universität Darmstadt (2000).
- Vormbrock, B.: A solution of the word problem for free double Boolean algebras. In Kuznetsov, S., Schmidt, S. (Editors): ICFCA 2007. Springer-Verlag (2007) 240-270.
- Wille, R.: Boolean concept logic. In Eklund, P. (Editor): ICFCA 2004. Springer-Verlag (2004) 1-13.
- Wille, R.: Preconcept algebras and generalized double Boolean algebras. In Ganter, B., Mineau, G. (Editors): ICCS 2000. Springer-Verlag (2000) 317-331.

