The word problem in semiconcept algebras

Philippe Balbiani

Institut de recherche en informatique de Toulouse

(ロ)、

To present a short introduction to formal concept analysis

To define and to study concept algebras

To sketch a proof that **the word problem in semiconcept algebras** is *PSPACE*-complete

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A context for the planets

	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

A context for the planets

Objects: the nine planets (*Mercury*, *Venus*, etc) Attributes: the seven properties (*small*, *medium*, etc) Concepts: ordered pairs (A, B) where

- A is a set of planets
- B is a set of properties
- A should contain just those planets sharing all the properties in B
- B should contain just those properties shared by all the planets in A

(ロ) (同) (三) (三) (三) (三) (○) (○)

A context for the planets

	small	medium	large	near	far	yes	no
Mercury	\otimes			\otimes			×
Venus	\otimes			\otimes			×
Earth	\otimes			\otimes		×	
Mars	\otimes			\otimes		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Contexts and concepts

Contexts, objects and attributes

Contexts: triples S = (Obj, Att, I) where Obj and Att are nonempty sets and $I \subseteq Obj \times Att$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

S-objects: elements of Obj (X, Y, etc)

S-attributes: elements of Att (x, y, etc)

Contexts and concepts

Polars and concepts

S-polars: for $A \subseteq Obj$ and $B \subseteq Att$, define $A' = \{x \in Att: \text{ for all } X \in A, I(X, x)\}$ $B' = \{X \in Obj: \text{ for all } x \in B, I(X, x)\}$ S-concepts: pairs (A, B) where $A \subseteq Obj$ — the extent — and $B \subseteq Att$ — the intent — are such that B' = AA' = B

Concept lattice of a context S = (Obj, Att, I)

 $\mathcal{C}(\mathcal{S})$: set of all \mathcal{S} -concepts \leq : $(A_1, B_1) \leq (A_2, B_2) \iff A_1 \subseteq A_2$ and $B_1 \supseteq B_2$

Returning to the planets

	small	medium	large	near	far	yes	no
1 : Mercury	\otimes			\otimes			\otimes
2 : Venus	\otimes			\otimes			\otimes
3 : Earth	×			×		×	
4 : <i>Mars</i>	×			×		×	
5 : Jupiter			×		×	×	
6 : Saturn			×		×	×	
7 : Uranus		×			×	X	
8 : Neptune		×			×	×	
9 : Pluto	×				×	X	

The concept ({1,2}, {*small*, *near*, *no*})

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Returning to the planets

	small	medium	large	near	far	yes	no
1 : Mercury	×			×			×
2 : Venus	×			×			×
3 : <i>Earth</i>	\otimes			\otimes		\otimes	
4 : <i>Mars</i>	\otimes			\otimes		\otimes	
5 : Jupiter			×		×	Х	
6 : <i>Saturn</i>			×		×	X	
7 : Uranus		×			×	X	
8 : Neptune		×			×	×	
9 : Pluto	×				×	Х	

The concept ({3,4}, {*small*, *near*, *yes*})

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Returning to the planets

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Join, meet and complement of concepts in context S = (Obj, Att, I)

```
Join of concepts (A_1, B_1) and (A_2, B_2)
```

 $\blacktriangleright ((A_1 \cup A_2)'', B_1 \cap B_2)$

Meet of concepts (A_1, B_1) and (A_2, B_2) $\blacktriangleright (A_1 \cap A_2, (B_1 \cup B_2)'')$

Complement of concept (A, B)

- $(Obj \setminus A, -)$? No since is not always an extent
- ► $(-,Att \setminus B)$? No since is not always an intent
- $((Obj \setminus A)'', (Obj \setminus A)')$? No since may intersect A
- $((Att \setminus B)', (Att \setminus B)'')$? No since may intersect B

Empedocle's conception of the four elements

	cold	moist	dry	warm
water	×	×		
earth	×		×	
air		×		×
fire			×	×

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Concept lattice of Empedocle's conception of the four elements

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Concepts and semiconcepts

Contexts

- S = (Obj, Att, I) be a context
- $A \subseteq Obj$ be a set of objects
- $B \subseteq Att$ be a set of attributes

Concepts

• (A, B) is a S-concept iff B' = A and A' = B

Semiconcepts

• (A, B) is a S-semiconcept iff B' = A or A' = B

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Semiconcept algebra: example

	а	b
1		×
2	×	×

Semiconcept algebra of context S = (Obj, Att, I)

Structure $\mathcal{A}(\mathcal{S}) = (\mathcal{A}^{\mathcal{S}}, \perp_{I}^{\mathcal{S}}, \top_{r}^{\mathcal{S}}, \top_{I}^{\mathcal{S}}, \perp_{r}^{\mathcal{S}}, \neg_{I}^{\mathcal{S}}, \neg_{r}^{\mathcal{S}}, \vee_{I}^{\mathcal{S}}, \wedge_{r}^{\mathcal{S}}, \wedge_{I}^{\mathcal{S}}, \vee_{r}^{\mathcal{S}})$ where $\mathcal{A}^{\mathcal{S}}$ is the set of all \mathcal{S} 's semiconcepts and

Semiconcept algebra: example

	а	b
1		×
2	×	×

Semiconcept algebra: equational theory

- \blacktriangleright \wedge_l is AC
- \blacktriangleright \wedge_l distributes over \vee_l

$$\blacktriangleright \neg_{l}(x \wedge_{l} x) = \neg_{l} x$$

$$x \wedge_{l} (y \wedge_{l} y) = x \wedge_{l} y$$

$$X \wedge_{I} (X \vee_{I} y) = X \wedge_{I} x$$

$$X \wedge_l (X \vee_r y) = X \wedge_l x$$

 $(x \wedge_i y) = x \wedge_i y$

$$\neg_{I}(\neg_{I} X \wedge_{I} \neg_{I} y) = X \vee_{I} y$$

$$\blacktriangleright \neg_{l} \perp_{l} = \top_{l}$$

$$\blacktriangleright \neg_I \top_r = \bot_I$$

$$\blacktriangleright \ \top_r \land_I \top_r = \top_I$$

$$x \wedge_{I} \neg_{I} x = \bot_{I}$$

 \vee_r is AC \vee_r distributes over \wedge_r $\neg_r(X \vee_r X) = \neg_r X$ $X \vee_r (Y \vee_r Y) = X \vee_r Y$ $X \vee_r (X \wedge_r V) = X \vee_r X$ $x \vee_r (x \wedge_l y) = x \vee_r x$ $\neg_r(\neg_r X \vee_r \neg_r Y) = X \wedge_r Y$ $\neg r \top r = \bot r$ $\neg r \perp l = \top r$ $\perp i \lor r \perp i = \perp r$ $X \vee_r \neg_r X = \top_r$ $\neg_r \neg_r (X \vee_r Y) = X \vee_r Y$ $(x \lor_r x) \land_l (x \lor_r x) = (x \land_l x) \lor_r (x \land_l x)$ $X \wedge_I X = X$ or $X \vee_r X = X$

Semiconcept algebra: representation theorem

Let S = (Obj, Att, I) be a **context**

If A^S is the set of all S's semiconcepts then the structure A(S) = (A^S, ⊥^S_I, ⊤^S_r, ¬^S_I, ¬^S_r, ∨^S_I, ∧^S_r) is a semiconcept algebra

Let $\mathcal{A} = (\mathcal{A}, \perp_{I}, \top_{r}, \neg_{I}, \gamma_{r}, \vee_{I}, \wedge_{r})$ be a semiconcept algebra

► There exists a **context** $S(A) = (Obj^A, Att^A, I^A)$ such that *A* is embeddable into the structure $A(S(A)) = (A^{S(A)}, L_1^{S(A)}, \nabla_I^{S(A)}, \nabla_I^{S(A)}, \nabla_I^{S(A)}, \wedge_r^{S(A)})$ The word problem in semiconcept algebras

The word problem in semiconcept algebras Syntax

We define terms as follows

► $s ::= x | 0_{l} | 1_{r} | -_{l} s | -_{r} s | (s \sqcup_{l} t) | (s \sqcap_{r} t)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We define the following abbreviations

▶
$$1_1 ::= -_1 0_1$$

•
$$0_r ::= -_r 1_r$$

$$\blacktriangleright (s \sqcap_l t) ::= -_l (-_l s \sqcup_l -_l t)$$

 $\blacktriangleright (s \sqcup_r t) ::= -_r(-_r s \sqcap_r -_r t)$

The word problem in semiconcept algebras Semantics

A valuation based on a semiconcept algebra $\mathcal{A} = (\mathcal{A}, \perp_{l}, \top_{r}, \neg_{l}, \neg_{r}, \vee_{l}, \wedge_{r})$ is a function

▶ θ : $x \mapsto \theta(x) \in A$

heta induces a function $\overline{ heta}$: $s \mapsto \overline{ heta}(s) \in A$ as follows:

- $\bullet \ \bar{\theta}(x) = \theta(x)$
- $\blacktriangleright \ \bar{\theta}(\mathsf{0}_l) = \bot_l$
- $\blacktriangleright \ \bar{\theta}(\mathbf{1}_r) = \top_r$
- $\blacktriangleright \ \overline{\theta}(-{}_{l}s) = \neg_{l}\overline{\theta}(s)$
- $\bullet \ \bar{\theta}(-rs) = \neg_r \bar{\theta}(s)$
- $\blacktriangleright \ \overline{\theta}(s \sqcup_l t) = \overline{\theta}(s) \lor_l \overline{\theta}(t)$
- $\blacktriangleright \ \overline{\theta}(s \sqcap_r t) = \overline{\theta}(s) \wedge_r \overline{\theta}(t)$

The word problem in semiconcept algebras

Input:

► Terms *s*, *t*

Output:

▶ Decide whether $s \neq t$, i.e. whether there exists a valuation θ based on a semiconcept algebra $\mathcal{A} = (\mathcal{A}, \perp_l, \top_r, \neg_l, \neg_r, \vee_l, \wedge_r)$ such that $\bar{\theta}(s) \neq \bar{\theta}(t)$

Computational complexity:

 The word problem in semiconcept algebras is PSPACE-complete

The word problem in semiconcept algebras

Solving the word problem

- K^2 : a basic 2-sorted modal logic:
 - Syntax:
 - $\bullet F ::= P \mid \bot \mid \neg F \mid (F \lor G) \mid \Box f$
 - $f ::= p \mid \perp \mid \neg f \mid (f \lor g) \mid \Box F$
 - Semantics:
 - $\mathcal{M} = (\mathcal{S}, V)$ where $\mathcal{S} = (Obj, Att, I)$ is a context and:
 - $\lor V: P \mapsto V(P) \subseteq Obj$
 - $v: p \mapsto v(p) \subseteq Att$
 - $\mathcal{M}, X \models P$ iff $X \in V(P)$
 - $\mathcal{M}, x \models p \text{ iff } x \in v(p)$
 - $\mathcal{M}, X \models \Box f$ iff for all $x \in Att$, if $\mathcal{M}, x \models f$ then Xlx
 - $\mathcal{M}, x \models \Box F$ iff for all $X \in Obj$, if $\mathcal{M}, X \models F$ then XIx
 - ► The satisfiability problem for K² is PSPACE-complete

Restriction of the syntax of K^2 :

- $\blacktriangleright F ::= P \mid \bot \mid \neg F \mid (F \lor G) \mid \Box f$
- $f ::= \bot | \neg f | (f \lor g) | \Box F$

Syntax of the word problem:

▶ $s ::= x | 0_l | 1_r | -_l s | -_r s | (s \sqcup_l t) | (s \sqcap_r t)$

A reduction from K^2 to the word problem:

T(P_i) = x_i
T(⊥) = 0₁ t(⊥) = 1_r
T(¬F) = -₁T(F) t(¬f) = -_rt(f)
T(F ∨ G) = T(F) ⊔₁T(G) t(f ∨ g) = t(f) ⊓_r t(g)
T(□f) = -₁ - ₁ - _r - _rt(f) t(□F) = -_r - _r - ₁ - ₁T(F)

F is satisfiable iff $T(F) \not\simeq 0_I$

Syntax of the word problem:

► $s ::= x | 0_{l} | 1_{r} | -_{l} s | -_{r} s | (s \sqcup_{l} t) | (s \sqcap_{r} t)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Syntax of K^2 :

- $\blacktriangleright F ::= P \mid \perp \mid \neg F \mid (F \lor G) \mid \Box f$
- $f ::= p \mid \perp \mid \neg f \mid (f \lor g) \mid \Box F$

A reduction from the word problem to K^2 :

> F(x_i) = P_i f(x_i) = p_i > F(0_i) = ⊥ f(0_i) = □⊥
> F(1_r) = □⊥ f(1_r) = ⊥
> F(-₁s) = ¬F(s) f(-₁s) = □¬F(s)
> F(-_rs) = □¬f(s) f(-_rs) = ¬f(s)
> F(s □_i t) = F(s) ∨ F(t) f(s □_i t) = □(F(s) ∨ F(t))
> F(s □_r t) = □(f(s) ∨ f(t)) f(s □_r t) = f(s) ∨ f(t)

 $s \not\simeq t$ iff $\neg(F(s) \leftrightarrow F(t))$ is p-satisfiable or $\neg(f(s) \leftrightarrow f(t))$ is p-satisfiable

Conclusion

What we have done

 PSPACE-completeness of the word problem in semiconcept algebras

Open problems

 Tableaux-based procedure for deciding the word problem in semiconcept algebras

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Unifiability of terms in semiconcept algebras

Bibliography

- Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press (2002, Second Edition).
- Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer-Verlag (1999).
- Herrmann, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of semiconcepts and double Boolean algebras. Technische Universität Darmstadt (2000).
- Vormbrock, B.: A solution of the word problem for free double Boolean algebras. In Kuznetsov, S., Schmidt, S. (Editors): *ICFCA 2007.* Springer-Verlag (2007) 240–270.
- ► Wille, R.: Boolean concept logic. In Eklund, P. (Editor): ICFCA 2004. Springer-Verlag (2004) 1–13.
- Wille, R.: Preconcept algebras and generalized double Boolean algebras. In Ganter, B., Mineau, G. (Editors): ICCS 2000. Springer-Verlag (2000) 317–331.