Modal logic for metric and topology

Frank Wolter, University of Liverpool Joint work with M. Sheremet, D. Tishkowsky, and M.
Zakharyaschev

TANCL

August, 2007

Some Modal Logics for Distance/Metric Spaces

- Topology: modal operators as closure/interior operators, as derived set operator, etc.

$$
\mathbb{I} P=\{w \mid \exists \epsilon>0 \forall v d(w, v)<\epsilon \Rightarrow v \in P\} .
$$

S4 is the logic of all metric spaces, the real line \mathbb{R}, and any Euclidean space.

- Conditional Logic/Nonmonotonic Logics/Belief Revision 'if it had been the case that φ, it would have been the case that ψ. $w^{\prime}=\varphi>\psi \Leftrightarrow \psi^{\prime}$ is true in all closest φ-wort'd's.

Mostly interpreted in distance spaces with limit assumption:
$d(P, Q)=\inf \{d(v, w) \mid v \in P, w \in Q\}=\min \{d(v, w) \mid v \in P, w \in Q\}$

Some Modal Logics for Distance/Metric Spaces

- Topology: modal operators as closure/interior operators, as derived set operator, etc.

$$
\mathbb{I} P=\{w \mid \exists \epsilon>0 \forall v d(w, v)<\epsilon \Rightarrow v \in P\} .
$$

S4 is the logic of all metric spaces, the real line \mathbb{R}, and any Euclidean space.

- Conditional Logic/Nonmonotonic Logics/Belief Revision 'if it had been the case that φ, it would have been the case that ψ.'

$$
w \models \varphi>\psi \Leftrightarrow \psi \text { is true in all closest } \varphi \text {-worlds. }
$$

Mostly interpreted in distance spaces with limit assumption:
$d(P, Q)=\inf \{d(v, w) \mid v \in P, w \in Q\}=\min \{d(v, w) \mid v \in P, w \in Q\}$

continued..

- Comparative Similarity Logic: 'more similar to a P-object than any Q-object.'

$$
w \in P \leftleftarrows Q \Leftrightarrow d(w, P)<d(w, Q) .
$$

- Absolute Similarity Logic: ‘similar to a P-object with degree at least $a \in \mathbb{R}^{\geq 0}$.

- Metric Temporal Logic over \mathbb{R} : 'within a time-units P.

Topology:

continued..

- Comparative Similarity Logic: 'more similar to a P-object than any Q-object.'

$$
w \in P \leftleftarrows Q \Leftrightarrow d(w, P)<d(w, Q) .
$$

- Absolute Similarity Logic: ‘similar to a P-object with degree at least $a \in \mathbb{R} \geq 0$.

$$
w \in \exists \leq a P \Leftrightarrow \exists v d(w, v) \leq a \wedge v \in P .
$$

- Metric Temporal Logic over \mathbb{R} : 'within a time-units P.

Topology:

continued..

- Comparative Similarity Logic: 'more similar to a P-object than any Q-object.'

$$
w \in P \leftleftarrows Q \Leftrightarrow d(w, P)<d(w, Q) .
$$

- Absolute Similarity Logic: ‘similar to a P-object with degree at least $a \in \mathbb{R} \geq 0$.

$$
w \in \exists \leq a P \Leftrightarrow \exists v d(w, v) \leq a \wedge v \in P .
$$

- Metric Temporal Logic over \mathbb{R} : 'within a time-units P.'

$$
w \in \exists^{<a} P \Leftrightarrow \exists v v>w \wedge d(v, w)<a \wedge v \in P
$$

Topology:

$$
\mathbb{I} P=S(P, \top) \wedge P \wedge U(P, \top)
$$

Aim

A modal logic framework covering large parts of these lines of research, thus enabling a comparison of logics for distances and a systematic investigation of their semantics, expressive power and complexity.

Distance models

A distance space is a structure (Δ, d) with $d: \Delta \times \Delta \rightarrow \mathbb{R} \geq 0$ such that

- $d(x, y)=0$ iff $x=y$.
(Δ, d) is a metric space if we have, in addition,
- triangle inequality: $d(x, z) \leq d(x, y)+d(y, z)$;
e symmetry: $d(x, y)=d(y, x)$.
A distance model is a relational structure

$$
M=\left(\Delta, d, p_{1}^{M},\right.
$$

in which (Δ, d) is a distance space and $p_{i}^{M} \subseteq \Delta$.

Distance models

A distance space is a structure (Δ, d) with $d: \Delta \times \Delta \rightarrow \mathbb{R} \geq 0$ such that

- $d(x, y)=0$ iff $x=y$.
(Δ, d) is a metric space if we have, in addition,
- triangle inequality: $d(x, z) \leq d(x, y)+d(y, z)$;
- symmetry: $d(x, y)=d(y, x)$.

A distance model is a relational structure

$$
M=\left(\Delta, d, p_{1}^{M}\right.
$$

in which (Δ, d) is a distance space and $p_{i}^{M} \subseteq \Delta$.

Distance models

A distance space is a structure (Δ, d) with $d: \Delta \times \Delta \rightarrow \mathbb{R}^{\geq 0}$ such that

- $d(x, y)=0$ iff $x=y$.
(Δ, d) is a metric space if we have, in addition,
- triangle inequality: $d(x, z) \leq d(x, y)+d(y, z)$;
- symmetry: $d(x, y)=d(y, x)$.

A distance model is a relational structure

$$
M=\left(\Delta, d, p_{1}^{M}, \ldots\right)
$$

in which (Δ, d) is a distance space and $p_{i}^{M} \subseteq \Delta$.

Operators on metric/distance spaces

```
a\in\mp@subsup{\mathbb{R}}{}{>0}:
    - }\mp@subsup{\exists}{}{<a}P={w|\existsvd(w,v)<a\wedgev\inP
    - }\forall<aP={w|\forallvd(w,v)<a->v\inP
    - }\forall>0=2P={w|\forallv0<d(w,v)<a->v\inP
    - Interior of P\cdot\piP=\existsx\forall<<xP
    - Universal box: }\squareP=\forallx\forall<x
    - Derived set of P: \partialP=}\forallx\exists<x P P
    - Closer onerator P}\leftarrowQ=\existsx(\exists<xP\sqcap\square\exists<xQ
```

 - Conditional implication (with and without limit assumption):
 \(P>Q=\neg \exists x \exists \exists^{<x} P \sqcup \exists x\left(\exists^{<x} P \sqcap \neg \exists^{<x}(P \sqcap \neg Q)\right)\)

Operators on metric/distance spaces

$$
\begin{aligned}
& a \in \mathbb{R}^{>0}: \\
& \quad 0 \quad \exists<a P=\{w \mid \exists v d(w, v)<a \wedge v \in P\} \\
& 0 \quad \forall^{<a} P=\{w \mid \forall v d(w, v)<a \rightarrow v \in P\}
\end{aligned}
$$

\square

- Interior of $P: \mathbb{I} P=\exists x \forall^{<x} P$
- Universal box: $\square \boldsymbol{\square}=\forall \times \forall<x \square$
- Derived set of $P: \partial P=\forall x \exists>x P$
- Closer onerator $P \leftarrow Q=\exists x(\exists<x P \sqcap \square \exists<x Q)$
- Conditional implication (with and without limit assumption)

Operators on metric/distance spaces

$$
\begin{aligned}
& a \in \mathbb{R}^{>0}: \\
& 0 \\
& \quad \exists<a P=\{w \mid \exists v d(w, v)<a \wedge v \in P\} \\
& 0 \quad \forall^{<a} P=\{w \mid \forall v d(w, v)<a \rightarrow v \in P\} \\
& 0 \quad \forall_{>0}^{<a} P=\{w \mid \forall v 0<d(w, v)<a \rightarrow v \in P\}
\end{aligned}
$$

- Interior of $P: \mathbb{I} P=\exists x \forall<x P$
- Universal box: $\square P=\forall x \forall^{<x} P$
- Derived set of $D: \partial D=\forall x \sqsupset<x D$
- Closer operator $P \leftleftarrows Q=\exists x(\exists<x P \sqcap \neg \exists<x Q)$
- Conditional implication (with and without limit assumption):

Operators on metric/distance spaces

$$
\begin{aligned}
& a \in \mathbb{R}^{>0}: \\
& 0 \cdot \exists<a P=\{w \mid \exists v d(w, v)<a \wedge v \in P\} \\
& 0 \quad \forall^{<a} P=\{w \mid \forall v d(w, v)<a \rightarrow v \in P\} \\
& 0 \quad \forall_{>0}^{<a} P=\{w \mid \forall v 0<d(w, v)<a \rightarrow v \in P\}
\end{aligned}
$$

- Interior of $P: \mathbb{I} P=\exists x \forall^{<x} P$
- Universal box: $\square P=\forall x \forall<x P$
- Derived set of $P: \partial P=\forall x \exists>x P$
- Closer onerator $P \leftarrow Q=\exists x(\exists<x P \sqcap \neg \exists<x Q)$
- Conditional implication (with and without limit assumption)

Operators on metric/distance spaces

$$
\begin{aligned}
& a \in \mathbb{R}^{>0}: \\
& 0 \cdot \exists<a P=\{w \mid \exists v d(w, v)<a \wedge v \in P\} \\
& 0 \quad \forall^{<a} P=\{w \mid \forall v d(w, v)<a \rightarrow v \in P\} \\
& 0 \quad \forall_{>0}^{<a} P=\{w \mid \forall v 0<d(w, v)<a \rightarrow v \in P\}
\end{aligned}
$$

- Interior of $P: \mathbb{I} P=\exists x \forall^{<x} P$
- Universal box: $\square P=\forall x \forall{ }^{<x} P$
- Derived set of $P: \partial P=\forall x \exists<x P$
- Closer operator $P \leftleftarrows Q=\exists x\left(\exists{ }^{<x} P \sqcap \neg \exists<x Q\right)$
- Conditional implication (with and without limit assumption):

Operators on metric/distance spaces

$$
\begin{aligned}
& a \in \mathbb{R}^{>0}: \\
& 0 \cdot \exists<a P=\{w \mid \exists v d(w, v)<a \wedge v \in P\} \\
& 0 \quad \forall^{<a} P=\{w \mid \forall v d(w, v)<a \rightarrow v \in P\} \\
& 0 \quad \forall_{>0}^{<a} P=\{w \mid \forall v 0<d(w, v)<a \rightarrow v \in P\}
\end{aligned}
$$

- Interior of $P: \mathbb{I} P=\exists x \forall^{<x} P$
- Universal box: $\square P=\forall x \forall^{<x} P$
- Derived set of $P: \partial P=\forall x \exists>x P$
- Closer operator $P \leftleftarrows Q=\exists x(\exists<x P \sqcap \neg \exists<x Q)$
- Conditional implication (with and without limit assumption):

Operators on metric/distance spaces

$$
a \in \mathbb{R}^{>0}
$$

- $\exists<a P=\{w \mid \exists v d(w, v)<a \wedge v \in P\}$
- $\forall<a P=\{w \mid \forall v d(w, v)<a \rightarrow v \in P\}$
- $\forall_{>0}^{<a} P=\{w \mid \forall v 0<d(w, v)<a \rightarrow v \in P\}$
- Interior of $P: \mathbb{I} P=\exists x \forall^{<x} P$
- Universal box: $\square P=\forall x \forall^{<x} P$
- Derived set of $P: \partial P=\forall x \exists>x$ x P
- Closer operator $P \leftleftarrows Q=\exists x\left(\exists^{<x} P \sqcap \neg \exists<x Q\right)$
- Conditional implication (with and without limit assumption):

Operators on metric/distance spaces

$$
\begin{aligned}
& a \in \mathbb{R}^{>0}: \\
& 0 \cdot \exists<a P=\{w \mid \exists v d(w, v)<a \wedge v \in P\} \\
& 0 \quad \forall^{<a} P=\{w \mid \forall v d(w, v)<a \rightarrow v \in P\} \\
& 0 \quad \forall_{>0}^{<a} P=\{w \mid \forall v 0<d(w, v)<a \rightarrow v \in P\}
\end{aligned}
$$

- Interior of $P: \mathbb{I} P=\exists x \forall^{<x} P$
- Universal box: $\square P=\forall x \forall^{<x} P$
- Derived set of $P: \partial P=\forall x \exists>x P$
- Closer operator $P \leftleftarrows Q=\exists x\left(\exists^{<x} P \sqcap \neg \exists^{<x} Q\right)$
- Conditional implication (with and without limit assumption):

$$
\begin{gathered}
P>Q=\neg \exists x \exists \exists^{<x} P \sqcup \exists x\left(\exists^{<x} P \sqcap \neg \exists \exists^{<x}(P \sqcap \neg Q)\right) \\
P>Q=\exists x \exists<x P \rightarrow \exists x(\exists \leq x P \wedge \neg(\exists \leq x(P \wedge \neg Q) \vee(P \wedge \neg Q))) .
\end{gathered}
$$

General framework: qualitative metric system $\mathcal{Q M S}$

Distance variables $\quad x_{1}, x_{2}, \ldots$
Set variables p_{1}, p_{2},
Constraints on relations between distance variables like, e.g.,

- the set Σ_{0} of inequalities $x_{i}<x_{j}$,
- the set Σ_{1} of linear rational equalities
$a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{n+1}$,
QMS $[\Sigma]$-terms τ, for a set Σ of constraints \varkappa :
$\tau::=p_{i}|\varkappa| \neg \tau \mid \tau_{1} \sqcap \tau_{2}$
'Syntactic sugar:' $\tau_{1} \sqsubseteq \tau_{2}=\forall x \forall<x\left(\neg \tau_{1} \sqcup \tau_{2}\right)$.

General framework: qualitative metric system $\mathcal{Q M S}$

Distance variables $\quad x_{1}, x_{2}, \ldots$
Set variables p_{1}, p_{2}, \ldots
Constraints on relations between distance variables like, e.g.,

- the set Σ_{0} of inequalities $x_{i}<x_{j}$,
- the set Σ_{1} of linear rational equalities
$a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{n+1}$,
$\mathcal{Q} \mathcal{M S}[\Sigma]$-terms τ, for a set Σ of constraints \varkappa :
$\tau::=p_{i}|\varkappa| \neg \tau \mid \tau_{1} \sqcap \tau_{2}$
'Syntactic sugar:' $\tau_{1} \sqsubseteq \tau_{2}=\forall x \forall \forall^{<x}\left(\neg \tau_{1} \sqcup \tau_{2}\right)$.

General framework: qualitative metric system $\mathcal{Q M S}$

Distance variables $\quad x_{1}, x_{2}, \ldots$
Set variables p_{1}, p_{2}, \ldots
Constraints on relations between distance variables like, e.g.,

- the set Σ_{0} of inequalities $x_{i}<x_{j}$,
- the set Σ_{1} of linear rational equalities

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{n+1}
$$

QMS $[\Sigma]$-terms τ, for a set Σ of constraints \varkappa :
'Syntactic sugar:' $\tau_{1} \sqsubseteq \tau_{2}=\forall x \forall<x\left(\neg \tau_{1} \sqcup \tau_{2}\right)$.

General framework: qualitative metric system $\mathcal{Q M S}$

Distance variables $\quad x_{1}, x_{2}, \ldots$
Set variables p_{1}, p_{2}, \ldots
Constraints on relations between distance variables like, e.g.,

- the set Σ_{0} of inequalities $x_{i}<x_{j}$,
- the set Σ_{1} of linear rational equalities

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{n+1}
$$

$\mathcal{Q} \mathcal{M S}[\Sigma]$-terms τ, for a set Σ of constraints \varkappa :
$\tau::=p_{i}|\varkappa| \neg \tau\left|\tau_{1} \sqcap \tau_{2}\right| \exists x_{i} \tau\left|\exists^{=x_{i}} \tau\right| \exists^{<x_{i}} \tau\left|\exists^{>x_{i}} \tau\right| \exists_{>x_{j}}^{<x_{j}} \tau$
'Syntactic sugar:' $\tau_{1} \sqsubseteq \tau_{2}=\forall x \forall<x\left(\neg \tau_{1} \sqcup \tau_{2}\right)$.

General framework: qualitative metric system $\mathcal{Q M S}$

Distance variables $\quad x_{1}, x_{2}, \ldots$
Set variables p_{1}, p_{2}, \ldots
Constraints on relations between distance variables like, e.g.,

- the set Σ_{0} of inequalities $x_{i}<x_{j}$,
- the set Σ_{1} of linear rational equalities

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{n+1}
$$

$\mathcal{Q} \mathcal{M S}[\Sigma]$-terms τ, for a set Σ of constraints \varkappa :
$\tau::=p_{i}|\varkappa| \neg \tau\left|\tau_{1} \sqcap \tau_{2}\right| \exists x_{i} \tau\left|\exists \exists^{=x_{i}} \tau\right| \exists^{<x_{i}} \tau\left|\exists \exists^{>x_{i}} \tau\right| \exists>x_{j} \tau x_{i}$
'Syntactic sugar:' $\tau_{1} \sqsubseteq \tau_{2}=\forall x \forall^{<x}\left(\neg \tau_{1} \sqcup \tau_{2}\right)$.

Expressive completeness

$\mathcal{F M}[\Sigma]$, the two-sorted first-order language $\mathcal{F} \mathcal{M}[\Sigma]$ with

- individual variables x_{1}, x_{2}, \ldots of sort $\mathbb{R} \geq 0$
- individual variables w_{1}, w_{2}, \ldots of sort object
$\mathcal{F} \mathcal{M}[\Sigma]$-formulas φ :
$\varphi::=P_{j}\left(w_{i}\right)|\varkappa| d\left(w_{i}, w_{j}\right)<x_{k}|\neg \varphi| \varphi_{1} \wedge \varphi_{2}\left|\exists x_{i} \varphi\right| \exists w_{i} \varphi$
$\mathcal{F} \mathcal{M}_{2}[\Sigma]$ is the fragment of $\mathcal{F} \mathcal{M}[\Sigma]$ with only two variables of sort object.

Expressive completeness

For each $\mathcal{Q} \mathcal{M S}[\Sigma]$-term τ, there is an $\mathcal{F} \mathcal{M}_{2}[\Sigma]$-formula φ with one free variable of sort object such that, for all models M with assignments \mathfrak{a} and all $o \in \Delta$,

$$
o \in \tau^{M, \mathfrak{a}} \quad \text { iff } \quad(M, \mathfrak{a}) \models \varphi[o]
$$

Conversely, for each $\mathcal{F M _ { 2 }}[\Sigma]$-formula φ with one free variable of sort object, there is a $\mathcal{Q M S}[\Sigma]$-term τ such that (\star) holds for all M with assignments \mathfrak{a} and all $o \in \Delta$.
$\mathcal{F M}_{2}[\Sigma]$ is, however, exponentially more succinct than $\mathcal{Q M S}[\Sigma]$.

Plan

- Logics without distance variables (constants for distances); - The operators $\exists<x$ and $\exists \leq x$ (and their duals): - Logics of topology and absolute distance: operators - Logics of topology and comparative distance: operators where τ is a set variable or again of the form $\exists x \operatorname{Bool}($

Plan

- Logics without distance variables (constants for distances);
- The operators $\exists^{<x}$ and $\exists \leq x$ (and their duals):

- Logics of topology and comparative distance: operators

where τ is a set variable or again of the form $\exists x \operatorname{Bool}($

Plan

- Logics without distance variables (constants for distances);
- The operators $\exists^{<x}$ and $\exists \leq x$ (and their duals):
- Logics of topology and absolute distance: operators

$$
\exists<a, \exists \leq a, \exists x \forall^{<x} \tau, \exists x \forall \leq x \tau, \forall x \forall^{<x} \tau, \forall x \forall \leq x \tau
$$

- Logics of topology and comparative distance: operators

Plan

- Logics without distance variables (constants for distances);
- The operators $\exists^{<x}$ and $\exists \leq x$ (and their duals):
- Logics of topology and absolute distance: operators

$$
\exists<a, \exists \leq a, \exists x \forall^{<x} \tau, \exists x \forall \leq x \tau, \forall x \forall^{<x} \tau, \forall x \forall \leq x \tau
$$

- Logics of topology and comparative distance: operators

$$
\exists x \operatorname{Bool}\left(\forall^{<x} \tau, \forall^{\leq x} \tau, \exists^{\leq x} \tau, \exists^{<x} \tau, p\right),
$$

where τ is a set variable or again of the form $\exists x \operatorname{Bool}(\cdots)$.

Fragments without distance variables

Terms τ are defined as $\left(a \in \mathbb{Q}^{\geq 0}\right)$:

$$
\tau::=p_{i}|\neg \tau| \tau_{1} \sqcap \tau_{2}\left|\exists^{=a} \tau\right| \exists^{<a} \tau\left|\exists^{>a} \tau\right| \exists_{>b}^{<a} \tau
$$

Theorem Expressively complete for corresponding 2-variable fragment of FO-Logic. Satisfiability decidable for (symmetric) distance space. Undecidable for spaces with triangle inequality (three variables)!

Operators	Space	Complexity
$\exists_{>} a=0$	Metric spaces/R/R$/ \mathbb{R}^{2}$	undecidable/PSpace/undecidable
$\exists^{<a}, \exists \leq a$	Metric Spaces $/ \mathbb{R} / \mathbb{R}^{2}$	ExpTime/PSpace/undecidable
$\exists^{>a}, \exists \leq a$	Metric Spaces $/ \mathbb{R} / \mathbb{R}^{2}$	in NExptime/PSpace/undecidable
$\exists^{=a}, \square_{F}$	\mathbb{R}	undecidable

Fragments without distance variables

Terms τ are defined as $\left(a \in \mathbb{Q}^{\geq 0}\right)$:

$$
\tau::=p_{i}|\neg \tau| \tau_{1} \sqcap \tau_{2}\left|\exists^{=a} \tau\right| \exists^{<a} \tau\left|\nexists^{>a} \tau\right| \exists_{>b}^{<a} \tau
$$

Theorem Expressively complete for corresponding 2-variable fragment of FO-Logic. Satisfiability decidable for (symmetric) distance space. Undecidable for spaces with triangle inequality (three variables)!.

Operators	Space	Complexity
$\exists_{>} \leq a$	Metric spaces/R/R$/ \mathbb{R}^{2}$	undecidable/PSpace/undecidable
$\exists^{<a}, \exists \leq a$	Metric Spaces $/ \mathbb{R} / \mathbb{R}^{2}$	ExpTime/PSpace/undecidable
$\exists^{>a}, \exists \leq a$	Metric Spaces $/ \mathbb{R} / \mathbb{R}^{2}$	in NExptime/PSpace/undecidable
$\exists^{=a}, \square_{F}$	\mathbb{R}	undecidable

Fragments without distance variables

Terms τ are defined as $\left(a \in \mathbb{Q}^{\geq 0}\right)$:

$$
\tau::=p_{i}|\neg \tau| \tau_{1} \sqcap \tau_{2}\left|\exists^{=a} \tau\right| \exists^{<a} \tau\left|\exists^{>a} \tau\right| \exists_{>b}^{<a} \tau
$$

Theorem Expressively complete for corresponding 2-variable fragment of FO-Logic. Satisfiability decidable for (symmetric) distance space. Undecidable for spaces with triangle inequality (three variables)!.

Operators	Space	Complexity
$\exists_{>} a 0$	Metric spaces/R/R \mathbb{R}^{2}	undecidable/PSpace/undecidable
$\exists^{<a}, \exists \leq a$	Metric Spaces $/ \mathbb{R} / \mathbb{R}^{2}$	ExpTime/PSpace/undecidable
$\exists^{>a}, \exists \leq a$	Metric Spaces $/ \mathbb{R} / \mathbb{R}^{2}$	in NExptime/PSpace/undecidable
$\exists^{=a}, \square_{F}$	\mathbb{R}	

Topology and absolute distance

Terms τ are defined as $\left(a \in \mathbb{Q}^{\geq 0}\right)$:

$$
\tau=p_{i}|\neg \tau| \forall x \forall^{<x} \tau\left|\tau_{1} \sqcap \tau_{2}\right| \exists x \forall^{<x} \tau\left|\exists^{<a} \tau\right| \exists \leq a_{\tau}
$$

equivalently:

$$
\tau=p_{i}|\neg \tau| \square \tau\left|\tau_{1} \sqcap \tau_{2}\right| \mathbb{I} \tau\left|\exists \exists^{<a} \tau\right| \exists \leq a \tau
$$

Interaction axioms:

Topology and absolute distance

Terms τ are defined as $\left(a \in \mathbb{Q}^{\geq 0}\right)$:

$$
\tau=p_{i}|\neg \tau| \forall x \forall^{<x} \tau\left|\tau_{1} \sqcap \tau_{2}\right| \exists x \forall^{<x} \tau\left|\exists^{<a} \tau\right| \exists \leq a_{\tau}
$$

equivalently:

$$
\tau=p_{i}|\neg \tau| \square \tau\left|\tau_{1} \sqcap \tau_{2}\right| \mathbb{I} \tau\left|\exists \exists^{<a} \tau\right| \exists \leq a \tau
$$

Interaction axioms:

$$
\mathbb{C} p \rightarrow \exists^{<a} p, \quad \exists^{<a} \mathbb{C} p \rightarrow \exists^{<a} p
$$

Topology and absolute distance

The set of terms valid in metric spaces coincides with the set of terms valid in (finite) relational models of the form

$$
\mathcal{F}=\left(\Delta, R, S_{a}^{<}, S_{a}^{\leq}\right),
$$

where, for example,

$$
u R v \Rightarrow u S_{a}^{<} v, \quad u S_{a}^{<} v R w \Rightarrow u S_{a}^{<} v
$$

Representation Theorem: For every finite model \mathcal{F} there exists 2 metric space $\mathcal{M} 1$ such that \mathcal{F} is a ' n -morphic image' of \mathcal{M} Complexity: Satisfiability is ExpTime-complete. For \mathbb{R} it is PSpace-complete.

Topology and absolute distance

The set of terms valid in metric spaces coincides with the set of terms valid in (finite) relational models of the form

$$
\mathcal{F}=\left(\Delta, R, S_{a}^{<}, S_{a}^{\leq}\right)
$$

where, for example,

$$
u R v \Rightarrow u S_{a}^{<} v, \quad u S_{a}^{<} v R w \Rightarrow u S_{a}^{<} v
$$

Representation Theorem: For every finite model \mathcal{F} there exists a metric space \mathcal{M} such that \mathcal{F} is a ' p-morphic image' of \mathcal{M}.

PSpace-complete.

Topology and absolute distance

The set of terms valid in metric spaces coincides with the set of terms valid in (finite) relational models of the form

$$
\mathcal{F}=\left(\Delta, R, S_{a}^{<}, S_{a}^{\leq}\right)
$$

where, for example,

$$
u R v \Rightarrow u S_{a}^{<} v, \quad u S_{a}^{<} v R w \Rightarrow u S_{a}^{<} v
$$

Representation Theorem: For every finite model \mathcal{F} there exists a metric space \mathcal{M} such that \mathcal{F} is a ' p-morphic image' of \mathcal{M}. Complexity: Satisfiability is ExpTime-complete. For \mathbb{R} it is PSpace-complete.

Topology and comparative distance

$\mathcal{Q} \mathcal{M} \mathcal{L}$-terms are constructed from set variables p_{1}, p_{2}, \ldots using
\sqcap, \neg, and the constructor

$$
\exists x \operatorname{Bool}\left(\forall^{<x} \tau, \forall \leq x \tau, \exists \leq x \tau, \exists{ }^{<x} \tau, p\right),
$$

where τ is a set variable or again of the form $\exists x \operatorname{Bool}(\ldots)$.
Contains closure operator, universal modality and conditional
implication (with and without limit assumption):

Topology and comparative distance

QM \mathcal{L}-terms are constructed from set variables p_{1}, p_{2}, \ldots using
\sqcap, \neg, and the constructor

$$
\exists x \operatorname{Bool}\left(\forall^{<x} \tau, \forall \leq x \tau, \exists \leq x \tau, \exists{ }^{<x} \tau, p\right)
$$

where τ is a set variable or again of the form $\exists x \operatorname{Bool}(\ldots)$.
Contains closure operator, universal modality and conditional implication (with and without limit assumption):

$$
\begin{gathered}
P>Q=\neg \exists x \exists^{<x} P \sqcup \exists x\left(\exists^{<x} P \sqcap \neg \exists^{<x}(P \sqcap \neg Q)\right) \\
P>Q=\exists x \exists^{<x} P \rightarrow \exists x\left(\exists^{\leq x} P \wedge \neg\left(\exists^{\leq x}(P \wedge \neg Q) \vee(P \wedge \neg Q)\right)\right) .
\end{gathered}
$$

An equivalent language

Set

- $\tau_{1} \leftleftarrows \tau_{2}=\exists x\left(\exists^{<x} \tau_{1} \sqcap \neg \exists{ }^{<x} \tau_{2}\right)$,
- $\tau_{1} \leftleftarrows \tau_{2}=\exists x\left(\exists \leq x \tau_{1} \sqcap \neg \exists \leq x \tau_{2}\right)$,
- $\tau_{1} \sqsubseteq \tau_{2}=\exists x\left(\exists^{\leq x} \tau_{1} \sqcap \neg \exists \exists^{<x} \tau_{2}\right)$.

An equivalent language

Set

$$
\begin{aligned}
& \tau_{1} \leftleftarrows \tau_{2}=\exists x\left(\exists^{<x} \tau_{1} \sqcap \neg \exists^{<x} \tau_{2}\right) \\
& \tau_{1} \leftleftarrows \tau_{2}=\exists x\left(\exists^{\leq x} \tau_{1} \sqcap \neg \exists \exists^{\leq x} \tau_{2}\right) \\
& \tau_{1} \leftleftarrows \tau_{2}=\exists x\left(\exists \leq x \tau_{1} \sqcap \neg \exists^{<x} \tau_{2}\right)
\end{aligned}
$$

Then

$$
\tau_{1} \leftleftarrows \tau_{2} \Rightarrow \tau_{1} \leftleftarrows \tau_{2} \Rightarrow \tau_{1} \leftleftarrows \tau_{2}
$$

Comparison and 'inf/min'

Set

$$
\mathfrak{C} \tau=\tau \cong \tau=\exists x\left(\exists^{\leq x} \tau \sqcap \neg \exists^{<x} \tau\right)
$$

Then

$$
(\mathbb{C} \tau)^{M}=\left\{u \in \Delta \mid d\left(u, \tau^{M}\right)=\min \left\{d(u, v) \mid v \in \tau^{M}\right\}\right\}
$$

We obtain:

- $\tau_{1} \leftleftarrows \tau_{2} \equiv\left(\tau_{1} \leftleftarrows \tau_{2}\right) \sqcup\left(\neg\left(\tau_{2} \leftleftarrows \tau_{1}\right) \sqcap(\mathbb{}) \tau_{1} \sqcap \neg\left(\mathbb{C} \tau_{2}\right)\right.$;
- $\tau_{1} \equiv \tau_{2} \equiv\left(\tau_{1} \leftleftarrows \tau_{2}\right) \sqcup\left(\neg\left(\tau_{2} \leftleftarrows \tau_{1}\right) \sqcap(1) \tau_{1}\right)$.

Comparative distance logic

$\mathcal{C S L}$-terms τ are defined by

$$
\tau \quad::=p_{i}|\neg \tau| \tau_{1} \sqcap \tau_{2}|\mathbb{T} \tau| \tau_{1} \leftleftarrows \tau_{2}
$$

or, equivalently,
$\tau \quad::=p_{i}|\neg \tau| \tau_{1} \sqcap \tau_{2}\left|\tau_{1} \equiv \tau_{2}\right| \tau_{1} \leftrightarrows \tau_{2} \mid \tau_{1} \leftleftarrows \tau_{2}$.

Theorem. For every $\mathcal{Q} \mathcal{M L}$-term τ, there is a $\mathcal{C S} \mathcal{L}$-term τ^{*} such
that $\tau \equiv \tau^{*}$

Comparative distance logic

$\mathcal{C S} \mathcal{L}$-terms τ are defined by

$$
\tau \quad::=p_{i}|\neg \tau| \tau_{1} \sqcap \tau_{2}|\mathbb{T} \tau| \tau_{1} \leftleftarrows \tau_{2}
$$

or, equivalently,

$$
\tau \quad::=p_{i}|\neg \tau| \tau_{1} \sqcap \tau_{2}\left|\tau_{1} \leftleftarrows \tau_{2}\right| \tau_{1} \leftleftarrows \tau_{2} \mid \tau_{1} \leftleftarrows \tau_{2}
$$

Theorem. For every $\mathcal{Q} \mathcal{M} \mathcal{L}$-term τ, there is a $\mathcal{C S} \mathcal{L}$-term τ^{*} such that $\tau \equiv \tau^{*}$.

Proof of $\mathcal{Q} \mathcal{M} \mathcal{L} \equiv \mathcal{C S} \mathcal{L}$ (\exp blowup)

Every $\mathcal{Q M} \mathcal{L}$-term is equivalent to a term of the form
$\tau \equiv \exists x\left(\prod_{i \in I_{0}} \exists^{<x} \varphi_{i} \sqcap \prod_{i \in I_{1}} \exists \leq x \varphi_{i} \sqcap \prod_{j \in J_{0}} \neg \exists^{\leq x} \psi_{j} \sqcap \prod_{j \in J_{1}} \neg \exists^{<x} \psi_{j}\right) \sqcap \tau^{\prime}$.
Let $I=I_{0} \cup I_{1}, J=J_{0} \cup J_{1}$. Then τ is equivalent to the $\mathcal{C S L}$-term

Observation:

Proof of $\mathcal{Q} \mathcal{M} \mathcal{L} \equiv \mathcal{C S} \mathcal{L}$ (exp blowup)

Every $\mathcal{Q M} \mathcal{L}$-term is equivalent to a term of the form
$\tau \equiv \exists x\left(\prod_{i \in I_{0}} \exists^{<x} \varphi_{i} \sqcap \prod_{i \in I_{1}} \exists^{\leq x} \varphi_{i} \sqcap \prod_{j \in J_{0}} \neg \exists^{\leq x} \psi_{j} \sqcap \prod_{j \in J_{1}} \neg \exists^{<x} \psi_{j}\right) \sqcap \tau^{\prime}$.
Let $I=I_{0} \cup I_{1}, J=J_{0} \cup J_{1}$. Then τ is equivalent to the $\mathcal{C S L}$-term

$$
\bar{\tau}=\prod_{i \in I_{0}, j \in J}\left(\bar{\varphi}_{i} \leftleftarrows \bar{\psi}_{j}\right) \sqcap \prod_{i \in I_{1}, j \in J_{0}}\left(\bar{\varphi}_{i} \leftleftarrows \bar{\psi}_{j}\right) \sqcap \prod_{i \in l_{1}, j \in J_{1}}\left(\bar{\varphi}_{i} \leftrightarrows \bar{\psi}_{j}\right)
$$

Observation:

Proof of $\mathcal{Q} \mathcal{M} \mathcal{L} \equiv \mathcal{C S} \mathcal{L}$ (exp blowup)

Every $\mathcal{Q M} \mathcal{L}$-term is equivalent to a term of the form
$\tau \equiv \exists x\left(\prod_{i \in I_{0}} \exists^{<x} \varphi_{i} \sqcap \prod_{i \in I_{1}} \exists^{\leq x} \varphi_{i} \sqcap \prod_{j \in J_{0}} \neg \exists \leq x \psi_{j} \sqcap \prod_{j \in J_{1}} \neg \exists^{<x} \psi_{j}\right) \sqcap \tau^{\prime}$.
Let $I=I_{0} \cup I_{1}, J=J_{0} \cup J_{1}$. Then τ is equivalent to the $\mathcal{C S L}$-term

$$
\bar{\tau}=\prod_{i \in I_{0}, j \in J}\left(\bar{\varphi}_{i} \leftleftarrows \bar{\psi}_{j}\right) \sqcap \prod_{i \in \Lambda_{1}, j \in J_{0}}\left(\bar{\varphi}_{i} \leftleftarrows \bar{\psi}_{j}\right) \sqcap \prod_{i \in \Lambda_{1}, j \in J_{1}}\left(\bar{\varphi}_{i} \leftrightarrows \bar{\psi}_{j}\right)
$$

Observation:

$$
\exists x\left(\prod_{i} \exists^{<x} \tau_{i} \sqcap \neg \exists^{<x} \rho\right) \equiv \prod_{i} \exists x\left(\exists^{<x} \tau_{i} \sqcap \neg \exists^{<x} \rho\right) .
$$

$\mathcal{Q} \mathcal{M L}$ and $\mathcal{C S L}$

The complexity of checking satisfiability of $\mathcal{Q} \mathcal{M} \mathcal{L} / \mathcal{C S}$-terms:

Distance spaces	Complexity
All spaces/symmetric spaces	ExpTime
Triangle inequality	ExpTime
Metric spaces	ExpTime
\mathbb{R}	non r.e.
\mathbb{Z}	non r.e.
finite subspaces of \mathbb{R}	non r.e.

Proof: (i) Tree-like distance spaces are sufficient. (ii) Reduction of Diophantine equations.

Hilbert-style Axiomatization: (sym) distance spaces

$$
\begin{gather*}
((\varphi \leftleftarrows \psi) \sqcap(\psi \leftleftarrows \chi)) \rightarrow(\varphi \leftleftarrows \chi), \tag{1}\\
(\neg(\varphi \leftleftarrows \psi) \sqcap \neg(\psi \leftleftarrows \chi)) \rightarrow \neg(\varphi \leftleftarrows \chi), \\
\neg((\varphi \sqcup \psi) \leftleftarrows \varphi) \sqcup \neg((\varphi \sqcup \psi) \leftleftarrows \psi), \tag{2}\\
\forall(\varphi \rightarrow \psi) \rightarrow \neg(\varphi \leftleftarrows \psi), \tag{3}\\
\mathbb{C}(\varphi \sqcup \psi) \rightarrow(\mathbb{C} \varphi \sqcup \mathbb{C} \psi), \tag{4}\\
(\mathbb{C}(\varphi \sqcup \psi) \sqcap(\varphi \leftleftarrows \psi)) \rightarrow \mathbb{\Gamma} \varphi \tag{5}\\
(\mathbb{T} \varphi \sqcap \neg(\psi \leftleftarrows \varphi) \rightarrow \mathbb{C}(\varphi \sqcup \psi) \tag{6}\\
\forall(\varphi \leftrightarrow \psi) \rightarrow(\mathbb{T} \varphi \leftrightarrow \mathbb{T} \psi), \tag{7}\\
\varphi \leftrightarrow(\mathbb{T} \varphi \sqcap \neg(\top \leftleftarrows \varphi)), \tag{8}\\
\top \leftleftarrows \perp, \tag{9}\\
\neg \mathbb{C} \perp,
\end{gather*}
$$

(10)

Axiomatization for spaces with triangle inequality

Add

$$
\tau=\neg(\diamond p \leftleftarrows p)
$$

τ valid in distance spaces with the triangle inequality but not valid in symmetric distance spaces: $\tau^{\mathfrak{G}} \neq \emptyset$ in the symmetric model \mathfrak{S}, where

$d^{\mathfrak{S}}\left(a, c_{i}\right)=2$,
$d^{\mathscr{S}}(a, b)=1, \quad d^{\mathfrak{S}}\left(b, c_{i}\right)=1 / 2$
and all other distances are defined by symmetry.

Axiomatization for spaces with triangle inequality

Add

$$
\tau=\neg(\diamond p \leftleftarrows p)
$$

τ valid in distance spaces with the triangle inequality but not valid in symmetric distance spaces: $\tau^{\mathfrak{G}} \neq \emptyset$ in the symmetric model \mathfrak{S}, where
$\Delta^{\mathfrak{G}}=\left\{a, b, c_{i} \mid i \in \mathbb{N}\right\}$,
$p^{\mathfrak{S}}=\left\{c_{i} \mid i \in \mathbb{N}\right\}$,
$d^{\mathfrak{S}}\left(a, c_{i}\right)=2, \quad i \in \mathbb{N}$,
$d^{\mathfrak{S}}(a, b)=1, \quad d^{\mathfrak{S}}\left(b, c_{i}\right)=1 / 2^{i}, \quad i \in \mathbb{N}$,

and all other distances are defined by symmetry.

Axiomatization for Metric Spaces

Add

$$
\tau=(p \leftleftarrows q) \rightarrow \square(p \leftleftarrows q)
$$

τ is valid in metric spaces but not in the following non-symmetric model \mathfrak{T} satisfying the triangle inequality:
$\Delta^{\mathfrak{T}}=\left\{a, a_{i}, b, c_{i} \mid i \in \mathbb{N}\right\} ;$
$p^{\mathfrak{T}}=\{b\}, \quad q^{\mathfrak{T}}=\left\{c_{i} \mid i \in \mathbb{N}\right\}$,
$d(a, b)=d(b, a)=1, \quad d\left(a, a_{i}\right)=1 / 2^{i}$,
$d\left(a_{i}, a\right)=1, \quad d\left(a_{i}, c_{i}\right)=d\left(c_{i}, a_{i}\right)=3 / 2, \quad i \in \mathbb{N} ;$

and the other distances are computed as the lengths of the corresponding paths in graph above.

Open problems

- Is $\mathcal{Q} \mathcal{M} \mathcal{L}[\Sigma]$ 'the' bisimulation-invariant fragment of $\mathcal{Q M S}[\Sigma](\mathcal{F} \mathcal{M}[\Sigma]) ?$
- Algebraic semantics for $\mathcal{Q M S}[\Sigma]$? Does $\mathcal{Q M L}[\Sigma]$ have
the finite model property?
- Relational semantics for $Q \mathcal{M} \mathcal{S}[\Sigma]$? Duality?
- Other intereresting classes of metric spaces: compact,
connected?

Open problems

- Is $\mathcal{Q} \mathcal{M} \mathcal{L}[\Sigma]$ 'the' bisimulation-invariant fragment of $\mathcal{Q M S}[\Sigma](\mathcal{F} \mathcal{M}[\Sigma]) ?$
- Algebraic semantics for $\mathcal{Q} \mathcal{M S}[\Sigma]$? Does $\mathcal{Q M} \mathcal{L}[\Sigma]$ have the finite model property?
- Relational semantics for $\mathcal{Q M S}[\Sigma]$? Duality?
- Other intereresting classes of metric spaces: compact,
connected?

Open problems

- Is $\mathcal{Q M L}[\Sigma]$ 'the' bisimulation-invariant fragment of $\mathcal{Q} \mathcal{M S}[\Sigma](\mathcal{F M}[\Sigma])$?
- Algebraic semantics for $\mathcal{Q M S}[\Sigma]$? Does $\mathcal{Q M L}[\Sigma]$ have the finite model property?
- Relational semantics for $\mathcal{Q} \mathcal{M S}[\Sigma]$? Duality?
- Other intereresting classes of metric spaces: compact,
connected?

Open problems

- Is $\mathcal{Q M L}[\Sigma]$ 'the' bisimulation-invariant fragment of $\mathcal{Q M S}[\Sigma](\mathcal{F M}[\Sigma])$?
- Algebraic semantics for $\mathcal{Q M S}[\Sigma]$? Does $\mathcal{Q M L}[\Sigma]$ have the finite model property?
- Relational semantics for $\mathcal{Q} \mathcal{M S}[\Sigma]$? Duality?
- Other intereresting classes of metric spaces: compact, connected?

Articles

- Kutz, Sturm, Suzuki, Wolter, Zakharyaschev, TOCL, 2003 (absolute distances);
- Wolter and Zakharyaschev, JSL, 2005 (topology and absolute distance);
- Lutz, Walther, Wolter, Information and Computation, 2007 (metric temporal logic);
- Sheremet, Tishkowsky, Wolter, Zakharyaschev, AiML+manuscript, 2006/7 (Comparative similarity).

