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Some Modal Logics for Distance/Metric Spaces

Topology: modal operators as closure/interior operators, as
derived set operator, etc.

IP = {w | ∃ε > 0 ∀v d(w , v) < ε⇒ v ∈ P}.

S4 is the logic of all metric spaces, the real line R, and any
Euclidean space.

Conditional Logic/Nonmonotonic Logics/Belief Revision ‘if it had
been the case that ϕ, it would have been the case that ψ.’

w |= ϕ > ψ ⇔ ψ is true in all closest ϕ-worlds.

Mostly interpreted in distance spaces with limit assumption:

d(P,Q) = inf{d(v ,w) | v ∈ P,w ∈ Q} = min{d(v ,w) | v ∈ P,w ∈ Q}
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continued..

Comparative Similarity Logic: ‘more similar to a P-object than
any Q-object.’

w ∈ P ⇔ Q ⇔ d(w ,P) < d(w ,Q).

Absolute Similarity Logic: ‘similar to a P-object with degree at
least a ∈ R≥0.’

w ∈ ∃≤aP ⇔ ∃v d(w , v) ≤ a ∧ v ∈ P.

Metric Temporal Logic over R: ‘within a time-units P.’

w ∈ ∃<aP ⇔ ∃v v > w ∧ d(v ,w) < a ∧ v ∈ P

Topology:
IP = S(P,>) ∧ P ∧ U(P,>).
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Aim

A modal logic framework covering large parts of these lines of

research, thus enabling a comparison of logics for distances

and a systematic investigation of their semantics, expressive

power and complexity.
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Distance models

A distance space is a structure (∆,d) with d : ∆×∆ → R≥0

such that

d(x , y) = 0 iff x = y .

(∆,d) is a metric space if we have, in addition,

triangle inequality: d(x , z) ≤ d(x , y) + d(y , z);

symmetry: d(x , y) = d(y , x).

A distance model is a relational structure

M = (∆,d ,pM
1 , . . .),

in which (∆,d) is a distance space and pM
i ⊆ ∆.
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Operators on metric/distance spaces

a ∈ R>0:

∃<aP = {w | ∃v d(w , v) < a ∧ v ∈ P}

∀<aP = {w | ∀v d(w , v) < a → v ∈ P}

∀<a
>0P = {w | ∀v 0 < d(w , v) < a → v ∈ P}

Interior of P: IP = ∃x∀<xP

Universal box: 2P = ∀x∀<xP

Derived set of P: ∂P = ∀x∃<x
>0P

Closer operator P ⇔ Q = ∃x(∃<xP u ¬∃<xQ)

Conditional implication (with and without limit assumption):

P > Q = ¬∃x∃<xP t ∃x(∃<xP u ¬∃<x(P u ¬Q))

P > Q = ∃x∃<xP → ∃x
(
∃≤xP ∧ ¬(∃≤x(P ∧ ¬Q) ∨ (P ∧ ¬Q))

)
.
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General framework: qualitative metric system QMS

Distance variables x1, x2, . . .

Set variables p1,p2, . . .

Constraints on relations between distance variables like, e.g.,

the set Σ0 of inequalities xi < xj ,

the set Σ1 of linear rational equalities

a1x1 + · · ·+ anxn = an+1,

QMS[Σ]-terms τ , for a set Σ of constraints κ:

τ ::= pi | κ | ¬τ | τ1uτ2 | ∃xiτ | ∃=xi τ | ∃<xi τ | ∃>xi τ |∃<xi
>xj
τ

‘Syntactic sugar:’ τ1 v τ2 = ∀x∀<x(¬τ1 t τ2).
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Expressive completeness

FM[Σ], the two-sorted first-order language FM[Σ] with

individual variables x1, x2, . . . of sort R≥0

individual variables w1,w2, . . . of sort object

FM[Σ]-formulas ϕ:

ϕ ::= Pj(wi) | κ | d(wi ,wj) < xk | ¬ϕ | ϕ1∧ϕ2 | ∃xiϕ | ∃wiϕ

FM2[Σ] is the fragment of FM[Σ] with only two variables of

sort object.
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Expressive completeness

For each QMS[Σ]-term τ , there is an FM2[Σ]-formula ϕ with one
free variable of sort object such that, for all models M with
assignments a and all o ∈ ∆,

o ∈ τM,a iff (M, a) |= ϕ[o] (F)

Conversely, for each FM2[Σ]-formula ϕ with one free variable of sort
object, there is a QMS[Σ]-term τ such that (F) holds for all M with
assignments a and all o ∈ ∆.

FM2[Σ] is, however, exponentially more succinct than QMS[Σ].
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Plan

Logics without distance variables (constants for distances);
The operators ∃<x and ∃≤x (and their duals):

Logics of topology and absolute distance: operators

∃<a, ∃≤a, ∃x∀<xτ, ∃x∀≤xτ, ∀x∀<xτ, ∀x∀≤xτ

Logics of topology and comparative distance: operators

∃xBool(∀<xτ,∀≤xτ,∃≤xτ,∃<xτ,p),

where τ is a set variable or again of the form ∃xBool(· · · ).
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Fragments without distance variables

Terms τ are defined as (a ∈ Q≥0):

τ ::= pi | ¬τ | τ1 u τ2 | ∃=aτ | ∃<aτ | ∃>aτ |∃<a
>bτ

Theorem Expressively complete for corresponding 2-variable
fragment of FO-Logic. Satisfiability decidable for (symmetric)
distance space. Undecidable for spaces with triangle inequality
(three variables)!.

Operators Space Complexity

∃≤a
>0 Metric spaces/R/R2 undecidable/PSpace/undecidable

∃<a,∃≤a Metric Spaces/R/R2 ExpTime/PSpace/undecidable
∃>a,∃≤a Metric Spaces/R/R2 in NExptime/PSpace/undecidable
∃=a,2F R undecidable
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Topology and absolute distance

Terms τ are defined as (a ∈ Q≥0):

τ = pi | ¬τ | ∀x∀<xτ | τ1 u τ2 | ∃x∀<xτ | ∃<aτ | ∃≤aτ

equivalently:

τ = pi | ¬τ | 2τ | τ1 u τ2 | Iτ | ∃<aτ | ∃≤aτ

Interaction axioms:

Cp → ∃<ap, ∃<aCp → ∃<ap.
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Topology and absolute distance

The set of terms valid in metric spaces coincides with the set of

terms valid in (finite) relational models of the form

F = (∆,R,S<
a ,S

≤
a ),

where, for example,

uRv ⇒ uS<
a v , uS<

a vRw ⇒ uS<
a v

Representation Theorem: For every finite model F there exists

a metric space M such that F is a ‘p-morphic image’ of M.

Complexity: Satisfiability is ExpTime-complete. For R it is

PSpace-complete.
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Topology and comparative distance

QML-terms are constructed from set variables p1,p2, . . . using

u, ¬, and the constructor

∃xBool(∀<xτ,∀≤xτ,∃≤xτ,∃<xτ,p),

where τ is a set variable or again of the form ∃xBool(. . .).

Contains closure operator, universal modality and conditional

implication (with and without limit assumption):

P > Q = ¬∃x∃<xP t ∃x(∃<xP u ¬∃<x(P u ¬Q))

P > Q = ∃x∃<xP → ∃x
(
∃≤xP ∧ ¬(∃≤x(P ∧ ¬Q) ∨ (P ∧ ¬Q))

)
.
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An equivalent language

Set

τ1 ⇔ τ2 = ∃x(∃<xτ1 u ¬∃<xτ2),

τ1 −−−−← τ2 = ∃x(∃≤xτ1 u ¬∃≤xτ2),

τ1 −−−−−−← τ2 = ∃x(∃≤xτ1 u ¬∃<xτ2).

Then

τ1 ⇔ τ2 ⇒ τ1 −−−−← τ2 ⇒ τ1 −−−−−−← τ2.
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An equivalent language
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Comparison and ‘inf/min’

Set

r©τ = τ −−−−−−← τ = ∃x(∃≤xτ u ¬∃<xτ)

Then

( r©τ)M =
{

u ∈ ∆ | d(u, τM) = min{d(u, v) | v ∈ τM}
}
.

We obtain:

τ1 −−−−← τ2 ≡ (τ1 ⇔ τ2) t (¬(τ2 ⇔ τ1) u r©τ1 u ¬ r©τ2);

τ1 −−−−−−← τ2 ≡ (τ1 ⇔ τ2) t (¬(τ2 ⇔ τ1) u r©τ1).
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Comparative distance logic

CSL-terms τ are defined by

τ ::= pi | ¬τ | τ1 u τ2 | r©τ | τ1 ⇔ τ2,

or, equivalently,

τ ::= pi | ¬τ | τ1 u τ2 | τ1 −−−−−−← τ2 | τ1 −−−−← τ2 | τ1 ⇔ τ2.

Theorem. For every QML-term τ , there is a CSL-term τ∗ such

that τ ≡ τ∗.
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Proof of QML ≡ CSL (exp blowup)

Every QML-term is equivalent to a term of the form

τ ≡ ∃x
( l

i∈I0

∃<xϕi u
l

i∈I1

∃≤xϕi u
l

j∈J0

¬∃≤xψj u
l

j∈J1

¬∃<xψj
)
u τ ′.

Let I = I0 ∪ I1, J = J0 ∪ J1. Then τ is equivalent to the CSL-term

τ̄ =
l

i∈I0,j∈J

(ϕ̄i ⇔ ψ̄j) u
l

i∈I1,j∈J0

(ϕ̄i −−−−← ψ̄j) u
l

i∈I1,j∈J1

(ϕ̄i −−−−−−← ψ̄j).

Observation:

∃x(
l

i

∃<xτi u ¬∃<xρ) ≡
l

i

∃x (∃<xτi u ¬∃<xρ).
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QML and CSL

The complexity of checking satisfiability of QML/CSL-terms:

Distance spaces Complexity
All spaces/symmetric spaces ExpTime

Triangle inequality ExpTime
Metric spaces ExpTime

R non r.e.
Z non r.e.

finite subspaces of R non r.e.

Proof: (i) Tree-like distance spaces are sufficient. (ii) Reduction

of Diophantine equations.
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Hilbert-style Axiomatization: (sym) distance spaces

((ϕ ⇔ ψ) u (ψ ⇔ χ)) → (ϕ ⇔ χ),

(¬(ϕ ⇔ ψ) u ¬(ψ ⇔ χ)) → ¬(ϕ ⇔ χ),
(1)

¬((ϕ t ψ) ⇔ ϕ) t ¬((ϕ t ψ) ⇔ ψ), (2)

∀(ϕ→ ψ) → ¬(ϕ ⇔ ψ), (3)

r©(ϕ t ψ) → ( r©ϕ t r©ψ), (4)

( r©(ϕ t ψ) u (ϕ ⇔ ψ)) → r©ϕ (5)

r©ϕ u ¬(ψ ⇔ ϕ) → r©(ϕ t ψ) (6)

∀(ϕ↔ ψ) → ( r©ϕ↔ r©ψ), (7)

ϕ ↔ ( r©ϕ u ¬(>⇔ ϕ)), (8)

>⇔ ⊥, (9)

¬ r©⊥, (10)

(¬(ϕ ⇔ ⊥) ⇔ ⊥) → ¬((ϕ ⇔ ⊥) ⇔ ⊥). (11)
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Axiomatization for spaces with triangle inequality

Add

τ = ¬(3p ⇔ p).

τ valid in distance spaces with the triangle inequality but not

valid in symmetric distance spaces: τS 6= ∅ in the symmetric

model S, where

∆S = {a,b, ci | i ∈ N},
r r r . . .

r
r

HH
H

HH
HH

@
@

@@

A
A
AA

c0 c1 c2

b

a

pS = {ci | i ∈ N},

dS(a, ci) = 2, i ∈ N,

dS(a,b) = 1, dS(b, ci) = 1/2i , i ∈ N,

and all other distances are defined by symmetry. 20 / 23



Axiomatization for spaces with triangle inequality

Add

τ = ¬(3p ⇔ p).

τ valid in distance spaces with the triangle inequality but not

valid in symmetric distance spaces: τS 6= ∅ in the symmetric

model S, where

∆S = {a,b, ci | i ∈ N},
r r r . . .

r
r

HH
H

HH
HH

@
@

@@

A
A
AA

c0 c1 c2

b

a

pS = {ci | i ∈ N},

dS(a, ci) = 2, i ∈ N,

dS(a,b) = 1, dS(b, ci) = 1/2i , i ∈ N,

and all other distances are defined by symmetry. 20 / 23



Axiomatization for Metric Spaces

Add
τ = (p ⇔ q) → 2(p ⇔ q)

τ is valid in metric spaces but not in the following non-symmetric
model T satisfying the triangle inequality:

∆T = {a,ai ,b, ci | i ∈ N};
. . . s s s

s . . . s s s
s

@
@

@@

�
�

��

�
�

��

�
��

�
���

c2 c1 c0

b a2 a1 a0

a

pT = {b}, qT = {ci | i ∈ N},

d(a,b) = d(b,a) = 1, d(a,ai) = 1/2i ,

d(ai ,a) = 1, d(ai , ci) = d(ci ,ai) = 3/2, i ∈ N;

and the other distances are computed as the lengths of the

corresponding paths in graph above.
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Open problems

Is QML[Σ] ‘the’ bisimulation-invariant fragment of

QMS[Σ] (FM[Σ])?

Algebraic semantics for QMS[Σ]? Does QML[Σ] have

the finite model property?

Relational semantics for QMS[Σ]? Duality?

Other intereresting classes of metric spaces: compact,

connected?
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