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Type-2 Fuzzy Sets
 In 1975, Zadeh proposed a setting generalizing that of

both type-1 and interval-valued fuzzy sets. The truth value

algebra for this new fuzzy set theory has been studied

extensively. Its definition follows.
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Definition On 0,10,1, let

f ⊔ gx  
y∨zx

fy ∧ gz

f ⊓ gx  
y∧zx

fy ∧ gz

f∗x  
1−yx

fy  f1 − x

1̄x 
1 if x  1
0 if x ≠ 1

0̄x 
1 if x  0
0 if x ≠ 0
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Definition The algebra of truth values for type-2 fuzzy

sets is

M  0,10,1,⊔,⊓, ∗, 0̄, 1̄

Definition For f ∈ M, let fL and fR be the elements of M

defined by

fLx  ∨y≤x fy
fRx  ∨y≥x fy
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Theorem The following hold for all f,g ∈ M.

f ⊔ g  f ∧ gL ∨ fL ∧ g
 f ∨ g ∧ fL ∧ gL

f ⊓ g  f ∧ gR ∨ fR ∧ g
 f ∨ g ∧ fR ∧ gR
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Corollary Let f, g, h ∈ M. The basic properties of M follow.

1. f ⊔ f  f; f ⊓ f  f

2. f ⊔ g  g ⊔ f; f ⊓ g  g ⊓ f

3. 1̄ ⊓ f  f; 0̄ ⊔ f  f

4. f ⊔ g ⊔ h  f ⊔ g ⊔ h; f ⊓ g ⊓ h  f ⊓ g ⊓ h

5. f ⊔ f ⊓ g  f ⊓ f ⊔ g

6. f∗∗  f; f ⊔ g∗  f∗ ⊓ g∗; f ⊓ g∗  f∗ ⊔ g∗
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Problem Does M satisfy any equation not a consequence of

these equations? That is, are these equations an equational

base for the variety generated by M?

Problem Is the variety generated by M generated by a finite

algebra?

7



Definition An element f of M is normal if

supfx : x ∈ 0,1  1.

Proposition The normal functions form a subalgebra N.

Definition An element f of M is convex if for x ≤ y ≤ z,

fy ≥ fx ∧ fz. Equivalently, f is convex if f  fL ∧ fR.

Proposition The convex functions form a subalgebra C.

Theorem The subalgebra D  C ∩ N is a De Morgan

algebra, and is a maximal lattice in M.
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 The basic theory goes through when 0,1 is replaced by

any two finite chains.

 In that case, D is a finite De Morgan algebras.

 So any two finite chains give rise to a finite De Morgan

algebra.

 This family of finite De Morgan algebras is the subject of

this paper.
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Notation and Terminology
 For a positive integer k, let k be the linearly ordered set

with k elements.

 0,10,1 is replaced by mn, and the convex normal

functions form a De Morgan algebra denoted Dmn.

 The elements of elements Dmn are denoted by n-tuples

from 1,2,… ,m.

 To be normal requires that each n-tuple a1,a2,… ,an

contains m as an entry.
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 To be convex requires that each n-tuple a1,a2,… ,an be

increasing until the first entry that is m, and be decreasing

after that.

 The negation on n-tuples comes from the negation n → n

given by i∗  n − i  1. Thus

a1,a2,… ,an∗  an,an−1,… ,a1.

 The lattice operations ⊔ and ⊓ are as defined earlier.
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D22 D32 D42

1 2
2 2
2 1

1 3
2 3
3 3
3 2
3 1

1 4
2 4
3 4
4 4
4 3
4 2
4 1

D23

1 1 2
1 2 2
2 2 2
2 2 1
1 2 1
2 1 1

D33

1 1 3
1 2 3
2 2 3
1 3 3
2 3 3
1 3 1
1 3 2
2 3 1
2 3 2
3 3 1
3 3 2
3 3 3
3 2 2
3 2 1
3 1 1
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Other Representations of Dmn
 The partial order on Dmn given by the lattice operations

⊔ and ⊓ is not the coordinate-wise partial order on the

n-tuples.

 We give another representation of the bounded lattice

Dmn as n-tuples in which the partial order is

coordinate-wise.
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Definition D1mn is the algebra whose elements are

decreasing n-tuples of elements from 1,2,… , 2m − 1 which

include m, and whose operations are given by pointwise max

and min on these n-tuples.

D1mn is clearly a bounded lattice.

Theorem For a  a1,a2,… ,an ∈ Dmn, let i be the

smallest index i for which ai  m. The mapping

a → 2m − a1,2m − a2,… , 2m − ai−1,ai,ai1,… ,an

is an isomorphism from Dmn to D1mn.
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 Endow D1mn with the negation given by this lattice

isomorphism: a∗ to be a∗.

 In D1mn the negation of b1,b2,… ,bn, is

2m − bn, 2m − bn−1,… , 2m − b2, 2m − b1.

 Dmn and D1mn isomorphic as De Morgan algebras.
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 For each n-tuple in D1mn, remove the entry with the

smallest index that is equal to m.

 This yields all decreasing n-1-tuples from

1,2,… , 2m − 1.

 With pointwise operations of max and min and negation

b1,b2,… ,bn−1∗  2m − bn−1, 2m − bn−2,… , 2m − b2, 2m − b1

this clearly yields a De Morgan algebra D2mn

isomorphic to D1mn.
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 Of course, the elements of this algebra is the set of all

decreasing maps from n − 1 into 2m − 1.

 So D2mn is the set of all anti-homomorphisms from the

ordered set n − 1 into the ordered set 2m − 1.

 In any case, as De Morgan algebras we have

Dmn ≈ D1mn ≈ D2mn
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The Cardinality of Dmn

Proposition The number of decreasing a-tuples from

1,2,… , i is i−1a!
i−1!a! .

Theorem |Dmn|  2m − 2  n − 1!
2m − 2!n − 1! .


2m − 2  n − 1!
2m − 2!n − 1! is the number of subsets of

1,2,… , 2m − 2  n − 1 of size n − 1.
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 This is the same as the number of strictly decreasing n − 1

tuples from 1,2,… , 2m − 2  n − 1. This is yet another

representation of the elements of Dmn, but do the lattice

operations correspond to pointwise max and min?

Definition D3mn is the algebra whose elements are the

n − 1 tuples of strictly decreasing sequences from

1,2,… , 2m − 2  n − 1 with operations pointwise max and

min the obvious constants, and

a1,a2,… ,an−1∗  2m − 2  n − an−1,… , 2m − 2  n − a1.
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Theorem D2mn ≈ D3mn.

Proof The mapping D2mn → D3mn given by

a1,a2,… ,an−1 → a1  n − 2,a2  n − 3,… ,an−2  1,an

is the desired isomorphism.
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We now have four representations:

1. Dmn, the normal convex functions of n-tuples from

1,2,… ,m,

2. D1mn, the decreasing n-tuples of elements from

1,2,… , 2m − 1, that have m as an entry,

3. D2mn, the decreasing n − 1-tuples of elements from

1,2,… , 2m − 1,

4. D3mn, the strictly decreasing n − 1-tuples of elements

from 1,2,… , 2m − 2  n − 1.
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In the last three representations, the lattice operations are

pointwise, and the negations are as indicated earlier. We will

not use representation 4, but just note that it came about

from the combinatorial result of the cardinality of D2mn.

To illustrate, below we show each representation for

m  n  3.
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D33

113
╱

123
╱ ╲

133 223
╱ ╲ ╱

132 233
╱ ╲ ╱ ╲

131 232 333
╲ ╱ ╲ ╱

231 332
╲ ╱ ╲

331 322
╲ ╱

321
╲

311

D133

553
╱

543
╱ ╲

533 443
╱ ╲ ╱

532 433
╱ ╲ ╱ ╲

531 432 333
╲ ╱ ╲ ╱

431 332
╲ ╱ ╲

331 322
╲ ╱

321
╲

311
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D233

55
╱

54
╱ ╲

53 44
╱ ╲ ╱

52 43
╱ ╲ ╱ ╲

51 42 33
╲ ╱ ╲ ╱

41 32
╲ ╱ ╲

31 22
╲ ╱

21
╲

11

D333

65
╱

64
╱ ╲

63 54
╱ ╲ ╱

62 53
╱ ╲ ╱ ╲

61 52 43
╲ ╱ ╲ ╱

51 42
╲ ╱ ╲

41 32
╲ ╱

31
╲

21
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There is difficulty in depicting such lattices as those above for

larger m and n because of the following.

Proposition The De Morgan algebras Hmn are not planar

if m ≥ 4 and n ≥ 3.

Proof A finite distributive is planar if and only if no element
has 3 covers (Gratzer, page. 90, problem 45). For
example, the 3 tuple 3,2,1 has covers 4,2,1,3,3,1,
and 3,2,2.
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The De Morgan Algebras Hmn
In the algebra D2mn, the tuples can be of any positive

integer length, but entries must come from a set with an odd

number of elements, namely 1,2,… , 2m − 1.

Definition For positive integers m and n, let Hmn be the

algebra of all decreasing n-tuples from 1,2,… ,m, with

pointwise operations ∨ and ∧ of max and min, with negation

a1,a2,… ,an∗ 

m  1 − an,m  1 − an−1,… ,m  1 − a2,m  1 − a1
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Theorem |Hmn|  m−1n!
m−1!n! .

 |Hmn|  Hn  1m−1 .

 Hmn is a De Morgan algebra.

 Hmn is the set of all anti-homomorphisms from the

poset n to the poset m.

 D2mn  H2m − 1n−1

 So, we now investigate the larger family Hmn.
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The Join Irreducibles of Hmn

Definition For 1 ≤ i ≤ n − 1, an n-tuple in Hmn has a jump

at i if its i  1 entry is strictly less than its i − th entry. It has a

jump at n if the n − th entry is at least 2.

 5,5,5,3,1 has jumps at 3 and 4

 8,7,2,2,2,2 has jumps at 1 and 2 and 6.

 5,5,5,5,1,1 has a jump at 4.

 The only n-tuple with no jumps is 1,1,… , 1.
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Theorem The join irreducibles of Hmn are those n tuples

with exactly one jump.

Corollary The join irreducible elements of Hmn are of the

form a,a,… ,a, 1, 1,… , 1, with a  1 and at least one a in the

tuple.

Thus with each join irreducible, there is associated a pair of

integers, the integer a and the index of the last a.
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For example, we have the following associations.

5,5,1,1,1 → 5,2
5,5,5,5,5 → 5,5

This association gets a map from the join irreducibles of

Hmn to the poset m − 1  n. (Here, we are associating the

poset 2,3,… ,m with the poset m − 1. This is a one-to-one

mapping of the join irreducibles of Hmn onto the poset

m − 1  n, and preserves component-wise order.
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Theorem The poset of join irreducibles of Hmn is

isomorphic to the poset m − 1  n, and hence is a bounded

distributive lattice.

Because of the categorical equivalence of finite distributive

lattice and finite posets, with a finite distributive lattice

corresponding to its poset of join irreducible elements, we get

the following corollaries.
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Corollary Hmn ≈ Hpq if and only if m  p and n  q or

m  q  1 and n  p − 1.

Corollary The automorphism group AutHmn of the lattice

Hmn has only one element unless m − 1  n, in which case

it has exactly two elements.

Corollary AutDmn has only one element unless

2m − 1  n − 1, in which case it has exactly two elements.
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Since the poset of join irreducibles of Hmn is the lattice

m − 1  n, this lattice is in turn determined by its poset of

join irreducibles. That poset is simply the disjoint chains

m − 2 and n − 1, again not allowing the 0 element to be join

irreducible. This again shows, for example that the

automorphism group of Hmn has exactly one element

unless m − 2  n − 1, or equivalently unless m − 1  n, in

which case it has exactly two automorphisms.
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 It is not true that |Hmn| determines Hmn.

 |H83|  |H152|  120, yet the criteria for

Hmn ≈ Hpq are not met.
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A Kleene Subalgebra of Hmn

Definition Let n   n
2 . Let KHmn be those n-tuples of

Hmn whose first n entries are m or whose last n entries are

1.

 Notice that this depends on the representation of Hmn

Theorem KHmn is a subalgebra of the De Morgan

algebra Hmn and is Kleene. That is, for a,b ∈ KHmn,

a ∨ a∗ ≥ b ∧ b∗.

The proof of this theorem is entirely straightforward.
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Theorem

|KHmn|  2|Hmn| − 1 if n is even
|KHmn|  2|Hmn1| − m if n is odd
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Any De Morgan algebra has subalgebras that are Kleene, for

example the two constants is one such, and more generally,

any chain that is closed under the negation operator. The

Kleene algebra KHmn is not necessarily a chain, and in

fact is a very special subalgebra of Hmn that is Kleene.

Let SHmn be the n − tuples of Hmn of the form

m,m,… ,m, 1, 1… , 1, that is, those elements whose only

entries are m and 1. This is a subalgebra of Hmn, and, in

fact, is Kleene.
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Theorem Any subalgebra A of Hmn which is Kleene and

which contains SHmn is contained in KHmn.

Below are some tables of sizes of various of these algebras.
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m |Hm2| |KHm2|

2 3 3
3 6 5
4 10 7
5 15 9
6 21 11
7 28 13
8 36 15
9 45 17

m |Hm3| |KHm3|

2 4 4
3 10 9
4 20 16
5 35 25
6 56 36
7 84 49
8 120 64
9 165 81
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m |Hm4| |KHm4|

2 5 5
3 15 11
4 35 19
5 70 29
6 126 41
7 210 55
8 330 71
9 495 89

m |Hm5| |KHm5|

2 6 6
3 21 17
4 56 36
5 126 65
6 252 106
7 462 161
8 792 232
9 1287 321
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m |Hm6| |KHm6|

2 7 7
3 28 19
4 84 39
5 210 69
6 462 111
7 924 167
8 1716 239
9 3003 329

m |Hm7| |KHm7|

2 8 8
3 36 27
4 120 66
5 330 135
6 792 246
7 1716 413
8 3432 652
9 6435 981
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 There are many, many combinatorial identities between

the various entities above. For example

|Hm7|  Hm − 17  |Hm6|, and the same holds for

KHm7. This is not surprising since |Hmn| is a binomial

coefficient and |KHmn| a closely related quantity.

 Although Hmn ≈ Hpq if and only if m  p and n  q or

m  q  1 and n  p − 1, it is not necessarily true that

KHmn ≈ KHn  1m−1.The two may not even be the

same size. The diagrams below give an illustration.
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H34

3333
╱

3332
╱ ╲

3322 3331
╱ ╲ ╱

3222 3321
╱ ╲ ╱ ╲

2222 3221 3311
╲ ╱ ╲ ╱

2221 3211
╲ ╱ ╲

2211 3111
╲ ╱

2111
╲

1111
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H52

55
╱

54
╱ ╲

53 44
╱ ╲ ╱

52 43
╱ ╲ ╱ ╲

51 42 33
╲ ╱ ╲ ╱

41 32
╲ ╱ ╲

31 22
╲ ╱

21
╲

11
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JIH34

3333
╱ ╲

2222 3331
╲ ╱ ╲

2221 3311
╲ ╱ ╲

2211 3111
╲ ╱

2111

JIH52

55
╱ ╲

51 44
╲ ╱ ╲

41 33
╲ ╱ ╲

31 22
╲ ╱

21
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KH34

3333
∣

3332
╱ ╲

3322 3331
╲ ╱

3321
∣

3311
∣

3211
╱ ╲

2211 3111
╲ ╱

2111
∣

1111

KH52

55
∣

54
∣

53
∣

52
∣

51
∣

41
∣

31
∣

21
∣

11
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