A special case: modal algebras $_{\rm O}$

Applications 0 00 Summary

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

・ロト ・四ト ・ヨト ・ヨトー

Comparing the profinite completion and MacNeille completion of a modal algebra

Jacob Vosmaer

Institute for Logic, Language and Computation University of Amsterdam, The Netherlands

Algebraic and Topological Methods in Non-Classical Logics III, Oxford, August 2007

A special case: modal algebras o Applications 0 00 Summary

Outline

Completions of lattice expansions Three distinct flavours Some general comparisons

A special case: modal algebras

A characterization theorem for profinite ≅ lower MacNeille

Applications

An alternative proof for Bezhanishvili & Bezhanishvili Master modality and finitely generated algebras

Three completions

- Profinite completion $\hat{\mathbb{A}}$ is a compactification if \mathbb{A} is residually finite.
- MacNeille completion $\bar{\mathbb{A}}$ fills in the gaps in the order structure \mathbb{A} .
- Canonical extension \mathbb{A}^σ arises naturally through Stone / Priestley / Urquhart / . . . duality.

A special case: modal algebras

Applications 0 00 Summary

Three completions

- Profinite completion is a compactification if A is residually finite.
- MacNeille completion $\bar{\mathbb{A}}$ fills in the gaps in the order structure \mathbb{A} .
- Canonical extension \mathbb{A}^σ arises naturally through Stone / Priestley / Urquhart / . . . duality.

A special case: modal algebras

Applications 0 00 Summary

ITE FOR LOGIC LANGUAGE AND COMPU

э

・ロト ・個ト ・ヨト ・ヨト

Three completions

- Profinite completion is a compactification if A is residually finite.
- MacNeille completion A
 fills in the gaps in the order structure A.
- Canonical extension \mathbb{A}^σ arises naturally through Stone / Priestley / Urquhart / . . . duality.

A special case: modal algebras

Applications 0 00 Summary

ee for Logic Language and Compi

3

< ロ > < 同 > < 回 > < 回 > .

Three completions

- Profinite completion is a compactification if A is residually finite.
- MacNeille completion $\bar{\mathbb{A}}$ fills in the gaps in the order structure $\mathbb{A}.$
- Canonical extension \mathbb{A}^{σ} arises naturally through Stone / Priestley / Urquhart / . . . duality.

- Profinite completion and Stone-ish duality mix well (cf. Bezhanishvili e.a.).
- Canonical extension A^σ and are (consequently) strongly related (sometimes even A^σ ≅ Â, cf. Harding).
- \mathbb{A}^σ and MacNeille completion $\bar{\mathbb{A}}$ are less compatible because
 - infinitary order structure is destroyed by \mathbb{A}^{σ} and preserved by $\bar{\mathbb{A}},$
 - $A^{\sigma} \cong \overline{A} \Rightarrow A$ is finite.

- Profinite completion and Stone-ish duality mix well (cf. Bezhanishvili e.a.).
- Canonical extension A^σ and are (consequently) strongly related (sometimes even A^σ ≅ Â, cf. Harding).
- \mathbb{A}^σ and MacNeille completion $\bar{\mathbb{A}}$ are less compatible because
 - infinitary order structure is destroyed by \mathbb{A}^{σ} and preserved by $\bar{\mathbb{A}},$
 - $\mathbb{A}^{\sigma} \cong \mathbb{\bar{A}} \Rightarrow \mathbb{A}$ is finite.

- Profinite completion and Stone-ish duality mix well (cf. Bezhanishvili e.a.).
- Canonical extension A^σ and are (consequently) strongly related (sometimes even A^σ ≅ Â, cf. Harding).
- \mathbb{A}^{σ} and MacNeille completion $\bar{\mathbb{A}}$ are less compatible because
 - infinitary order structure is destroyed by \mathbb{A}^{σ} and preserved by $\bar{\mathbb{A}},$
 - $\mathbb{A}^{\sigma} \cong \overline{\mathbb{A}} \Rightarrow \mathbb{A}$ is finite.

- Profinite completion and Stone-ish duality mix well (cf. Bezhanishvili e.a.).
- Canonical extension A^σ and are (consequently) strongly related (sometimes even A^σ ≅ Â, cf. Harding).
- \mathbb{A}^{σ} and MacNeille completion $\bar{\mathbb{A}}$ are less compatible because
 - infinitary order structure is destroyed by A^σ and preserved by Ā,
 - $\mathbb{A}^{\sigma} \cong \overline{\mathbb{A}} \Rightarrow \mathbb{A}$ is finite.

OR LOGIC LANGUAGE AND COMP.

3

- Profinite completion and Stone-ish duality mix well (cf. Bezhanishvili e.a.).
- Canonical extension A^σ and are (consequently) strongly related (sometimes even A^σ ≅ Â, cf. Harding).
- \mathbb{A}^{σ} and MacNeille completion $\bar{\mathbb{A}}$ are less compatible because
 - infinitary order structure is destroyed by \mathbb{A}^{σ} and preserved by $\bar{\mathbb{A}},$
 - $\mathbb{A}^{\sigma} \cong \overline{\mathbb{A}} \Rightarrow \mathbb{A}$ is finite.

Completions of modal algebras

- $\mathbb{A} = \langle \mathbf{A}; \wedge, \vee, \neg, \mathbf{0}, \mathbf{1}, \diamond \rangle$ is a modal algebra:
 - $\langle A; \land, \lor, \neg, 0, 1 \rangle$ Boolean algebra,
 - $\diamond : A \to A \text{ s.t. } \diamond (x \lor y) = \diamond x \lor \diamond y \text{ and } \diamond 0 = 0.$

- Stone-ish duality: Jónsson-Tarski duality for Kripke frames,
- Lower MacNeille completion $\bar{\mathbb{A}}$ of \mathbb{A} is not always a modal algebra,
- Profinite completion and canonical extension A^σ are related: A^σ → Â.

Summary

Completions of modal algebras

 $\mathbb{A} = \langle A; \land, \lor, \neg, 0, 1, \diamond \rangle$ is a modal algebra:

- $\langle A; \land, \lor, \neg, 0, 1 \rangle$ Boolean algebra,
- $\diamond : A \to A \text{ s.t. } \diamond (x \lor y) = \diamond x \lor \diamond y \text{ and } \diamond 0 = 0.$

- Stone-ish duality: Jónsson-Tarski duality for Kripke frames,
- Lower MacNeille completion $\bar{\mathbb{A}}$ of \mathbb{A} is not always a modal algebra,
- Profinite completion and canonical extension A^σ are related: A^σ → Â.

Completions of modal algebras

 $\mathbb{A} = \langle A; \land, \lor, \neg, 0, 1, \diamond \rangle$ is a modal algebra:

- $\langle A; \land, \lor, \neg, 0, 1 \rangle$ Boolean algebra,
- $\diamond : A \to A \text{ s.t. } \diamond (x \lor y) = \diamond x \lor \diamond y \text{ and } \diamond 0 = 0.$

- Stone-ish duality: Jónsson-Tarski duality for Kripke frames,
- Lower MacNeille completion $\bar{\mathbb{A}}$ of \mathbb{A} is not always a modal algebra,
- Profinite completion and canonical extension A^σ are related: A^σ → Â.

Summary

Completions of modal algebras

 $\mathbb{A} = \langle A; \land, \lor, \neg, 0, 1, \diamond \rangle$ is a modal algebra:

- $\langle A; \land, \lor, \neg, 0, 1 \rangle$ Boolean algebra,
- $\diamond : A \to A \text{ s.t. } \diamond (x \lor y) = \diamond x \lor \diamond y \text{ and } \diamond 0 = 0.$

- Stone-ish duality: Jónsson-Tarski duality for Kripke frames,
- Lower MacNeille completion $\bar{\mathbb{A}}$ of \mathbb{A} is not always a modal algebra,
- Profinite completion and canonical extension A^σ are related: A^σ → Â.

- $\mu \colon \mathbb{A} \hookrightarrow \hat{\mathbb{A}}$ is the profinite completion,
- $\langle W, R, \tau \rangle$ is the topological dual of \mathbb{A} ,
- $W_{\text{fin}} \subseteq W$ is the generating set of $\hat{A} = \langle \mathcal{P}(W_{\text{fin}}), \cap, \cup, ... \rangle$.

Let \mathbb{A} be a modal algebra. Then the following are equivalent:

- 1. $\overline{\mathbb{A}} \cong \widehat{\mathbb{A}}$ (isomorphic over \mathbb{A}),
- 2. A residually finite and At $\hat{\mathbb{A}} \subseteq \mu[\text{At }\mathbb{A}]$,
- W_{fin} dense in ⟨W, τ⟩ and w ∈ W_{fin} ⇒ w isolated (cf. [B&B2007]),
- 4. A residually finite and $\theta \in \text{Con } \mathbb{A} \text{ s.t. } \mathbb{A}/\theta$ is finite $\Rightarrow 1/\theta$ is principal lattice filter (cf. [B&B2007]).

- $\mu \colon \mathbb{A} \hookrightarrow \hat{\mathbb{A}}$ is the profinite completion,
- $\langle W, R, \tau \rangle$ is the topological dual of \mathbb{A} ,
- $W_{\text{fin}} \subseteq W$ is the generating set of $\hat{A} = \langle \mathcal{P}(W_{\text{fin}}), \cap, \cup, \dots \rangle$.

Let \mathbb{A} be a modal algebra. Then the following are equivalent:

- 1. $\overline{\mathbb{A}} \cong \widehat{\mathbb{A}}$ (isomorphic over \mathbb{A}),
- 2. A residually finite and At $\hat{\mathbb{A}} \subseteq \mu[\text{At }\mathbb{A}]$,
- W_{fin} dense in ⟨W, τ⟩ and w ∈ W_{fin} ⇒ w isolated (cf. [B&B2007]),
- 4. A residually finite and $\theta \in \text{Con } \mathbb{A} \text{ s.t. } \mathbb{A}/\theta$ is finite $\Rightarrow 1/\theta$ is principal lattice filter (cf. [B&B2007]).

- $\mu \colon \mathbb{A} \hookrightarrow \hat{\mathbb{A}}$ is the profinite completion,
- $\langle W, R, \tau \rangle$ is the topological dual of \mathbb{A} ,
- $W_{\text{fin}} \subseteq W$ is the generating set of $\hat{\mathbb{A}} = \langle \mathcal{P}(W_{\text{fin}}), \cap, \cup, \dots \rangle$.

Let \mathbb{A} be a modal algebra. Then the following are equivalent:

- 1. $\overline{\mathbb{A}} \cong \widehat{\mathbb{A}}$ (isomorphic over \mathbb{A}),
- 2. A residually finite and At $\hat{\mathbb{A}} \subseteq \mu[\text{At }\mathbb{A}]$,
- W_{fin} dense in ⟨W, τ⟩ and w ∈ W_{fin} ⇒ w isolated (cf. [B&B2007]),
- 4. A residually finite and $\theta \in \text{Con } \mathbb{A} \text{ s.t. } \mathbb{A}/\theta$ is finite $\Rightarrow 1/\theta$ is principal lattice filter (cf. [B&B2007]).

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

3

・ロト ・四ト ・ヨト ・ヨトー

- $\mu \colon \mathbb{A} \hookrightarrow \hat{\mathbb{A}}$ is the profinite completion,
- $\langle W, R, \tau \rangle$ is the topological dual of \mathbb{A} ,
- $W_{\text{fin}} \subseteq W$ is the generating set of $\hat{\mathbb{A}} = \langle \mathcal{P}(W_{\text{fin}}), \cap, \cup, \dots \rangle$.

Let \mathbb{A} be a modal algebra. Then the following are equivalent:

- 1. $\overline{\mathbb{A}} \cong \widehat{\mathbb{A}}$ (isomorphic over \mathbb{A}),
- 2. A residually finite and At $\hat{A} \subseteq \mu[At A]$,
- W_{fin} dense in ⟨W, τ⟩ and w ∈ W_{fin} ⇒ w isolated (cf. [B&B2007]),
- 4. A residually finite and $\theta \in \text{Con } \mathbb{A} \text{ s.t. } \mathbb{A}/\theta$ is finite $\Rightarrow 1/\theta$ is principal lattice filter (cf. [B&B2007]).

INSTITUTE FOR LOGIC LANGUAGE AND COMPUT

3

ヘロト 人間 とくほ とくほ とう

- $\mu \colon \mathbb{A} \hookrightarrow \hat{\mathbb{A}}$ is the profinite completion,
- $\langle W, R, \tau \rangle$ is the topological dual of \mathbb{A} ,
- $W_{\text{fin}} \subseteq W$ is the generating set of $\hat{\mathbb{A}} = \langle \mathcal{P}(W_{\text{fin}}), \cap, \cup, \dots \rangle$.

Let \mathbb{A} be a modal algebra. Then the following are equivalent:

- 1. $\overline{\mathbb{A}} \cong \widehat{\mathbb{A}}$ (isomorphic over \mathbb{A}),
- 2. A residually finite and At $\hat{\mathbb{A}} \subseteq \mu[\text{At }\mathbb{A}]$,
- W_{fin} dense in ⟨W, τ⟩ and w ∈ W_{fin} ⇒ w isolated (cf. [B&B2007]),
- 4. A residually finite and $\theta \in \text{Con } \mathbb{A} \text{ s.t. } \mathbb{A}/\theta$ is finite $\Rightarrow 1/\theta$ is principal lattice filter (cf. [B&B2007]).

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

- $\mu \colon \mathbb{A} \hookrightarrow \hat{\mathbb{A}}$ is the profinite completion,
- $\langle W, R, \tau \rangle$ is the topological dual of \mathbb{A} ,
- $W_{\text{fin}} \subseteq W$ is the generating set of $\hat{A} = \langle \mathcal{P}(W_{\text{fin}}), \cap, \cup, \dots \rangle$.

Let \mathbb{A} be a modal algebra. Then the following are equivalent:

- 1. $\overline{\mathbb{A}} \cong \widehat{\mathbb{A}}$ (isomorphic over \mathbb{A}),
- 2. A residually finite and At $\hat{\mathbb{A}} \subseteq \mu[\text{At }\mathbb{A}]$,
- W_{fin} dense in ⟨W, τ⟩ and w ∈ W_{fin} ⇒ w isolated (cf. [B&B2007]),
- 4. A residually finite and $\theta \in \text{Con } \mathbb{A} \text{ s.t. } \mathbb{A}/\theta$ is finite $\Rightarrow 1/\theta$ is principal lattice filter (cf. [B&B2007]).

INSTITUTE FOR LOGIC LANGUAGE AND COMPL

3

ヘロト 人間 とくほ とくほ とう

- $\mu \colon \mathbb{A} \hookrightarrow \hat{\mathbb{A}}$ is the profinite completion,
- $\langle W, R, \tau \rangle$ is the topological dual of \mathbb{A} ,
- $W_{\text{fin}} \subseteq W$ is the generating set of $\hat{\mathbb{A}} = \langle \mathcal{P}(W_{\text{fin}}), \cap, \cup, \dots \rangle$.

Let \mathbb{A} be a modal algebra. Then the following are equivalent:

- 1. $\overline{\mathbb{A}} \cong \widehat{\mathbb{A}}$ (isomorphic over \mathbb{A}),
- 2. A residually finite and At $\hat{\mathbb{A}} \subseteq \mu[\text{At }\mathbb{A}]$,
- W_{fin} dense in ⟨W, τ⟩ and w ∈ W_{fin} ⇒ w isolated (cf. [B&B2007]),
- 4. A residually finite and $\theta \in \text{Con } \mathbb{A} \text{ s.t. } \mathbb{A}/\theta \text{ is finite} \Rightarrow 1/\theta \text{ is principal lattice filter (cf. [B&B2007]).}$

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

The theorem below was originally about Heyting algebras.

Theorem (Bezhanishvili & Bezhanishvili 2007)

Let **A** be a modal algebra. $A \cong \hat{A}$ iff A is complete, residually finite and A/θ finite implies that $1/\theta$ is a principal lattice filter.

Alternative proof (\Leftarrow).

The theorem below was originally about Heyting algebras.

Theorem (Bezhanishvili & Bezhanishvili 2007)

Let \mathbb{A} be a modal algebra. $\mathbb{A} \cong \hat{\mathbb{A}}$ iff \mathbb{A} is complete, residually finite and \mathbb{A}/θ finite implies that $1/\theta$ is a principal lattice filter.

Alternative proof (\Leftarrow).

The theorem below was originally about Heyting algebras.

Theorem (Bezhanishvili & Bezhanishvili 2007)

Let \mathbb{A} be a modal algebra. $\mathbb{A} \cong \hat{\mathbb{A}}$ iff \mathbb{A} is complete, residually finite and \mathbb{A}/θ finite implies that $1/\theta$ is a principal lattice filter.

Alternative proof (\Leftarrow).

The theorem below was originally about Heyting algebras.

Theorem (Bezhanishvili & Bezhanishvili 2007)

Let \mathbb{A} be a modal algebra. $\mathbb{A} \cong \hat{\mathbb{A}}$ iff \mathbb{A} is complete, residually finite and \mathbb{A}/θ finite implies that $1/\theta$ is a principal lattice filter.

Alternative proof (\Leftarrow).

The theorem below was originally about Heyting algebras.

Theorem (Bezhanishvili & Bezhanishvili 2007)

Let \mathbb{A} be a modal algebra. $\mathbb{A} \cong \hat{\mathbb{A}}$ iff \mathbb{A} is complete, residually finite and \mathbb{A}/θ finite implies that $1/\theta$ is a principal lattice filter.

Alternative proof (\Leftarrow).

A special case: modal algebras

Applications

Summary

Master modality

 ${\cal V}$ variety of (poly-) modal algebras.

- Compound diamond: $\blacklozenge ::= x | \blacklozenge \lor \blacklozenge | \diamondsuit_i \blacklozenge$.
- $\blacklozenge \sqsubseteq \blacklozenge'$ if $\mathscr{V} \models \blacklozenge(x) \le \blacklozenge'(x)$.
- $\mathcal V$ has master modality if there exists a \sqsubseteq -maximal \blacklozenge .

A special case: modal algebras

Applications

Summary

Master modality

 ${\cal V}$ variety of (poly-) modal algebras.

• Compound diamond: $\blacklozenge ::= x | \blacklozenge \lor \blacklozenge | \diamondsuit_i \blacklozenge$.

•
$$\blacklozenge \sqsubseteq \blacklozenge'$$
 if $\mathcal{V} \models \blacklozenge(x) \le \blacklozenge'(x)$.

• $\mathcal V$ has master modality if there exists a \sqsubseteq -maximal \blacklozenge .

A special case: modal algebras

Applications

Summary

Master modality

 ${\cal V}$ variety of (poly-) modal algebras.

• Compound diamond: $\blacklozenge ::= x | \blacklozenge \lor \blacklozenge | \diamondsuit_i \blacklozenge$.

•
$$\blacklozenge \sqsubseteq \blacklozenge'$$
 if $\mathcal{V} \models \blacklozenge(x) \le \blacklozenge'(x)$.

• \mathcal{V} has master modality if there exists a \sqsubseteq -maximal \blacklozenge .

A special case: modal algebras

Applications

Summary

Master modality

 ${\cal V}$ variety of (poly-) modal algebras.

• Compound diamond: $\blacklozenge ::= x | \blacklozenge \lor \blacklozenge | \diamondsuit_i \blacklozenge$.

•
$$\blacklozenge \sqsubseteq \blacklozenge'$$
 if $\mathcal{V} \models \blacklozenge(x) \le \blacklozenge'(x)$.

• \mathcal{V} has master modality if there exists a \sqsubseteq -maximal \blacklozenge .

A special case: modal algebras $_{\rm O}$

Applications

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

э

くロト (得) (ほ) (す)

Lemma (Kracht 1999)

Let \mathcal{V} be a variety of modal algebras. Then \mathcal{V} admits a master modality iff \mathbb{A} in \mathcal{V} and $\theta \in \text{Con } \mathbb{A}$ principal $\Rightarrow 1/\theta$ is a principle lattice filter.

Theorem

Let ${\mathcal V}$ be a variety of modal algebras admitting a master modality. If ${\mathbb A}$ in ${\mathcal V}$ is

- residually finite and
- finitely generated,

Lemma (Kracht 1999)

Let \mathcal{V} be a variety of modal algebras. Then \mathcal{V} admits a master modality iff \mathbb{A} in \mathcal{V} and $\theta \in \text{Con } \mathbb{A}$ principal $\Rightarrow 1/\theta$ is a principle lattice filter.

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

э

くロト (得) (ほ) (す)

Theorem

Let ${\mathcal V}$ be a variety of modal algebras admitting a master modality. If ${\mathbb A}$ in ${\mathcal V}$ is

- residually finite and
- finitely generated,

Lemma (Kracht 1999)

Let \mathcal{V} be a variety of modal algebras. Then \mathcal{V} admits a master modality iff \mathbb{A} in \mathcal{V} and $\theta \in \text{Con } \mathbb{A}$ principal $\Rightarrow 1/\theta$ is a principle lattice filter.

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

ヘロト ヘポト ヘヨト ヘヨト

Theorem

Let ${\mathcal V}$ be a variety of modal algebras admitting a master modality. If ${\mathbb A}$ in ${\mathcal V}$ is

- residually finite and
- finitely generated,

Lemma (Kracht 1999)

Let \mathcal{V} be a variety of modal algebras. Then \mathcal{V} admits a master modality iff \mathbb{A} in \mathcal{V} and $\theta \in \text{Con } \mathbb{A}$ principal $\Rightarrow 1/\theta$ is a principle lattice filter.

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

э

ヘロト ヘ戸ト ヘヨト ヘヨト

Theorem

Let ${\mathcal V}$ be a variety of modal algebras admitting a master modality. If ${\mathbb A}$ in ${\mathcal V}$ is

- residually finite and
- finitely generated,

A special case: modal algebras

Applications 0 00 Summary

Summary

We have a theorem characterizing when profinite completion \cong lower MacNeille completion for modal algebras which

- with hindsight, refines a result of [B&B2007],
- leads to non-trivial examples (finitely generated modal algebras with master modality).

A special case: modal algebras

Applications 0 00 Summary

Summary

We have a theorem characterizing when profinite completion \cong lower MacNeille completion for modal algebras which

- with hindsight, refines a result of [B&B2007],
- leads to non-trivial examples (finitely generated modal algebras with master modality).

A special case: modal algebras

Applications 0 00 Summary

Summary

We have a theorem characterizing when profinite completion \cong lower MacNeille completion for modal algebras which

- with hindsight, refines a result of [B&B2007],
- leads to non-trivial examples (finitely generated modal algebras with master modality).

