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Example

◮ Add connective 〈∗〉 to the language ML of modal logic

◮ 〈∗〉p :=
∨

n∈ω 3
np

s 
 〈∗〉p iff there is a finite path from s to some p-state
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Example

◮ Add connective 〈∗〉 to the language ML of modal logic

◮ 〈∗〉p :=
∨

n∈ω 3
np

s 
 〈∗〉p iff there is a finite path from s to some p-state

◮ 〈∗〉p↔ p ∨ 3〈∗〉p

◮ Fact 〈∗〉p is the least fixpoint of the ‘equation’ x↔ p ∨ 3x

(a fixpoint of a map f : S → S is an s ∈ S with fs = s)

◮ Notation: 〈∗〉p ≡ µx.p ∨ 3x.

Introduction 1



Venema TANCL 07

Modal Fixpoint Logics

◮ Modal fixpoint languages extend basic modal logic with either

• new fixpoint connectives such as 〈∗〉
• explicit fixpoint operators µx, νx.
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Modal Fixpoint Logics

◮ Modal fixpoint languages extend basic modal logic with either

• new fixpoint connectives such as 〈∗〉
• explicit fixpoint operators µx, νx.

◮ Motivation: increase expressive power

• e.g. enable specification of ongoing behaviour

◮ Many applications in process theory, epistemic logic, . . .

◮ Interesting mathematical theory:

• connections with theory of automata on infinite objects
• game-theoretical semantics

Introduction 2
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General Program

Achieve a better understanding of modal fixpoint logics by studying the
interaction between
• combinatorial
• algebraic and
• coalgebraic
aspects of fixpoint logics.
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General Program

Achieve a better understanding of modal fixpoint logics by studying the
interaction between
• combinatorial
• algebraic and
• coalgebraic
aspects of fixpoint logics.

Here: consider algebraic aspects
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Knaster-Tarski Theorem
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Theorem
Let f : C → C be an order preserving map on a complete lattice C.
Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .
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Proof 1

Define PRE(f) := {c ∈ C | fc ≤ c}, and put q :=
∧

PRE(f).
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Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .

Proof 1

Define PRE(f) := {c ∈ C | fc ≤ c}, and put q :=
∧

PRE(f).

Then f(q) ≤
∧
f [PRE(f)] ≤

∧
PRE(f) = q, so q ∈ PRE(f).
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Knaster-Tarski Theorem

Theorem
Let f : C → C be an order preserving map on a complete lattice C.
Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .

Proof 1

Define PRE(f) := {c ∈ C | fc ≤ c}, and put q :=
∧

PRE(f).

Then f(q) ≤
∧
f [PRE(f)] ≤

∧
PRE(f) = q, so q ∈ PRE(f).

For y ∈ PRE(f), f(fy) ≤ f(y), so f(y) ∈ PRE(f).

In particular, f(q) ∈ PRE(f), so by definition, q ≤ fq.

Hence q = fq and so
∧

PRE(f) is the least fixpoint of f .
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Theorem
Let f : C → C be an order preserving map on a complete lattice C.
Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .

Proof 2
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∨

β<λ f
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Let f : C → C be an order preserving map on a complete lattice C.
Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .

Proof 2

Define

f0(x) := x, fβ+1(x) := f(fβ(x)), fλ(x) :=
∨

β<λ f
β(x)

Then {fα(⊥) | α an ordinal} form an increasing chain in C.
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∨
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n∈ω f
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Theorem
Let f : C → C be an order preserving map on a complete lattice C.
Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f .

Proof 2

Define

f0(x) := x, fβ+1(x) := f(fβ(x)), fλ(x) :=
∨

β<λ f
β(x)

Then {fα(⊥) | α an ordinal} form an increasing chain in C.

LFP.f =
∨

α

fα(⊥)

Definition LFP.f is constructive if LFP.f = fω(⊥) =
∨

n∈ω f
n(⊥).

This definition applies to non-complete lattices too!
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Flat Modal Fixpoint Logics: Syntax

◮ Fix set Γ of formulas γ(x,p) in which x occurs only positively

Introduction 6



Venema TANCL 07

Flat Modal Fixpoint Logics: Syntax

◮ Fix set Γ of formulas γ(x,p) in which x occurs only positively

◮ For each γ ∈ Γ, add a fixpoint connective ♯γ to the language of ML
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◮ Intended reading: ♯γ(ϕ) ≡ µx.γ(x,ϕ) for any ϕ = (ϕ1, . . . , ϕn).

◮ Obtain language MLΓ:

ϕ ::= p | ¬p | ⊥ | ⊤ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 3iϕ | 2iϕ | ♯γ(ϕ)
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Flat Modal Fixpoint Logics: Syntax

◮ Fix set Γ of formulas γ(x,p) in which x occurs only positively

◮ For each γ ∈ Γ, add a fixpoint connective ♯γ to the language of ML
(arity of ♯γ depends on γ but notation hides this)

◮ Intended reading: ♯γ(ϕ) ≡ µx.γ(x,ϕ) for any ϕ = (ϕ1, . . . , ϕn).

◮ Obtain language MLΓ:

ϕ ::= p | ¬p | ⊥ | ⊤ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 3iϕ | 2iϕ | ♯γ(ϕ)

◮ Examples: CTL, LTL, (PDL), . . .

For simplification assume ML has only one diamond 3, and Γ is singleton.
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Flat Modal Fixpoint Logics: Kripke Semantics

◮ Kripke frame S = 〈S,R〉 with R ⊆ S × S.

◮ Complex algebra: S+ := 〈℘(S),∅, S,∼S,∪,∩, 〈R〉〉,

〈R〉 : ℘(S) → ℘(S) given by 〈R〉(X) := {s ∈ S | Rst for some t ∈ X}
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◮ Kripke frame S = 〈S,R〉 with R ⊆ S × S.

◮ Complex algebra: S+ := 〈℘(S),∅, S,∼S,∪,∩, 〈R〉〉,

〈R〉 : ℘(S) → ℘(S) given by 〈R〉(X) := {s ∈ S | Rst for some t ∈ X}

◮ Every modal formula ϕ(p1, . . . , pn) corresponds to a term function

ϕS : ℘(S)n → ℘(S).

◮ Since x is positive in γ(x,p), γS is order preserving in its first coordinate.

◮ By Knaster-Tarski we may define ♯S : ℘(S)n → ℘(S) by

♯S(B) := LFP.γS(−,B).

◮ Kripke ♯-algebra S♯ := 〈℘(S),∅, S,∼S,∪,∩, 〈R〉, ♯
S〉.
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Question

How to axiomatize flat fixpoint logics?
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Question

How to axiomatize flat fixpoint logics?

Warning Limits imposed by high undecidability results!
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Overview

◮ Introduction

◮ Completeness

◮ Constructiveness

◮ Free modal ♯-algebras

◮ Systems of equations

◮ A general completeness result

◮ Final remarks
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Axiomatization results for modal fixpoint logics

◮ LTL: Gabbay et alii (1980)

◮ PDL: Kozen & Parikh (1981)

◮ µML (aconjunctive fragment): Kozen (1983)

◮ CTL: Emerson & Halpern (1985)

◮ µML: Walukiewicz (1993/2000)

◮ CTL∗: Reynolds (2000)

◮ LTL/CTL uniformly: Lange & Stirling (2001)

◮ common knowledge logics: various

◮ . . .

Completeness 11
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Candidate Axiomatization

Definition

Let KΓ be the basic modal logic K, extended with the following axiom and
derivation rule, for each γ ∈ Γ:

Axiom (“♯(p) is a prefixpoint of γp”)

⊢ γ(♯(ϕ),ϕ) → ♯(ϕ).

Rule (“♯(p) is the least prefixpoint of γp”)

from ⊢ γ(ψ,ϕ) → ψ infer ⊢ ♯γ(ϕ) → ψ.

Completeness 12
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Flat Modal Fixpoint Logics: Algebraic semantics
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Flat Modal Fixpoint Logics: Algebraic semantics

◮ Modal algebra: A = 〈A,⊥,⊤,¬,∧,∨,3〉, where 3 preserves all finite
joins of the Boolean algebra 〈A,⊥,⊤,¬,∧,∨〉.

◮ Interpret any formula ϕ(p1, . . . , pn) by its term function ϕA : An → A.
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Flat Modal Fixpoint Logics: Algebraic semantics

◮ Modal algebra: A = 〈A,⊥,⊤,¬,∧,∨,3〉, where 3 preserves all finite
joins of the Boolean algebra 〈A,⊥,⊤,¬,∧,∨〉.

◮ Interpret any formula ϕ(p1, . . . , pn) by its term function ϕA : An → A.

◮ Modal ♯-algebra: A = 〈A,⊥,⊤,¬,∧,∨,3, ♯〉 with ♯ : An → A satisfying

♯(b) = LFP.γA
b ,

where γA
b : A→ A is given by γA

b (a) := γA(a, b).

◮ Axiomatically: modal ♯-algebras satisfy

• ♯(y) ≈ γ(♯(y),y)
• if x ≈ γ(x,y) then ♯(y) � x.
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Completeness, algebraically

◮ Axiomatizing flat fixpoint logics
= axiomatizing the equational theory of the Kripke ♯-algebras
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◮ Completeness of candidate axioms: Equ(MA♯)
?
= Equ(KA♯)

◮ Key issue: how to relate
• abstract modal algebras with axiomatically defined fixpoints to
• concrete Kripke algebras with Knaster-Tarski fixpoints.

◮ Possible approaches:
• Apply the theory of duality and/or completions
• Use (generalized) filtration method
• Prove that all fixpoints on free algebras are constructive

Completeness 14



Venema TANCL 07

Overview

◮ Introduction

◮ Completeness

◮ Constructiveness

◮ Free modal ♯-algebras

◮ Systems of equations

◮ A general completeness result
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Proof strategy

Show that all fixpoints on free algebras are constructive:

♯(b) =
∨

n∈ω

γn
b (⊥).

Constructiveness 16
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Proof strategy

Show that all fixpoints on free algebras are constructive:

♯(b) =
∨

n∈ω

γn
b (⊥).

Theorem (Santocanale & Venema)
Let A be a countable, residuated, modal ♯-algebra. If A is constructive,
then A can be embedded in a Kripke ♯-algebra.

Proof
Via a step-by-step construction/generalized Lindenbaum Lemma.
Alternatively, use Rasiowa-Sikorski Lemma.

Constructiveness 16
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How to prove constructiveness?

Constructiveness 17



Venema TANCL 07

How to prove constructiveness?

Using continuity?

◮ A CPO is a poset with bottom in which
∨
D exists for every directed D.

◮ An order-preserving map f : C → C between CPO’s is (Scott) continuous
if it preserves all directed joins.

CPO Fixpoint Theorem
Continuous maps on CPOs have constructive fixpoints.
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How to prove constructiveness?

Using continuity?

◮ A CPO is a poset with bottom in which
∨
D exists for every directed D.

◮ An order-preserving map f : C → C between CPO’s is (Scott) continuous
if it preserves all directed joins.

CPO Fixpoint Theorem
Continuous maps on CPOs have constructive fixpoints.

Problem
Free modal ♯-algebras are not CPOs!

Need to show not that
∨

n∈ω γ
n
b (⊥) = LFP.γb, but that

∨
n∈ω γ

n
b (⊥) exists!
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O-adjoints

Let f : (P,≤) → (Q,≤) be an order-preserving map.

Definition f is a (left) adjoint or residuated if there is a residual g : Q→ P
with

fp ≤ q ⇐⇒ p ≤ gq.

Definition f is a (left) O-adjoint if it has an O-residual Gf : Q → ℘ω(P )
with

fp ≤ q ⇐⇒ p ≤ y for some y ∈ Gfq.

Constructiveness 18
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O-adjoints

Let f : (P,≤) → (Q,≤) be an order-preserving map.

Definition f is a (left) adjoint or residuated if there is a residual g : Q→ P
with

fp ≤ q ⇐⇒ p ≤ gq.

Definition f is a (left) O-adjoint if it has an O-residual Gf : Q → ℘ω(P )
with

fp ≤ q ⇐⇒ p ≤ y for some y ∈ Gfq.

Proposition (Santocanale 2005)

◮ f is a left adjoint iff f is a join-preserving O-adjoint

◮ O-adjoints are continuous

◮ ∧ is continuous but not an O-adjoint.

Constructiveness 18
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Finitary O-adjoints

Let f : An → A be an O-adjoint with O-residual G.

Define Gn : A→ ℘(A) inductively by

G0(a) := {a}

Gn+1(a) := G[Gn(a)]

Call f finitary if Gω(a) :=
⋃

n∈ωG
n(a) is finite.

Constructiveness 19
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Finitary O-adjoints

Let f : An → A be an O-adjoint with O-residual G.

Define Gn : A→ ℘(A) inductively by

G0(a) := {a}

Gn+1(a) := G[Gn(a)]

Call f finitary if Gω(a) :=
⋃

n∈ωG
n(a) is finite.

Theorem (Santocanale 2005)
If f : A→ A is a finitary O-adjoint, then LFP.f , if existing, is constructive.

Constructiveness 19
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The Coalgebraic/Cover Modality ∇

◮ The language ML of standard modal logic is given by

ϕ ::= p | ¬p | ⊥ | ⊤ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ
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◮ The language ML of standard modal logic is given by

ϕ ::= p | ¬p | ⊥ | ⊤ | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ

◮ Given set Φ of formulas, define

∇Φ := 2

∨
Φ ∧

∧
3Φ

(here 3Φ := {3ϕ | ϕ ∈ Φ})

◮ History: model theory, Fine, Moss, Walukiewicz

◮ Define the language ML∇ by

ϕ ::= p | ¬p | ⊥ | ⊤ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∇Φ
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Semantics

Fix a Kripke model S = 〈S,R, V 〉.

S, s 
 ∇Φ iff for all t ∈ R[s] there is a ϕ ∈ Φ with S, t 
 ϕ

and for all ϕ ∈ Φ there is a t ∈ R[s] with S, t 
 ϕ

Free modal ♯-algebras 22



Venema TANCL 07

Semantics

Fix a Kripke model S = 〈S,R, V 〉.

S, s 
 ∇Φ iff for all t ∈ R[s] there is a ϕ ∈ Φ with S, t 
 ϕ

and for all ϕ ∈ Φ there is a t ∈ R[s] with S, t 
 ϕ

Proposition S, s 
 ∇Φ iff the satisfaction relation 
 is full on R[s] and Φ

A relation Z is full on two sets A and B if
• ∀a ∈ A∃b ∈ B.Zab and
• ∀b ∈ B∃a ∈ A.Zab.

Free modal ♯-algebras 22
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Reorganizing Modal Logic

Conversely, express 2 and 3 in terms of ∇

3ϕ ≡ ∇{ϕ,⊤}

2ϕ ≡ ∇∅ ∨∇{ϕ}.
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Reorganizing Modal Logic

Conversely, express 2 and 3 in terms of ∇

3ϕ ≡ ∇{ϕ,⊤}

2ϕ ≡ ∇∅ ∨∇{ϕ}.

Proposition The languages ML and ML∇ are effectively equi-expressive.
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Properties of Free Modal ♯-Algebras

Theorem (after Santocanale 2005)
Let F be a free modal ♯-algebra. Then

◮ ∇F is a finitary O-adjoint,

◮ and hence, 3
F is residuated/an adjoint.
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◮ ∇F is a finitary O-adjoint,

◮ and hence, 3
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Corollary (Santocanale & Venema)

Let Γ be a set of {∇,∨}-formulas.
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Properties of Free Modal ♯-Algebras

Theorem (after Santocanale 2005)
Let F be a free modal ♯-algebra. Then

◮ ∇F is a finitary O-adjoint,

◮ and hence, 3
F is residuated/an adjoint.

Corollary (Santocanale & Venema)

Let Γ be a set of {∇,∨}-formulas.

Then KΓ is sound and complete with respect to its Kripke semantics.

Free modal ♯-algebras 24
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Systems of Equations

◮ A system of equations (SoE) is a set {xi ≈ ti | i ∈ I} of equations
such that each xi occurs only positively in every tj.

◮ Widen setting to that of ULE (uniform lattice expansions)

• E is similarity type of additional (non-lattice) operation symbols
• each f ∈ E is interpreted as a map fA : An → A

that is uniform, i.e. fA reverses/preserves order in each coordinate
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Systems of Equations

◮ A system of equations (SoE) is a set {xi ≈ ti | i ∈ I} of equations
such that each xi occurs only positively in every tj.

◮ Widen setting to that of ULE (uniform lattice expansions)

• E is similarity type of additional (non-lattice) operation symbols
• each f ∈ E is interpreted as a map fA : An → A

that is uniform, i.e. fA reverses/preserves order in each coordinate

◮ S induces an order preserving map FS : AI → AI given by

(FS(a))i := tAi (a).

◮ FS has a least fixpoint if A is complete, but not necessarily in general.

◮ Focus on language used in SoE with the aim of eliminating conjunctions.
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Distributive Laws

◮ A distributive law for a pair f, g ∈ E consists of a term t(s1, . . . , sm) s.t.

• t(y1, . . . , ym) is conjunction-free and
• each si is a pure conjunction, i.e., a term of the form

∧
j∈Ji

xj.

◮ Such a law holds in a class K of lattice expansions if

K |= f(x1, . . . , xn) ∧ g(xn+1, . . . , xn+k) ≈ t(s1, . . . , sm).
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• t(y1, . . . , ym) is conjunction-free and
• each si is a pure conjunction, i.e., a term of the form

∧
j∈Ji

xj.

◮ Such a law holds in a class K of lattice expansions if

K |= f(x1, . . . , xn) ∧ g(xn+1, . . . , xn+k) ≈ t(s1, . . . , sm).

◮ Examples in modal logic:
• 2x ∧ 2y = 2(x ∧ y)
• 3x ∧ 3y = 3(x ∧ y) in case of a functional accessibility relation.
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Distributive Laws

◮ A distributive law for a pair f, g ∈ E consists of a term t(s1, . . . , sm) s.t.

• t(y1, . . . , ym) is conjunction-free and
• each si is a pure conjunction, i.e., a term of the form

∧
j∈Ji

xj.

◮ Such a law holds in a class K of lattice expansions if

K |= f(x1, . . . , xn) ∧ g(xn+1, . . . , xn+k) ≈ t(s1, . . . , sm).

◮ Examples in modal logic:
• 2x ∧ 2y = 2(x ∧ y)
• 3x ∧ 3y = 3(x ∧ y) in case of a functional accessibility relation.

◮ A class K of lattice expansions is fully distributive if every pair of symbols
in E satisfies a distributive law.

Systems of equations 27
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Eliminating Conjunctions

Proposition Let K be a fully distributive class of lattice expansions.
With each term t we may effectively associate
• a conjunction-free term q, and
• pure conjunctions s1, . . . , sm such that

K |= t ≈ q(s1, . . . , sm)
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Eliminating Conjunctions

Proposition Let K be a fully distributive class of lattice expansions.
With each term t we may effectively associate
• a conjunction-free term q, and
• pure conjunctions s1, . . . , sm such that

K |= t ≈ q(s1, . . . , sm)

Theorem (Arnold & Niwiński):
In a fully distributive setting of complete lattices,
every system of equations can be simulated by a conjunction-safe one.

Proof idea
For SoE {xi ≈ ti | i ∈ I}, apply Proposition to all conjunctions of the ti’s.
Introduce a new fixpoint variable yλ for each such conjunction.
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Transforming Systems of Equations

◮ Fix System of Equations S = {xi ≈ ti | i ∈ I}, write X = {xi | i ∈ I}.

◮ Call a term

• guarded if all variables xi occur under scope of ≥ 1 symbol in E ,
• shallow if all variables xi occur under scope of ≤ 1 symbol in E ,
• conjunction-safe if all conjunctions are of the form z ∧ t with z 6∈ X .

◮ WLOG assume S is guarded and shallow.

◮ Let ℘+I := {λ ⊆ I | λ 6= ∅}.

◮ Fix set Y := {yλ | λ ∈ ℘+I} of fresh variables, and let σ be the
substitution given by

σ(yλ) :=
∧

i∈λ

xi.
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Assume K is fully distributive.

Proposition
For each λ ∈ ℘+I we may effectively obtain a conjunction-safe term
qλ(yλ | λ ∈ ℘+I) such that

K |=
∧

i∈λ

ti ≈ σ(qλ)

Definition
The simulation of S is the system S̆ given by

S̆ := {yλ ≈ qλ | λ ∈ ℘+I}.
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Theorem (Arnold & Niwiński)
Let A be a complete distributive lattice expansion in K. Then

1. if LFP(S) = {ai | i ∈ I}, then LFP(S̆) = {
∧

i∈λ ai | λ ∈ ℘+I}.

2. if LFP(S̆) = {bλ | λ ∈ ℘+I}, then LFP(S) = {b{i} | i ∈ I},
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Theorem (Arnold & Niwiński)
Let A be a complete distributive lattice expansion in K. Then

1. if LFP(S) = {ai | i ∈ I}, then LFP(S̆) = {
∧

i∈λ ai | λ ∈ ℘+I}.

2. if LFP(S̆) = {bλ | λ ∈ ℘+I}, then LFP(S) = {b{i} | i ∈ I},

Question Is completeness needed here?

Definition A modal ♯-algebra is regular (wrt γ) if it satisfies condition (1).

Systems of equations 31



Venema TANCL 07

A modal distributive law
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A modal distributive law

Theorem For any sets Φ,Φ′ of formulas,

∇Φ ∧∇Φ′ ≡
∨

Z∈Φ⊲⊳Φ′

∇{ϕ ∧ ϕ′ | (ϕ,ϕ′) ∈ Z},

where Φ ⊲⊳ Φ′ = {Z ⊆ Φ × Φ′ | Z is full on Φ and Φ′}.
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The axiomatization

Key idea: ensure regularity of Lindenbaum-Tarski algebra.
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The axiomatization

Key idea: ensure regularity of Lindenbaum-Tarski algebra.

Concretely, obtain KΓ by adding to K, for each γ ∈ Γ, a finite (bounded)
set of axioms and rules.

1 WLOG assume γ is a guarded {∇,∨,∧}-formula

2 Turn γ into guarded and shallow SoE S = {xi = ti | i ∈ I}
• each xi corresponds to a subformula ψi of γ
• one variable, say, x0, corresponds to γ itself

3 Construct the simulation S̆ = {yλ | λ ∈ ℘+I} of S

4 From S̆ read off axioms and rules, expressing that for all y:

{
∧

i∈λψi[♯(y)/x0] | λ ∈ ℘+I} is the LFP of FS̆.
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Proof sketch

Theorem (Santocanale & Venema)
Let Γ be a set of modal formulas γ(x,p) in which x occurs only positively.
Then KΓ is sound and complete with respect to the Kripke semantics.
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Proof summary.

Soundness is the theorem of Arnold & Niwiński.

For completeness, let L be the Lindenbaum-Tarski algebra.

• By definition, L is regular: S̆ has a least fixed point LFP.S̆ on L

• All primitive operations of S̆ are finitary O-adjoints.

• LFP.S̆ is constructive.

• LFP.S is constructive.
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Proof sketch

Theorem (Santocanale & Venema)
Let Γ be a set of modal formulas γ(x,p) in which x occurs only positively.
Then KΓ is sound and complete with respect to the Kripke semantics.

Proof summary.

Soundness is the theorem of Arnold & Niwiński.

For completeness, let L be the Lindenbaum-Tarski algebra.

• By definition, L is regular: S̆ has a least fixed point LFP.S̆ on L

• All primitive operations of S̆ are finitary O-adjoints.

• LFP.S̆ is constructive.

• LFP.S is constructive.

• L, being countable and residuated, embeds in a Kripke ♯-algebra.

A general completeness result 35
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Open problem

Are Kozen’s axioms complete for arbitrary flat modal fixpoint logics?
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Are Kozen’s axioms complete for arbitrary flat modal fixpoint logics?

Key problem Find counterexample to regularity:
• a modal system of equations Σ = {xs = ts | s ∈ S}
• a modal algebra A with a least fixpoint {as | s ∈ S} of Σ
• a solution {bσ | σ ∈ ℘+(S)} of the simulation of Σ+ such that

bσ <
∧

s∈σ

as

for some σ ∈ ℘+(S).
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Open problem

Are Kozen’s axioms complete for arbitrary flat modal fixpoint logics?

Key problem Find counterexample to regularity:
• a modal system of equations Σ = {xs = ts | s ∈ S}
• a modal algebra A with a least fixpoint {as | s ∈ S} of Σ
• a solution {bσ | σ ∈ ℘+(S)} of the simulation of Σ+ such that

bσ <
∧

s∈σ

as

for some σ ∈ ℘+(S).

Examples in a more general setting of lattice expansions are also of interest!
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Further work

◮ Extend results to:
• more expressive fragments of µML with nested fixpoints!
• settings with additional constraints (axioms)
• more general coalgebraic setting
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Further work

◮ Extend results to:
• more expressive fragments of µML with nested fixpoints!
• settings with additional constraints (axioms)
• more general coalgebraic setting

◮ Fixpoint logics and completions of lattice expansions
• double duality for modal fixpoint logics?

◮ Obtain algebraic understanding of full µML
• algebraic proof of Walukiewicz’ result?

◮ What about automata?
• coalgebraic aspects starting to be understood (coalgebra automata)
• automata and algebra?

Final remarks 38


