Yde Venema Universiteit van Amsterdam staff.science.uva.nl/~yde

August 6, 2007 Algebraic and Topological Methods in Non-Classical Logics III Oxford

(results based on joint work with Luigi Santocanale)

- ► Add connective (*) to the language ML of modal logic
- $\blacktriangleright \langle * \rangle p := \bigvee_{n \in \omega} \diamondsuit^n p$

 $s \Vdash \langle \ast \rangle p$ iff there is a finite path from s to some p-state

- ► Add connective (*) to the language ML of modal logic
- $\blacktriangleright \ \langle * \rangle p := \bigvee_{n \in \omega} \diamondsuit^n p$

 $s \Vdash \langle \ast \rangle p$ iff there is a finite path from s to some p-state

 $\blacktriangleright \ \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$

- Add connective $\langle * \rangle$ to the language ML of modal logic
- $\blacktriangleright \langle * \rangle p := \bigvee_{n \in \omega} \Diamond^n p$

 $s \Vdash \langle \ast \rangle p$ iff there is a finite path from s to some p-state

- $\blacktriangleright \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$
- Fact ⟨*⟩p is the least fixpoint of the 'equation' x ↔ p ∨ ◊x
 (a fixpoint of a map f : S → S is an s ∈ S with fs = s)

- Add connective $\langle * \rangle$ to the language ML of modal logic
- $\blacktriangleright \langle * \rangle p := \bigvee_{n \in \omega} \Diamond^n p$

 $s \Vdash \langle \ast \rangle p$ iff there is a finite path from s to some p-state

- $\blacktriangleright \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$
- ► Fact $\langle * \rangle p$ is the least fixpoint of the 'equation' $x \leftrightarrow p \lor \Diamond x$ (a fixpoint of a map $f : S \to S$ is an $s \in S$ with fs = s)
- Notation: $\langle * \rangle p \equiv \mu x.p \lor \Diamond x.$

- Modal fixpoint languages extend basic modal logic with either
 - new fixpoint connectives such as $\langle * \rangle$
 - explicit fixpoint operators μx , νx .

- Modal fixpoint languages extend basic modal logic with either
 - new fixpoint connectives such as $\langle * \rangle$
 - explicit fixpoint operators μx , νx .
- ► Motivation: increase expressive power
 - e.g. enable specification of ongoing behaviour

- Modal fixpoint languages extend basic modal logic with either
 - new fixpoint connectives such as $\langle * \rangle$
 - explicit fixpoint operators μx , νx .
- ► Motivation: increase expressive power
 - e.g. enable specification of ongoing behaviour
- ► Many applications in process theory, epistemic logic, . . .

- Modal fixpoint languages extend basic modal logic with either
 - new fixpoint connectives such as $\langle * \rangle$
 - explicit fixpoint operators μx , νx .
- ► Motivation: increase expressive power
 - e.g. enable specification of ongoing behaviour
- ► Many applications in process theory, epistemic logic, . . .
- ► Interesting mathematical theory:
 - connections with theory of automata on infinite objects
 - game-theoretical semantics

General Program

Achieve a better understanding of modal fixpoint logics by studying the interaction between

- combinatorial
- algebraic and
- coalgebraic

aspects of fixpoint logics.

General Program

Achieve a better understanding of modal fixpoint logics by studying the interaction between

- combinatorial
- algebraic and
- coalgebraic aspects of fixpoint logics.

Here: consider algebraic aspects

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP. f and a greatest fixpoint GFP. f.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Then $f(q) \leq \bigwedge f[\mathsf{PRE}(f)] \leq \bigwedge \mathsf{PRE}(f) = q$, so $q \in \mathsf{PRE}(f)$.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Then $f(q) \leq \bigwedge f[\mathsf{PRE}(f)] \leq \bigwedge \mathsf{PRE}(f) = q$, so $q \in \mathsf{PRE}(f)$.

For $y \in \mathsf{PRE}(f)$, $f(fy) \leq f(y)$, so $f(y) \in \mathsf{PRE}(f)$.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Then $f(q) \leq \bigwedge f[\mathsf{PRE}(f)] \leq \bigwedge \mathsf{PRE}(f) = q$, so $q \in \mathsf{PRE}(f)$.

For $y \in \mathsf{PRE}(f)$, $f(fy) \leq f(y)$, so $f(y) \in \mathsf{PRE}(f)$.

In particular, $f(q) \in \mathsf{PRE}(f)$, so by definition, $q \leq fq$.

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 1

Define $\mathsf{PRE}(f) := \{ c \in C \mid fc \leq c \}$, and put $q := \bigwedge \mathsf{PRE}(f)$.

Then
$$f(q) \leq \bigwedge f[\mathsf{PRE}(f)] \leq \bigwedge \mathsf{PRE}(f) = q$$
, so $q \in \mathsf{PRE}(f)$.

For $y \in \mathsf{PRE}(f)$, $f(fy) \leq f(y)$, so $f(y) \in \mathsf{PRE}(f)$.

In particular, $f(q) \in \mathsf{PRE}(f)$, so by definition, $q \leq fq$.

Hence q = fq and so $\bigwedge \mathsf{PRE}(f)$ is the least fixpoint of f.

Introduction

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Theorem

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Then $\{f^{\alpha}(\perp) \mid \alpha \text{ an ordinal}\}\$ form an increasing chain in C.

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Then $\{f^{\alpha}(\perp) \mid \alpha \text{ an ordinal}\}\$ form an increasing chain in C.

 $\mathsf{LFP}.f = \bigvee_{\alpha} f^{\alpha}(\bot)$

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Then $\{f^{\alpha}(\perp) \mid \alpha \text{ an ordinal}\}\$ form an increasing chain in C.

$$\mathsf{LFP}.f = \bigvee_{\alpha} f^{\alpha}(\bot)$$

Definition LFP. f is constructive if LFP. $f = f^{\omega}(\bot) = \bigvee_{n \in \omega} f^n(\bot)$.

Introduction

Let $f: C \to C$ be an order preserving map on a complete lattice C. Then f has both a least fixpoint LFP.f and a greatest fixpoint GFP.f.

Proof 2

Define

$$f^0(x) := x, \qquad f^{\beta+1}(x) := f(f^\beta(x)), \qquad f^\lambda(x) := \bigvee_{\beta < \lambda} f^\beta(x)$$

Then $\{f^{\alpha}(\perp) \mid \alpha \text{ an ordinal}\}$ form an increasing chain in C.

$$\mathsf{LFP}.f = \bigvee_{\alpha} f^{\alpha}(\bot)$$

Definition LFP. f is constructive if LFP. $f = f^{\omega}(\bot) = \bigvee_{n \in \omega} f^n(\bot)$.

This definition applies to non-complete lattices too!

Introduction

Fix set Γ of formulas $\gamma(x, p)$ in which x occurs only positively

- Fix set Γ of formulas $\gamma(x, p)$ in which x occurs only positively
- For each γ ∈ Γ, add a fixpoint connective \$\$\\$\\$_γ\$ to the language of ML (arity of \$\$\\$\\$_γ\$ depends on γ but notation hides this)
- Intended reading: $\sharp_{\gamma}(\varphi) \equiv \mu x \cdot \gamma(x, \varphi)$ for any $\varphi = (\varphi_1, \dots, \varphi_n)$.

- Fix set Γ of formulas $\gamma(x, p)$ in which x occurs only positively
- For each γ ∈ Γ, add a fixpoint connective \$\$\\$_γ\$ to the language of ML (arity of \$\$\\$_γ\$ depends on γ but notation hides this)
- Intended reading: $\sharp_{\gamma}(\varphi) \equiv \mu x \cdot \gamma(x, \varphi)$ for any $\varphi = (\varphi_1, \dots, \varphi_n)$.
- ► Obtain language ML_Γ:

```
\varphi ::= p \mid \neg p \mid \perp \mid \top \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \diamondsuit_i \varphi \mid \Box_i \varphi \mid \sharp_{\gamma}(\varphi)
```

- Fix set Γ of formulas $\gamma(x, p)$ in which x occurs only positively
- For each γ ∈ Γ, add a fixpoint connective \$\$\\$\\$_γ\$ to the language of ML (arity of \$\$\\$\\$_γ\$ depends on γ but notation hides this)
- Intended reading: $\sharp_{\gamma}(\varphi) \equiv \mu x \cdot \gamma(x, \varphi)$ for any $\varphi = (\varphi_1, \dots, \varphi_n)$.
- ► Obtain language ML_Γ:

$$\varphi ::= p \mid \neg p \mid \bot \mid \top \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \Diamond_i \varphi \mid \Box_i \varphi \mid \sharp_{\gamma}(\varphi)$$

► Examples: CTL, LTL, (PDL), ...

- Fix set Γ of formulas $\gamma(x, p)$ in which x occurs only positively
- For each γ ∈ Γ, add a fixpoint connective \$\$\\$\\$_γ\$ to the language of ML (arity of \$\$\\$\\$_γ\$ depends on γ but notation hides this)
- Intended reading: $\sharp_{\gamma}(\varphi) \equiv \mu x \cdot \gamma(x, \varphi)$ for any $\varphi = (\varphi_1, \dots, \varphi_n)$.
- ► Obtain language ML_Γ:

 $\varphi ::= p \mid \neg p \mid \perp \mid \top \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \diamondsuit_i \varphi \mid \Box_i \varphi \mid \sharp_{\gamma}(\varphi)$

► Examples: CTL, LTL, (PDL), ...

For simplification assume ML has only one diamond \diamondsuit , and Γ is singleton.

Introduction

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,

 $\langle R \rangle : \wp(S) \to \wp(S) \text{ given by } \langle R \rangle(X) := \{ s \in S \mid Rst \text{ for some } t \in X \}$

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$,

 $\langle R \rangle : \wp(S) \to \wp(S) \text{ given by } \langle R \rangle(X) := \{ s \in S \mid Rst \text{ for some } t \in X \}$

• Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^S:\wp(S)^n\to\wp(S).$$

• Since x is positive in $\gamma(x, p)$, γ^S is order preserving in its first coordinate.

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$, $\langle R \rangle : \wp(S) \to \wp(S)$ given by $\langle R \rangle(X) := \{ s \in S \mid Rst \text{ for some } t \in X \}$
- Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^S:\wp(S)^n\to\wp(S).$$

- Since x is positive in $\gamma(x, p)$, γ^S is order preserving in its first coordinate.
- ▶ By Knaster-Tarski we may define $\sharp^S : \wp(S)^n \to \wp(S)$ by

$$\sharp^S(\boldsymbol{B}) := \mathsf{LFP}.\gamma^S(-,\boldsymbol{B}).$$

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$, $\langle R \rangle : \wp(S) \to \wp(S)$ given by $\langle R \rangle(X) := \{ s \in S \mid Rst \text{ for some } t \in X \}$
- Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^S: \wp(S)^n \to \wp(S).$$

- Since x is positive in $\gamma(x, p)$, γ^S is order preserving in its first coordinate.
- ▶ By Knaster-Tarski we may define $\sharp^S : \wp(S)^n \to \wp(S)$ by

$$\sharp^S(\boldsymbol{B}) := \mathsf{LFP}.\gamma^S(-,\boldsymbol{B}).$$

 $\blacktriangleright \text{ Kripke \sharp-algebra S^{\sharp}} := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle, \sharp^S \rangle.$

Question

How to axiomatize flat fixpoint logics?

Question

How to axiomatize flat fixpoint logics?

Warning Limits imposed by high undecidability results!

Overview

- ► Introduction
- ► Completeness
- ► Constructiveness
- ► Free modal ‡-algebras
- ► Systems of equations
- ► A general completeness result
- ► Final remarks
Overview

- Introduction
- ► Completeness
- ► Constructiveness
- ► Free modal ‡-algebras
- ► Systems of equations
- ► A general completeness result
- ► Final remarks

Axiomatization results for modal fixpoint logics

- ► LTL: Gabbay et alii (1980)
- ► PDL: Kozen & Parikh (1981)
- μ ML (aconjunctive fragment): Kozen (1983)
- ► CTL: Emerson & Halpern (1985)
- ▶ µML: Walukiewicz (1993/2000)
- ► CTL*: Reynolds (2000)
- ► LTL/CTL uniformly: Lange & Stirling (2001)
- ► common knowledge logics: various

▶ . . .

Candidate Axiomatization

Definition

Let \mathbf{K}_{Γ} be the basic modal logic \mathbf{K} , extended with the following axiom and derivation rule, for each $\gamma \in \Gamma$:

Axiom (" $\sharp(p)$ is a prefixpoint of γ_p ")

 $\vdash \gamma(\sharp(\boldsymbol{\varphi}), \boldsymbol{\varphi}) \to \sharp(\boldsymbol{\varphi}).$

Rule (" $\sharp(p)$ is the least prefixpoint of γ_p ")

from $\vdash \gamma(\psi, \varphi) \to \psi$ infer $\vdash \sharp_{\gamma}(\varphi) \to \psi$.

Completeness

- ► Modal algebra: A = ⟨A, ⊥, ⊤, ¬, ∧, ∨, ◊⟩, where ◊ preserves all finite joins of the Boolean algebra ⟨A, ⊥, ⊤, ¬, ∧, ∨⟩.
- Interpret any formula $\varphi(p_1, \ldots, p_n)$ by its term function $\varphi^A : A^n \to A$.

- ► Modal algebra: A = ⟨A, ⊥, ⊤, ¬, ∧, ∨, ◊⟩, where ◊ preserves all finite joins of the Boolean algebra ⟨A, ⊥, ⊤, ¬, ∧, ∨⟩.
- Interpret any formula $\varphi(p_1, \ldots, p_n)$ by its term function $\varphi^A : A^n \to A$.
- Modal \sharp -algebra: $A = \langle A, \bot, \top, \neg, \land, \lor, \diamondsuit, \sharp \rangle$ with $\sharp : A^n \to A$ satisfying

 $\sharp(\boldsymbol{b}) = \mathsf{LFP}.\gamma_{\boldsymbol{b}}^{A},$

where $\gamma_{\boldsymbol{b}}^{A}: A \to A$ is given by $\gamma_{\boldsymbol{b}}^{A}(a) := \gamma^{A}(a, \boldsymbol{b}).$

- ► Modal algebra: A = ⟨A, ⊥, ⊤, ¬, ∧, ∨, ◊⟩, where ◊ preserves all finite joins of the Boolean algebra ⟨A, ⊥, ⊤, ¬, ∧, ∨⟩.
- Interpret any formula $\varphi(p_1, \ldots, p_n)$ by its term function $\varphi^A : A^n \to A$.
- ▶ Modal \sharp -algebra: $A = \langle A, \bot, \top, \neg, \land, \lor, \diamondsuit, \sharp \rangle$ with $\sharp : A^n \to A$ satisfying

 $\sharp(\boldsymbol{b}) = \mathsf{LFP}.\gamma_{\boldsymbol{b}}^{A},$

where $\gamma_{\boldsymbol{b}}^{\boldsymbol{A}}: \boldsymbol{A} \to \boldsymbol{A}$ is given by $\gamma_{\boldsymbol{b}}^{\boldsymbol{A}}(a) := \gamma^{\boldsymbol{A}}(a, \boldsymbol{b}).$

- ► Axiomatically: modal #-algebras satisfy
 - $\sharp(\boldsymbol{y}) \approx \gamma(\sharp(\boldsymbol{y}), \boldsymbol{y})$
 - if $x \approx \gamma(x, y)$ then $\sharp(y) \preceq x$.

- Axiomatizing flat fixpoint logics
 - = axiomatizing the equational theory of the Kripke \sharp -algebras

- Axiomatizing flat fixpoint logics
 - = axiomatizing the equational theory of the Kripke \sharp -algebras
- Completeness of candidate axioms: $Equ(MA_{\sharp}) \stackrel{?}{=} Equ(KA_{\sharp})$

- Axiomatizing flat fixpoint logics
 - = axiomatizing the equational theory of the Kripke \sharp -algebras
- Completeness of candidate axioms: $Equ(MA_{\sharp}) \stackrel{?}{=} Equ(KA_{\sharp})$
- ► Key issue: how to relate
 - abstract modal algebras with axiomatically defined fixpoints to
 - concrete Kripke algebras with Knaster-Tarski fixpoints.

- Axiomatizing flat fixpoint logics
 - = axiomatizing the equational theory of the Kripke \sharp -algebras
- Completeness of candidate axioms: $Equ(MA_{\sharp}) \stackrel{?}{=} Equ(KA_{\sharp})$
- ► Key issue: how to relate
 - abstract modal algebras with axiomatically defined fixpoints to
 - concrete Kripke algebras with Knaster-Tarski fixpoints.
- Possible approaches:
 - Apply the theory of duality and/or completions

- Axiomatizing flat fixpoint logics
 - = axiomatizing the equational theory of the Kripke \sharp -algebras
- Completeness of candidate axioms: $Equ(MA_{\sharp}) \stackrel{?}{=} Equ(KA_{\sharp})$
- ► Key issue: how to relate
 - abstract modal algebras with axiomatically defined fixpoints to
 - concrete Kripke algebras with Knaster-Tarski fixpoints.
- Possible approaches:
 - Apply the theory of duality and/or completions
 - Use (generalized) filtration method

- Axiomatizing flat fixpoint logics
 - = axiomatizing the equational theory of the Kripke \sharp -algebras
- Completeness of candidate axioms: $Equ(MA_{\sharp}) \stackrel{?}{=} Equ(KA_{\sharp})$
- ► Key issue: how to relate
 - abstract modal algebras with axiomatically defined fixpoints to
 - concrete Kripke algebras with Knaster-Tarski fixpoints.
- Possible approaches:
 - Apply the theory of duality and/or completions
 - Use (generalized) filtration method
 - Prove that all fixpoints on free algebras are constructive

Overview

- Introduction
- ► Completeness
- Constructiveness
- ► Free modal ‡-algebras
- ► Systems of equations
- ► A general completeness result
- ► Final remarks

Proof strategy

Show that all fixpoints on free algebras are constructive:

$$\sharp(oldsymbol{b}) = \bigvee_{n \in \omega} \gamma^n_{oldsymbol{b}}(\bot).$$

Proof strategy

Show that all fixpoints on free algebras are constructive:

$$\sharp(\boldsymbol{b}) = \bigvee_{n \in \omega} \gamma_{\boldsymbol{b}}^n(\bot).$$

Theorem (Santocanale & Venema) Let A be a countable, residuated, modal \sharp -algebra. If A is constructive, then A can be embedded in a Kripke \sharp -algebra.

Proof strategy

Show that all fixpoints on free algebras are constructive:

$$\sharp(\boldsymbol{b}) = \bigvee_{n \in \omega} \gamma_{\boldsymbol{b}}^n(\bot).$$

Theorem (Santocanale & Venema) Let A be a countable, residuated, modal \sharp -algebra. If A is constructive, then A can be embedded in a Kripke \sharp -algebra.

Proof

Via a step-by-step construction/generalized Lindenbaum Lemma. Alternatively, use Rasiowa-Sikorski Lemma.

How to prove constructiveness?

How to prove constructiveness?

Using continuity?

- A CPO is a poset with bottom in which $\bigvee D$ exists for every directed D.
- ► An order-preserving map f : C → C between CPO's is (Scott) continuous if it preserves all directed joins.

CPO Fixpoint Theorem

Continuous maps on CPOs have constructive fixpoints.

How to prove constructiveness?

Using continuity?

- A CPO is a poset with bottom in which $\bigvee D$ exists for every directed D.
- ► An order-preserving map f : C → C between CPO's is (Scott) continuous if it preserves all directed joins.

CPO Fixpoint Theorem

Continuous maps on CPOs have constructive fixpoints.

Problem

Free modal #-algebras are not CPOs!

Need to show not that $\bigvee_{n \in \omega} \gamma_{\boldsymbol{b}}^n(\bot) = \mathsf{LFP}.\gamma_{\boldsymbol{b}}$, but that $\bigvee_{n \in \omega} \gamma_{\boldsymbol{b}}^n(\bot)$ exists!

Constructiveness

Let $f: (P, \leq) \to (Q, \leq)$ be an order-preserving map.

Definition f is a (left) adjoint or residuated if there is a residual $g: Q \to P$ with $fp \le q \iff p \le gq$.

Definition f is a (left) \mathcal{O} -adjoint if it has an \mathcal{O} -residual $G_f : Q \to \wp_{\omega}(P)$ with $fp \leq q \iff p \leq y$ for some $y \in G_f q$.

Let $f: (P, \leq) \to (Q, \leq)$ be an order-preserving map.

Definition f is a (left) adjoint or residuated if there is a residual $g: Q \to P$ with $fp < q \iff p < qq$.

Definition f is a (left) \mathcal{O} -adjoint if it has an \mathcal{O} -residual $G_f : Q \to \wp_{\omega}(P)$ with $fp \leq q \iff p \leq y$ for some $y \in G_f q$.

Proposition (Santocanale 2005)

• f is a left adjoint iff f is a join-preserving \mathcal{O} -adjoint

Let $f: (P, \leq) \to (Q, \leq)$ be an order-preserving map.

Definition f is a (left) adjoint or residuated if there is a residual $g: Q \to P$ with $fp < q \iff p < qq$.

Definition f is a (left) \mathcal{O} -adjoint if it has an \mathcal{O} -residual $G_f : Q \to \wp_{\omega}(P)$ with $fp \leq q \iff p \leq y$ for some $y \in G_f q$.

Proposition (Santocanale 2005)

- f is a left adjoint iff f is a join-preserving O-adjoint
- ► *O*-adjoints are continuous

Let $f: (P, \leq) \to (Q, \leq)$ be an order-preserving map.

Definition f is a (left) adjoint or residuated if there is a residual $g: Q \to P$ with $fp \le q \iff p \le qq$.

Definition f is a (left) \mathcal{O} -adjoint if it has an \mathcal{O} -residual $G_f : Q \to \wp_{\omega}(P)$ with $fp \leq q \iff p \leq y$ for some $y \in G_f q$.

Proposition (Santocanale 2005)

- f is a left adjoint iff f is a join-preserving O-adjoint
- ► *O*-adjoints are continuous
- \land is continuous but not an \mathcal{O} -adjoint.

Finitary *O*-adjoints

Let $f: A^n \to A$ be an \mathcal{O} -adjoint with \mathcal{O} -residual G.

Define $G^n: A \to \wp(A)$ inductively by

$$G^{0}(a) := \{a\}$$

 $G^{n+1}(a) := G[G^{n}(a)]$

Call f finitary if $G^{\omega}(a):=\bigcup_{n\in\omega}G^n(a)$ is finite.

Finitary *O*-adjoints

Let $f: A^n \to A$ be an \mathcal{O} -adjoint with \mathcal{O} -residual G.

Define $G^n: A \to \wp(A)$ inductively by

$$G^{0}(a) := \{a\}$$

 $G^{n+1}(a) := G[G^{n}(a)]$

Call f finitary if $G^{\omega}(a) := \bigcup_{n \in \omega} G^n(a)$ is finite.

Theorem (Santocanale 2005) If $f : A \to A$ is a finitary \mathcal{O} -adjoint, then LFP. f, if existing, is constructive.

Overview

- Introduction
- ► Completeness
- ► Constructiveness
- ► Free modal ‡-algebras
- ► Systems of equations
- ► A general completeness result
- ► Final remarks

► The language ML of standard modal logic is given by

$$\varphi \, ::= \, p \, \mid \, \neg p \, \mid \, \bot \, \mid \, \top \, \mid \, \varphi \vee \varphi \, \mid \, \varphi \wedge \varphi \, \mid \, \Diamond \varphi \, \mid \, \Box \varphi$$

► The language ML of standard modal logic is given by

$$\varphi \, ::= \, p \, \mid \, \neg p \, \mid \, \bot \, \mid \, \top \, \mid \, \varphi \lor \varphi \, \mid \, \varphi \land \varphi \, \mid \, \Diamond \varphi \, \mid \, \Box \varphi$$

• Given set Φ of formulas, define

 $\nabla \Phi := \Box \bigvee \Phi \land \bigwedge \Diamond \Phi$

 $(\mathsf{here} \, \Diamond \Phi := \{ \Diamond \varphi \mid \varphi \in \Phi \})$

► The language ML of standard modal logic is given by

$$\varphi \, ::= \, p \, \mid \, \neg p \, \mid \, \bot \, \mid \, \top \, \mid \, \varphi \lor \varphi \, \mid \, \varphi \land \varphi \, \mid \, \Diamond \varphi \, \mid \, \Box \varphi$$

• Given set Φ of formulas, define

 $\nabla \Phi := \Box \bigvee \Phi \land \bigwedge \Diamond \Phi$

 $(\mathsf{here} \, \Diamond \Phi := \{ \Diamond \varphi \mid \varphi \in \Phi \})$

► History: model theory, Fine, Moss, Walukiewicz

► The language ML of standard modal logic is given by

$$\varphi ::= p \mid \neg p \mid \bot \mid \top \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi$$

 \blacktriangleright Given set Φ of formulas, define

$$\nabla \Phi := \Box \bigvee \Phi \land \bigwedge \Diamond \Phi$$

(here $\Diamond \Phi := \{ \Diamond \varphi \mid \varphi \in \Phi \}$)

- ► History: model theory, Fine, Moss, Walukiewicz
- \blacktriangleright Define the language ML_{∇} by

$$\varphi \ ::= \ p \ \mid \ \neg p \ \mid \ \bot \ \mid \ \top \ \mid \ \varphi \lor \varphi \ \mid \ \varphi \land \varphi \ \mid \ \nabla \Phi$$

Semantics

Fix a Kripke model $\mathbb{S} = \langle S, R, V \rangle$.

$$\begin{split} \mathbb{S}, s \Vdash \nabla \Phi \quad \text{iff} & \quad \text{for all } t \in R[s] \text{ there is a } \varphi \in \Phi \text{ with } \mathbb{S}, t \Vdash \varphi \\ & \quad \text{and for all } \varphi \in \Phi \text{ there is a } t \in R[s] \text{ with } \mathbb{S}, t \Vdash \varphi \end{split}$$

Semantics

Fix a Kripke model $\mathbb{S} = \langle S, R, V \rangle$.

$$\begin{split} \mathbb{S}, s \Vdash \nabla \Phi & \text{iff} & \text{for all } t \in R[s] \text{ there is a } \varphi \in \Phi \text{ with } \mathbb{S}, t \Vdash \varphi \\ & \text{and for all } \varphi \in \Phi \text{ there is a } t \in R[s] \text{ with } \mathbb{S}, t \Vdash \varphi \end{split}$$

Proposition $\mathbb{S}, s \Vdash \nabla \Phi$ iff the satisfaction relation \Vdash is full on R[s] and Φ

- A relation Z is full on two sets A and B if
- $\forall a \in A \exists b \in B. Zab$ and
- $\forall b \in B \exists a \in A. Zab.$

Reorganizing Modal Logic

Conversely, express \Box and \diamondsuit in terms of ∇

$$\begin{aligned} & \diamondsuit \varphi & \equiv & \nabla \{\varphi, \top \} \\ & \Box \varphi & \equiv & \nabla \varnothing \lor \nabla \{\varphi\}. \end{aligned}$$

Reorganizing Modal Logic

Conversely, express \Box and \diamondsuit in terms of ∇

 $\begin{aligned} & \diamond \varphi & \equiv & \nabla \{\varphi, \top \} \\ & \Box \varphi & \equiv & \nabla \varnothing \lor \nabla \{\varphi\}. \end{aligned}$

Proposition The languages ML and ML_{∇} are effectively equi-expressive.

Properties of Free Modal #-Algebras

Theorem (after Santocanale 2005) Let F be a free modal \sharp -algebra. Then

- ∇^F is a finitary \mathcal{O} -adjoint,
- ▶ and hence, \diamondsuit^F is residuated/an adjoint.
Properties of Free Modal #-Algebras

Theorem (after Santocanale 2005) Let F be a free modal \ddagger -algebra. Then

- ∇^F is a finitary \mathcal{O} -adjoint,
- ▶ and hence, \diamondsuit^F is residuated/an adjoint.

```
Corollary (Santocanale & Venema)
```

```
Let \Gamma be a set of \{\nabla, \lor\}-formulas.
```

Properties of Free Modal #-Algebras

Theorem (after Santocanale 2005) Let F be a free modal \sharp -algebra. Then

- ∇^F is a finitary \mathcal{O} -adjoint,
- ▶ and hence, \diamondsuit^F is residuated/an adjoint.

Corollary (Santocanale & Venema)

Let Γ be a set of $\{\nabla, \lor\}$ -formulas.

Then \mathbf{K}_{Γ} is sound and complete with respect to its Kripke semantics.

Overview

- Introduction
- ► Completeness
- ► Constructiveness
- ► Free modal ‡-algebras
- Systems of equations
- ► A general completeness result
- ► Final remarks

Systems of Equations

- A system of equations (SoE) is a set $\{x_i \approx t_i \mid i \in I\}$ of equations such that each x_i occurs only positively in every t_j .
- ► Widen setting to that of ULE (uniform lattice expansions)
 - \mathcal{E} is similarity type of additional (non-lattice) operation symbols
 - each $f \in \mathcal{E}$ is interpreted as a map $f^A : A^n \to A$ that is uniform, i.e. f^A reverses/preserves order in each coordinate

Systems of Equations

- ► A system of equations (SoE) is a set {x_i ≈ t_i | i ∈ I} of equations such that each x_i occurs only positively in every t_j.
- Widen setting to that of ULE (uniform lattice expansions)
 - \mathcal{E} is similarity type of additional (non-lattice) operation symbols
 - each $f \in \mathcal{E}$ is interpreted as a map $f^A : A^n \to A$ that is uniform, i.e. f^A reverses/preserves order in each coordinate
- S induces an order preserving map $F_S: A^I \to A^I$ given by

 $(F_S(\boldsymbol{a}))_i := t_i^A(\boldsymbol{a}).$

Systems of Equations

- ► A system of equations (SoE) is a set {x_i ≈ t_i | i ∈ I} of equations such that each x_i occurs only positively in every t_j.
- Widen setting to that of ULE (uniform lattice expansions)
 - \mathcal{E} is similarity type of additional (non-lattice) operation symbols
 - each $f \in \mathcal{E}$ is interpreted as a map $f^A : A^n \to A$ that is uniform, i.e. f^A reverses/preserves order in each coordinate
- S induces an order preserving map $F_S: A^I \to A^I$ given by

$$(F_S(\boldsymbol{a}))_i := t_i^A(\boldsymbol{a}).$$

- F_S has a least fixpoint if A is complete, but not necessarily in general.
- ► Focus on language used in SoE with the aim of eliminating conjunctions.

Systems of equations

Distributive Laws

- A distributive law for a pair $f, g \in \mathcal{E}$ consists of a term $t(s_1, \ldots, s_m)$ s.t.
 - $t(y_1, \ldots, y_m)$ is conjunction-free and
 - each s_i is a pure conjunction, i.e., a term of the form $\bigwedge_{i \in J_i} x_j$.
- ► Such a law holds in a class K of lattice expansions if

$$\mathsf{K} \models f(x_1, \dots, x_n) \land g(x_{n+1}, \dots, x_{n+k}) \approx t(s_1, \dots, s_m).$$

Distributive Laws

- A distributive law for a pair $f, g \in \mathcal{E}$ consists of a term $t(s_1, \ldots, s_m)$ s.t.
 - $t(y_1, \ldots, y_m)$ is conjunction-free and
 - each s_i is a pure conjunction, i.e., a term of the form $\bigwedge_{i \in J_i} x_j$.
- ► Such a law holds in a class K of lattice expansions if

$$\mathsf{K} \models f(x_1, \ldots, x_n) \land g(x_{n+1}, \ldots, x_{n+k}) \approx t(s_1, \ldots, s_m).$$

- ► Examples in modal logic:
 - $\Box x \land \Box y = \Box (x \land y)$
 - $\Diamond x \land \Diamond y = \Diamond (x \land y)$ in case of a functional accessibility relation.

Distributive Laws

- ► A distributive law for a pair $f, g \in \mathcal{E}$ consists of a term $t(s_1, \ldots, s_m)$ s.t.
 - $t(y_1, \ldots, y_m)$ is conjunction-free and
 - each s_i is a pure conjunction, i.e., a term of the form $\bigwedge_{i \in J_i} x_j$.
- ► Such a law holds in a class K of lattice expansions if

$$\mathsf{K} \models f(x_1, \dots, x_n) \land g(x_{n+1}, \dots, x_{n+k}) \approx t(s_1, \dots, s_m).$$

- ► Examples in modal logic:
 - $\Box x \land \Box y = \Box (x \land y)$
 - $\Diamond x \land \Diamond y = \Diamond (x \land y)$ in case of a functional accessibility relation.
- ► A class K of lattice expansions is fully distributive if every pair of symbols in *E* satisfies a distributive law.

Eliminating Conjunctions

Proposition Let K be a fully distributive class of lattice expansions. With each term t we may effectively associate

- a conjunction-free term q, and
- pure conjunctions s_1, \ldots, s_m such that

 $\mathsf{K} \models t \approx q(s_1, \dots, s_m)$

Eliminating Conjunctions

Proposition Let K be a fully distributive class of lattice expansions. With each term t we may effectively associate

- a conjunction-free term q, and
- pure conjunctions s_1, \ldots, s_m such that

 $\mathsf{K} \models t \approx q(s_1, \dots, s_m)$

Theorem (Arnold & Niwiński):

In a fully distributive setting of complete lattices,

every system of equations can be simulated by a conjunction-safe one.

Eliminating Conjunctions

Proposition Let K be a fully distributive class of lattice expansions. With each term t we may effectively associate

- \bullet a conjunction-free term q, and
- pure conjunctions s_1, \ldots, s_m such that

 $\mathsf{K} \models t \approx q(s_1, \dots, s_m)$

Theorem (Arnold & Niwiński):

In a fully distributive setting of complete lattices,

every system of equations can be simulated by a conjunction-safe one.

Proof idea

For SoE $\{x_i \approx t_i \mid i \in I\}$, apply Proposition to all conjunctions of the t_i 's. Introduce a new fixpoint variable y_{λ} for each such conjunction.

Systems of equations

Transforming Systems of Equations

- Fix System of Equations $S = \{x_i \approx t_i \mid i \in I\}$, write $X = \{x_i \mid i \in I\}$.
- ► Call a term
 - guarded if all variables x_i occur under scope of ≥ 1 symbol in \mathcal{E} ,
 - shallow if all variables x_i occur under scope of ≤ 1 symbol in \mathcal{E} ,
 - conjunction-safe if all conjunctions are of the form $z \wedge t$ with $z \notin X$.
- ► WLOG assume *S* is guarded and shallow.
- Let $\wp_+I := \{\lambda \subseteq I \mid \lambda \neq \varnothing\}.$
- Fix set $Y := \{y_{\lambda} \mid \lambda \in \wp_{+}I\}$ of fresh variables, and let σ be the substitution given by

$$\sigma(y_{\lambda}) := \bigwedge_{i \in \lambda} x_i.$$

Systems of equations

Assume K is fully distributive.

Proposition

For each $\lambda \in \wp_+ I$ we may effectively obtain a conjunction-safe term $q_\lambda(y_\lambda \mid \lambda \in \wp_+ I)$ such that

$$\boldsymbol{\mathsf{X}} \models \bigwedge_{i \in \lambda} t_i \; \approx \; \sigma(q_\lambda)$$

Definition

The simulation of S is the system \check{S} given by

$$\breve{S} := \{ y_{\lambda} \approx q_{\lambda} \mid \lambda \in \wp_{+}I \}.$$

Theorem (Arnold & Niwiński) Let A be a complete distributive lattice expansion in K. Then

- 1. if $LFP(S) = \{a_i \mid i \in I\}$, then $LFP(\breve{S}) = \{\bigwedge_{i \in \lambda} a_i \mid \lambda \in \wp_+I\}$.
- 2. if $LFP(\breve{S}) = \{b_{\lambda} \mid \lambda \in \wp_{+}I\}$, then $LFP(S) = \{b_{\{i\}} \mid i \in I\}$,

Theorem (Arnold & Niwiński)

Let A be a complete distributive lattice expansion in K. Then

1. if
$$LFP(S) = \{a_i \mid i \in I\}$$
, then $LFP(\breve{S}) = \{\bigwedge_{i \in \lambda} a_i \mid \lambda \in \wp_+ I\}$.

2. if
$$LFP(\breve{S}) = \{b_{\lambda} \mid \lambda \in \wp_{+}I\}$$
, then $LFP(S) = \{b_{\{i\}} \mid i \in I\}$,

Question Is completeness needed here?

Theorem (Arnold & Niwiński) Let A be a complete distributive lattice expansion in K. Then

1. if
$$LFP(S) = \{a_i \mid i \in I\}$$
, then $LFP(\breve{S}) = \{\bigwedge_{i \in \lambda} a_i \mid \lambda \in \wp_+ I\}$.

2. if
$$LFP(\breve{S}) = \{b_{\lambda} \mid \lambda \in \wp_{+}I\}$$
, then $LFP(S) = \{b_{\{i\}} \mid i \in I\}$,

Question Is completeness needed here?

Definition A modal \sharp -algebra is regular (wrt γ) if it satisfies condition (1).

A modal distributive law

A modal distributive law

Theorem For any sets Φ, Φ' of formulas,

$$\nabla \Phi \wedge \nabla \Phi' \equiv \bigvee_{Z \in \Phi \bowtie \Phi'} \nabla \{\varphi \wedge \varphi' \mid (\varphi, \varphi') \in Z \},$$

where $\Phi \bowtie \Phi' = \{ Z \subseteq \Phi \times \Phi' \mid Z \text{ is full on } \Phi \text{ and } \Phi' \}.$

Overview

- Introduction
- ► Completeness
- ► Constructiveness
- ► Free modal ‡-algebras
- ► Systems of equations
- ► A general completeness result
- ► Final remarks

The axiomatization

Key idea: ensure regularity of Lindenbaum-Tarski algebra.

The axiomatization

Key idea: ensure regularity of Lindenbaum-Tarski algebra.

Concretely, obtain \mathbf{K}_{Γ} by adding to \mathbf{K} , for each $\gamma \in \Gamma$, a finite (bounded) set of axioms and rules.

1 WLOG assume γ is a guarded $\{\nabla, \lor, \wedge\}\text{-formula}$

- 2 Turn γ into guarded and shallow SoE $S = \{x_i = t_i \mid i \in I\}$
 - \bullet each x_i corresponds to a subformula ψ_i of γ
 - \bullet one variable, say, x_0 , corresponds to γ itself
- 3 Construct the simulation $\breve{S} = \{y_{\lambda} \mid \lambda \in \wp_{+}I\}$ of S
- 4 From \breve{S} read off axioms and rules, expressing that for all \boldsymbol{y} :

$$\{ \bigwedge_{i \in \lambda} \psi_i [\sharp(\boldsymbol{y})/x_0] \mid \lambda \in \wp_+ I \}$$
 is the LFP of $F_{\breve{S}}$.

A general completeness result

Theorem (Santocanale & Venema) Let Γ be a set of modal formulas $\gamma(x, p)$ in which x occurs only positively. Then \mathbf{K}_{Γ} is sound and complete with respect to the Kripke semantics.

Theorem (Santocanale & Venema) Let Γ be a set of modal formulas $\gamma(x, p)$ in which x occurs only positively. Then \mathbf{K}_{Γ} is sound and complete with respect to the Kripke semantics.

Proof summary.

Theorem (Santocanale & Venema) Let Γ be a set of modal formulas $\gamma(x, p)$ in which x occurs only positively. Then \mathbf{K}_{Γ} is sound and complete with respect to the Kripke semantics.

Proof summary.

Soundness is the theorem of Arnold & Niwiński.

Theorem (Santocanale & Venema) Let Γ be a set of modal formulas $\gamma(x, p)$ in which x occurs only positively. Then \mathbf{K}_{Γ} is sound and complete with respect to the Kripke semantics.

Proof summary.

Soundness is the theorem of Arnold & Niwiński.

Theorem (Santocanale & Venema) Let Γ be a set of modal formulas $\gamma(x, p)$ in which x occurs only positively. Then \mathbf{K}_{Γ} is sound and complete with respect to the Kripke semantics.

Proof summary.

Soundness is the theorem of Arnold & Niwiński.

For completeness, let L be the Lindenbaum-Tarski algebra.

 \bullet By definition, L is regular: \breve{S} has a least fixed point LFP. \breve{S} on L

Theorem (Santocanale & Venema) Let Γ be a set of modal formulas $\gamma(x, p)$ in which x occurs only positively. Then \mathbf{K}_{Γ} is sound and complete with respect to the Kripke semantics.

Proof summary.

Soundness is the theorem of Arnold & Niwiński.

- \bullet By definition, L is regular: \breve{S} has a least fixed point LFP. \breve{S} on L
- All primitive operations of \breve{S} are finitary \mathcal{O} -adjoints.

Theorem (Santocanale & Venema) Let Γ be a set of modal formulas $\gamma(x, p)$ in which x occurs only positively. Then \mathbf{K}_{Γ} is sound and complete with respect to the Kripke semantics.

Proof summary.

Soundness is the theorem of Arnold & Niwiński.

- \bullet By definition, L is regular: \breve{S} has a least fixed point LFP. \breve{S} on L
- All primitive operations of \breve{S} are finitary \mathcal{O} -adjoints.
- LFP. \breve{S} is constructive.

Theorem (Santocanale & Venema) Let Γ be a set of modal formulas $\gamma(x, p)$ in which x occurs only positively. Then \mathbf{K}_{Γ} is sound and complete with respect to the Kripke semantics.

Proof summary.

Soundness is the theorem of Arnold & Niwiński.

- \bullet By definition, L is regular: \breve{S} has a least fixed point LFP. \breve{S} on L
- All primitive operations of \breve{S} are finitary \mathcal{O} -adjoints.
- LFP. \breve{S} is constructive.
- LFP.S is constructive.

Theorem (Santocanale & Venema)

Let Γ be a set of modal formulas $\gamma(x, p)$ in which x occurs only positively. Then \mathbf{K}_{Γ} is sound and complete with respect to the Kripke semantics.

Proof summary.

Soundness is the theorem of Arnold & Niwiński.

- \bullet By definition, L is regular: \breve{S} has a least fixed point LFP. \breve{S} on L
- All primitive operations of \breve{S} are finitary \mathcal{O} -adjoints.
- LFP. \breve{S} is constructive.
- LFP.S is constructive.
- L, being countable and residuated, embeds in a Kripke \sharp -algebra.

A general completeness result

Overview

- Introduction
- ► Completeness
- ► Constructiveness
- ► Free modal ‡-algebras
- ► Systems of equations
- ► A general completeness result
- ► Final remarks

Open problem

Are Kozen's axioms complete for arbitrary flat modal fixpoint logics?

Open problem

Are Kozen's axioms complete for arbitrary flat modal fixpoint logics?

Key problem Find counterexample to regularity:

- a modal system of equations $\Sigma = \{x_s = t_s \mid s \in S\}$
- a modal algebra A with a least fixpoint $\{a_s \mid s \in S\}$ of Σ
- a solution $\{b_{\sigma} \mid \sigma \in \wp_{+}(S)\}$ of the simulation of Σ_{+} such that

$$b_{\sigma} < \bigwedge_{s \in \sigma} a_s$$

for some $\sigma \in \wp_+(S)$.

Open problem

Are Kozen's axioms complete for arbitrary flat modal fixpoint logics?

Key problem Find counterexample to regularity:

- a modal system of equations $\Sigma = \{x_s = t_s \mid s \in S\}$
- a modal algebra A with a least fixpoint $\{a_s \mid s \in S\}$ of Σ
- a solution $\{b_{\sigma} \mid \sigma \in \wp_+(S)\}$ of the simulation of Σ_+ such that

$$b_{\sigma} < \bigwedge_{s \in \sigma} a_s$$

for some $\sigma \in \wp_+(S)$.

Examples in a more general setting of lattice expansions are also of interest!

Final remarks

Further work

- Extend results to:
 - more expressive fragments of μ ML with nested fixpoints!
 - settings with additional constraints (axioms)
 - more general coalgebraic setting
Further work

- Extend results to:
 - more expressive fragments of μ ML with nested fixpoints!
 - settings with additional constraints (axioms)
 - more general coalgebraic setting
- ► Fixpoint logics and completions of lattice expansions
 - double duality for modal fixpoint logics?

Further work

- Extend results to:
 - more expressive fragments of μ ML with nested fixpoints!
 - settings with additional constraints (axioms)
 - more general coalgebraic setting
- ► Fixpoint logics and completions of lattice expansions
 - double duality for modal fixpoint logics?
- Obtain algebraic understanding of full μ ML
 - algebraic proof of Walukiewicz' result?

Further work

- Extend results to:
 - more expressive fragments of μ ML with nested fixpoints!
 - settings with additional constraints (axioms)
 - more general coalgebraic setting
- ► Fixpoint logics and completions of lattice expansions
 - double duality for modal fixpoint logics?
- Obtain algebraic understanding of full μ ML
 - algebraic proof of Walukiewicz' result?
- ► What about automata?
 - coalgebraic aspects starting to be understood (coalgebra automata)
 - automata and algebra?