

Semisimplicity, EDPC and discriminator varieties of bounded commutative residuated lattices with S4-like modal operator

National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Verification and Semantics (CVS) Hiroki TAKAMURA

Outline of my talk

- Substructural logics & Residuated lattices
 - Substructural logics
 - Residuated lattices
 - Extensions: +modality
 - Main result :
 - $V \subseteq \square BCRL$, semisimple = discriminator

Substructural logics & Residuated lattices

Substructural logics

- Substructural logics : LJ (or LK) – structural rules, (e: exchange, w: weakening, c: contraction) - rules
 - linear logic, relevant logic, fuzzy logic

Basic substructural logic : FL No structural rules

$FL = LJ - \{e, w, c\}$ $(CFL = LK - \{e, w, c\})$ $\Gamma, A, B \vdash C$ $\Gamma, A \vdash C$ $\Gamma, A \vdash C$ $\Gamma, A \vdash C$ $\Gamma, A \vdash C$

Sequent system : FL

Sequent system : FL

- $\begin{array}{c|c} \Gamma, \mathsf{A}, \mathsf{B}, \bigtriangleup \vdash \mathsf{C} \\ \hline \Gamma, \mathsf{A} \otimes \mathsf{B}, \bigtriangleup \vdash \mathsf{C} \end{array} & \begin{array}{c|c} \Gamma & \vdash \mathsf{A} & \bigtriangleup \vdash \mathsf{B} \\ \hline \Gamma, \bigtriangleup \vdash \mathsf{A} \otimes \mathsf{B} \end{array}$
- Γ , A(B), $\triangle \vdash C$ $\Gamma \vdash A \quad \Gamma \vdash B$ Γ , A \land B, $\triangle \vdash C$ $\Gamma \vdash A \land B$

 $\frac{\Gamma, \mathsf{A}, \bigtriangleup \models \mathsf{C} \quad \Gamma, \mathsf{B}, \bigtriangleup \models \mathsf{C}}{\Gamma, \mathsf{A} \lor \mathsf{B}, \bigtriangleup \models \mathsf{C}} = \frac{\Gamma \models \mathsf{A} (\mathsf{B})}{\Gamma \models \mathsf{A} \lor \mathsf{B}}$

Basic substructural logics

• FL, FLe, FLw, FLew, ...

FLew = FL + {e, w} = LJ - {c} Monoidal logic (Fuzzy logic)
FLe = ILL - {!,?}

Basic results

 Cut elimination theorem : FL, FLe, FLw, FLew, FLec, FLecw(= LJ) (CFLe, CFLew, CFLec, CFLecw(= LK))

Residuated lattices

- Definition : A= (A, •, \rightarrow , \leftarrow , \land , \lor , 1)
 - $\begin{array}{l} \ (A, \, \bullet, \, 1) : \text{monoid} \\ \ (A, \, \wedge, \, \vee) : \text{lattice} \\ \ x \, \bullet \, y \, \leq z \ \Leftrightarrow x \, \leq z \leftarrow y \ \Leftrightarrow y \, \leq x \rightarrow z \end{array}$
- Pointed residuated lattice = FL-algebra

$$- A = (A, \bullet, \rightarrow, \leftarrow, \land, \lor, 1, 0)$$

- 0 : arbitrary but fixed element of A

Basic facts

• The class of residuated lattices forms a variety : RL

- Subvarieties :
 - **–** FL, CRL, IRL, ...
 - Commutativity, integrality, increasing-idenpotency

Substructural logics & Residuated lattices

- Completeness theorem : Algebras for FLx is FLx-algebras (x = e, w, ew, ...)
- Lindenbaum construction : Frm /~ $A \sim B \equiv A \vdash B$ and $B \vdash A$

Algebra - Logic

- commutativity ⇔ exchange
- integrality
 ⇔ weakening
- increasing-idempotency ⇔
- contraction

- FLe, FLw-, FLew-algebra, ...
- FLe, FLw, FLew, ...

Book

- Residuated Lattices: an algebraic glimpse at substructural logics, P. Jipsen, T. Kowalski, N. Galatos and H. Ono
 - Residuated Lattices: an algebraic glimpse at logics without contraction, T.
 Kowalski and H. Ono (starting point for the book)

Extensions

- Substructural logics + modalities
 - What is natural modalities in substructural logics?
 - H. Ono, Modalities in substructural logics, a preliminary report
- Algebras for modal substructural logics = Residuated lattices + operators
 - (cf. BAO's)

\Box FLe (\Box BCRL)

• \Box FLe = FLe + S4-like modality

Cut elimination theorem holds for $\Box FLe$

□FLe-algebras (□BCRL) • $A = (A, \cdot, \rightarrow, \land, \lor, 1, 0, T, \bot, \Box)$ $-(A, \cdot, \rightarrow, \Lambda, V, 1, 0, T, \bot)$: FLe-algebra S4-like modality -1≦□1. $-\Box \mathbf{x} \cdot \Box \mathbf{y} \leq \Box (\mathbf{x} \cdot \mathbf{y})$ $-\Box x \leq x$ $-\Box \mathbf{x} \leq \Box \Box \mathbf{x}$ $-x \leq y \Rightarrow \Box x \leq \Box y$ • The class of \Box FLe-algebras forms a variety

□ FLe & Modal FLe-algebras

Completeness theorem :
 –Algebras for □FLe is □FLe-algebras

Congruence filter of □FLe-algebra

• F is a congruence filter :

$$-x, y \in F \Rightarrow x \land y \in F$$

$$-x, x \rightarrow y \in F \Rightarrow y \in F$$

$$- x \in F \Rightarrow \Box x \in F$$

• $\langle S \rangle = \{ x \in A : x \ge \Box(s_1 \land 1) \dots \Box(s_k \land 1), s_i \in S \}$

Algebra basics

- V: variety is semisimple
 All its algebras are semisimple
- A in \Box BCRL, $x \in \text{Rad}_A \Leftrightarrow \forall n \ge 1 \exists m \text{ s.t.}$, $(\Box \neg (\Box (x \land 1))^n)^m = \bot, \neg x = x \rightarrow \bot$
- A is semisimple :
 - ∀ x ∈ A, not greater than 1, ∃ n ≥ 1, s.t., $(\Box \neg (\Box x \land 1))^n)^m \neq \bot$ for any m

Algebra basics

- V: variety is discriminator
 - -The ternary discriminator is a term operation on every si algebra in V

$$t(x,y,z) = x$$
 if $x=y$

z otherwise

-Algebra with discriminator term is simple

Algebra basics

- Discriminator variety \Rightarrow semisimple variety
- Discriminator variety $V \Rightarrow V$ has the CEP
- DPC (definable principle congruence)
 - A first order formula Φ , a,b,c,d in A
 - -(c,d) in $\Theta(a,b) \Leftrightarrow A \models \Phi(a,b,c,d)$
- EDPC (equational definable principle congruence)
 - If Φ can be taken a finite set of equations

Facts

V is congruence-permutative ⇒
 discriminator = semisimple + EDPC

If semisimple ⇒ EDPC then discriminator = semisimple

Some historical remarks

- Every free classical FLew-algebras is semisimple (Grishin)
- The variety of FLew-algebras is generated by its finite simple members (Kowalski & Ono)
- Every free FLw-algebras is semisimple

Some historical remarks

- V ⊆ FLew, V is discriminator
 - = V is semisimple
 - = V satisfies that $x \vee \neg (x^n) = 1$

(Kowalski2005)

Goal of my talk

- $V \subseteq \square$ BCRL, V is discriminator
 - = V is semisimple
 - = $V \models \Box(x \land 1) \lor \neg (\Box(x \land 1))^n$ for some natural number n

E(1,n) **& E**M(1,n)

• **D**E(1,n) :

$(\Box(x \land 1))^n = \Box(x \land 1))^{n+1}$

for any natural number n

• $\Box EM(1,n)$: $\Box(x \land 1) \lor \neg(\Box(x \land 1))^n = 1$ for any natural number n

Proposition

- $V \subseteq \Box$ BCRL, V has EDPC
- = V has DPC
- $= V \subseteq \Box E(1,n)$

for some natural number n

 $= V \mid = (\Box (x \land 1))^{n} = (\Box (x \land 1))^{n+1}$ for some natural number n

Set up congruence

- A in V s.t. (□(a ∧ 1)) ⁿ > ⊥, a an element not greater than 1
- $\alpha = Cg(a, 1)$; nonzero, nonfull, principal $\Rightarrow \exists \beta$ subcover

Lemma ∃m s.t.,

 $(\Box(a \land 1))^{m+1} \equiv \beta (\Box(a \land 1))^{m}$ $\neg(\Box(a \land 1))^{m} \equiv \beta (\neg(\Box(a \land 1)^{m})^{2}$ $(\Box(a \land 1))^{m} \equiv \beta \neg \neg(\Box(a \land 1))^{m}$

A necessary condition for semisimplicity

- V is semisimple subvariety of □BCRL,
 V = ¶?
 - $\P \equiv \Box(x \wedge 1) \ge (\neg(\neg\Box(x \wedge 1)^r)^k)^l$
- Suppose V falsifies ¶, Put $\Theta \equiv V \theta r$,
- $\theta r = Cg(\neg(\neg\Box(x \land 1)^r)^K, 1)$

K is the smallest number V falsifies \P

Some lemmas

- 0 < Θ < α
- V is semisimple subvariety of
 BCRL,
 V =
 YES!

V |= (□x ∧ 1) \ge (¬(¬□(x ∧ 1)^r)^k)^I for any k there exist r & I

Function r

• Suppose

$$V \models (\Box x \land 1) \ge (\neg (\neg \Box (x \land 1)^r)^k)^l$$

• r : N → N,

r(i) the smallest number s.t., $\exists I \in N$ with

$$\vee \mid = (\Box(x \wedge 1)) \ge (\neg(\neg\Box(x \wedge 1)^{r(i)})^i)^l$$

• Lemma: r is non-decreasing function

Semisimple forces DEM(1,n)

• Lemma

 $V \subseteq \square BCRL$, semisimple,

$V \models (\Box(x \land 1))^{n+1} = (\Box(x \land 1))^{n+1}$

for some natural number n

Main theorem

- V \subseteq \square BCRL, V is discriminator
 - = V is semisimple

$= V |= \Box (x \land 1) V \neg \Box (x \land 1)^{n}$ for some natural number n

Corollary 1

- V \subseteq \square FLe, V is discriminator
 - = V is semisimple

$= V \mid = \Box (x \land 1) \lor \neg \Box (x \land 1)^{n}$ for some natural number n

Corollary 2

- V \subseteq \square FLew, V is discriminator
 - = V is semisimple
 - $= V \mid = \Box x \vee \neg (\Box x)^n$
 - for some natural number n

Corollary 3

- V \subseteq FLew, V is discriminator
 - = V is semisimple

$$= V |= x V \neg x^{n}$$

for some natural number n