Semisimplicity，EDPC and discriminator varieties of bounded commutative residuated lattices with S4－like modal operator

National Institute of Advanced Industrial
Science and Technology（AIST），
Research Center for Verification and
Semantics（CVS）
Hiroki TAKAMURA

Outline of my talk

－Substructural logics \＆Residuated lattices
－Substructural logics
－Residuated lattices
－Extensions：＋modality
Main result ：
$\mathrm{V} \subseteq \square \mathrm{BCRL}$ ，semisimple $=$ discriminator

Substructural logics

\＆

Residuated lattices

Substructural logics

－Substructural logics ： LJ（or LK）－structural rules，
（e：exchange，w：weakening，c：contraction） －rules
－linear logic，relevant logic，fuzzy logic

Basic substructural logic ：FL

No structural rules

$$
\begin{aligned}
& F L=L J-\{e, w, c\} \\
& \\
& \quad(C F L=L K-\{e, w, c\})
\end{aligned}
$$

$$
\Gamma, \mathrm{A}, \mathrm{~B} \vdash \mathrm{C} \quad \Gamma \vdash \mathrm{C}
$$

$$
\Gamma, \mathrm{A}, \mathrm{~A} \vdash \mathrm{C}
$$

$$
\Gamma, \mathrm{B}, \mathrm{~A} \vdash \mathrm{C} \quad \Gamma, \mathrm{~A} \vdash \mathrm{C}
$$

$$
\Gamma, \mathrm{A} \vdash \mathrm{C}
$$

Sequent system ：FL

$$
\mathrm{a} \vdash \mathrm{a}, \quad \vdash 1, \quad 0 \vdash
$$

$$
\begin{array}{cl}
\frac{\Gamma \vdash \mathrm{A} \triangle, \mathrm{~A}, \Sigma \vdash \mathrm{C}}{\triangle, \Gamma, \Sigma \vdash \mathrm{C}} & \frac{\Gamma \vdash}{\Gamma \vdash \mathrm{C}} \\
\frac{\Gamma \vdash \mathrm{~A} \triangle, \mathrm{~B}, \Sigma \vdash \mathrm{C}}{\Gamma, 1, \Delta \vdash \mathrm{C}} \\
\frac{\mathrm{~A}, \Gamma, \mathrm{C}, \mathrm{~A} \rightarrow \mathrm{~B}, \Sigma \vdash \mathrm{C}}{} & \frac{\Gamma, \Delta \vdash}{\Gamma \vdash \mathrm{C} \rightarrow \mathrm{C}} \\
\frac{\Gamma \vdash \mathrm{~A} \triangle, \mathrm{~B}, \Sigma \vdash \mathrm{C}}{\triangle, \mathrm{~B} \leftarrow \mathrm{~A}, \Gamma, \Sigma \vdash \mathrm{C}} & \\
\frac{\Gamma, \mathrm{~A} \vdash \mathrm{C}}{\Gamma \vdash \mathrm{C} \leftarrow \mathrm{~A}}
\end{array}
$$

Sequent system ：FL

$$
\frac{\Gamma, \mathrm{A}, \mathrm{~B}, \triangle \vdash \mathrm{C}}{\Gamma, \mathrm{~A} \otimes \mathrm{~B}, \triangle \vdash \mathrm{C}} \quad \frac{\Gamma \vdash \mathrm{~A} \triangle \vdash \mathrm{~B}}{\Gamma, \triangle \vdash \mathrm{~A} \otimes \mathrm{~B}}
$$

$$
\frac{\Gamma, A(B), \triangle \vdash C}{\Gamma, A \wedge B, \triangle \vdash C}
$$

$$
\frac{\Gamma \vdash \mathrm{A} \Gamma \vdash \mathrm{~B}}{\Gamma \vdash \mathrm{~A} \wedge \mathrm{~B}}
$$

$$
\frac{\Gamma, \mathrm{A}, \triangle \vdash \mathrm{C} \quad \Gamma, \mathrm{~B}, \triangle \vdash \mathrm{C}}{\Gamma, \mathrm{~A} \vee \mathrm{~B}, \triangle \vdash \mathrm{C}} \frac{\Gamma \vdash \mathrm{~A}(\mathrm{~B})}{\Gamma \vdash \mathrm{A}, \mathrm{~B}}
$$

Basic substructural logics

－FL，FLe，FLw，FLew，．．．
－ $\operatorname{FLew}=F L+\{e, w\}=L J-\{c\}$
Monoidal logic（Fuzzy logic）
－ $\operatorname{FLe}=$ ILL $-\{!, ?\}$

Basic results

－Cut elimination theorem ：
FL，FLe，FLw，FLew，FLec，FLecw（＝LJ）
（CFLe，CFLew，CFLec，CFLecw（＝LK））

Residuated lattices

－Definition ： $\mathrm{A}=(\mathrm{A}, \bullet, \rightarrow, \leftarrow, \wedge, \vee, 1)$
－（A，•，1）：monoid
－（A，$\wedge, \vee)$ ：lattice
$-x \cdot y \leqq z \Leftrightarrow x \leqq z \leftarrow y \Leftrightarrow y \leqq x \rightarrow z$
－Pointed residuated lattice＝FL－algebra
－A＝（A，•，$\rightarrow, \leftarrow, \wedge, \vee, 1,0)$
－ 0 ：arbitrary but fixed element of A

Basic facts

－The class of residuated lattices forms a variety ：RL
－Subvarieties ：
－FL，CRL，IRL，．．．
－Commutativity，integrality，increasing－idenpotency

Substructural logics \＆Residuated lattices

－Completeness theorem ：
Algebras for FLx is FLx－algebras
（ $x=e, w, e w, \ldots$ ）
－Lindenbaum construction ：
Frm $/ \sim A \sim B \equiv A \vdash B$ and $B \vdash A$

Algebra－Logic

－commutativity
\Leftrightarrow exchange
－integrality
\Leftrightarrow weakening
－increasing－idempotency \Leftrightarrow contraction
－FLe，FLw－，FLew－algebra，．．．
－FLe，FLw，FLew，．．．

Book

－Residuated Lattices：an algebraic glimpse at substructural logics，P．Jipsen，T． Kowalski，N．Galatos and H．Ono
－Residuated Lattices：an algebraic glimpse at logics without contraction，T． Kowalski and H．Ono（starting point for the book）

Extensions

－Substructural logics＋modalities
－What is natural modalities in substructural logics？
－H．Ono，Modalities in substructural logics，a preliminary report
－Algebras for modal substructural logics＝ Residuated lattices＋operators
（cf．BAO＇s）

$\square F L e(\square \mathrm{BCRL})$

－\square FLe＝FLe＋S4－like modality

$$
\square \Gamma \vdash \square \mathrm{A}
$$

$$
\frac{\mathrm{A}, \Gamma \vdash \mathrm{~B}}{\square \mathrm{~A}, \Gamma \vdash \mathrm{~B}}
$$

Cut elimination theorem holds for \square FLe

$\square F L e-a l g e b r a s ~(\square B C R L)$

－ $\mathrm{A}=(\mathrm{A}, \cdot \rightarrow, \wedge, \mathrm{V}, 1,0, \mathrm{~T}, \perp, \square)$
－（A，$\cdot, \rightarrow, \wedge, \vee, 1,0, T, \perp)$ ：FLe－algebra
－S4－like modality
$-1 \leqq \square 1$ ，
$-\square \mathrm{x} \cdot \square \mathrm{y} \leqq \square(\mathrm{x} \cdot \mathrm{y})$
$-\square x \leqq x$
$-\square x \leqq \square \square x$
$-x \leqq y \Rightarrow \square x \leqq \square y$

\square FLe \＆Modal FLe－algebras

－Completeness theorem ：
－Algebras for \square FLe is \square FLe－algebras

Congruence filter of \square FLe－algebra

－ F is a congruence filter ：
－ $1 \in \mathrm{~F}$
$-x, y \in F \Rightarrow x \wedge y \in F$
$-x, x \rightarrow y \in F \Rightarrow y \in F$
$-x \in F \Rightarrow \quad \square x \in F$
－$\langle S\rangle=\left\{x \in A: x \geq \square\left(s_{1} \wedge 1\right) \ldots \square\left(s_{k} \wedge 1\right), s_{i} \in S\right\}$

Algebra basics

－ V ：variety is semisimple
－All its algebras are semisimple
－A in \square BCRL，$x \in \operatorname{Rad}_{A} \Leftrightarrow \forall n \geq 1 \exists \mathrm{~m}$ s．t．，

$$
\left(\square \neg(\square(x \wedge 1))^{\mathrm{n}}\right)^{\mathrm{m}}=\perp, \neg \mathrm{x}=\mathrm{x} \rightarrow \perp
$$

－A is semisimple ：
$\forall x \in A$ ，not greater than $1, \exists \mathrm{n} \geq 1$ ，s．t．，

$$
\left.(\square \neg(\square x \wedge 1))^{\mathrm{n}}\right)^{\mathrm{m}} \neq \perp \text { for any } \mathrm{m}
$$

Algebra basics

－V：variety is discriminator
－The ternary discriominator is a term operation on every si algebra in \vee

$$
t(x, y, z)=x \quad \text { if } x=y
$$

z otherwise
－Algebra with discriminator term is simple

Algebra basics

－Discriminator variety \Rightarrow semisimple variety
－Discriminator variety $\mathrm{V} \Rightarrow \mathrm{V}$ has the CEP
－DPC（definable principle congruence）
－A first order formula Φ, a, b, c, d in A
$-(c, d)$ in $\Theta(a, b) \Leftrightarrow A \mid=\Phi(a, b, c, d)$
－EDPC（equational definable principle congruence）
－If Φ can be taken a finite set of equations

Facts

－ V is congruence－permutative \Rightarrow discriminator $=$ semisimple + EDPC

If semisimple \Rightarrow EDPC then discriminator $=$ semisimple

Some historical remarks

－Every free classical FLew－algebras is semisimple（Grishin）
－The variety of FLew－algebras is generated by its finite simple members （Kowalski \＆Ono）
－Every free FLw－algebras is semisimple
－The variety of $\square F L e w-a l g e b r a s ~ i s$ generated by its finite simple members

Some historical remarks

－ $\mathrm{V} \subseteq$ FLew， V is discriminator
$=\mathrm{V}$ is semisimple
$=\mathrm{V}$ satisfies that $\mathrm{x} \vee \neg\left(x^{n}\right)=1$

$$
x^{n}=x \cdot \ldots \cdot x, n \text {-times }
$$

（Kowalski2005）

Goal of my talk

－ $\mathrm{V} \subseteq \square \mathrm{BCRL}, \mathrm{V}$ is discriminator
$=\mathrm{V}$ is semisimple
$=V \mid=\square(x \wedge 1) V \neg(\square(x \wedge 1))^{n}$ for some natural number n

$\square \mathrm{E}(1, \mathrm{n}) \& \square \mathrm{EM}(1, \mathrm{n})$

－$\square \mathrm{E}(1, \mathrm{n})$ ：

$$
\left.(\square(x \wedge 1))^{n}=\square(x \wedge 1)\right)^{n+1}
$$

for any natural number n
－$\square E M(1, n)$ ：

$$
\square(x \wedge 1) \vee \neg(\square(x \wedge 1))^{n}=1
$$

for any natural number n

Proposition

－ $\mathrm{V} \subseteq \square$ BCRL， V has EDPC
＝ V has DPC
$=\mathrm{V} \subseteq \square \mathrm{E}(1, \mathrm{n})$
for some natural number n
$=\vee \mathrm{I}=(\square(x \wedge 1))^{\mathrm{n}}=(\square(\mathrm{x} \wedge 1))^{\mathrm{n}+1}$ for some natural number n

Set up congruence

－A in V st．$(\square(a \wedge 1))^{\mathrm{n}}>\perp$ ，a an element not greater than 1
－$\alpha=\operatorname{Cg}(a, 1)$ ；nonzero，nonfull，principal $\Rightarrow \exists \beta$ subcover
Lemma $\exists \mathrm{m}$ st．，
$(\square(a \wedge 1))^{m+1} \equiv \beta \quad(\square(a \wedge 1))^{m}$
$\neg(\square(\mathrm{a} \wedge 1))^{\mathrm{m}} \equiv \beta\left(\neg\left(\square(\mathrm{a} \wedge 1)^{\mathrm{m}}\right)^{2}\right.$ $(\square(a \wedge 1))^{m} \equiv \beta \neg \neg(\square(a \wedge 1))^{m}$

A necessary condition for semisimplicity

－ V is semisimple subvariety of \square BCRL，

$$
\begin{gathered}
\mathrm{V} \mid=\mathbf{I} ? \\
\mathbf{I} \equiv \square(\mathrm{x} \wedge 1) \geqq\left(\neg\left(\neg \square(\mathrm{x} \wedge 1)^{\mathrm{r}}\right)^{\mathrm{k}}\right)^{\prime}
\end{gathered}
$$

Suppose V falsifies $\mathbb{\|}$ ，Put $\Theta \equiv \vee \theta_{r}$ ，
$\theta r=C g\left(\neg\left(\neg \square(x \wedge 1)^{r}\right)^{K}, 1\right)$
K is the smallest number \vee falsifies II

Some lemmas

－ $0<\theta<\alpha$
－ V is semisimple subvariety of $\square \mathrm{BCRL}$ ，

$$
\mathrm{V} \mid=\mathrm{I} ? \mathrm{YES}!
$$

$$
\begin{aligned}
& V \mid=(\square x \wedge 1) \geqq\left(\neg\left(\neg \square(x \wedge 1)^{r}\right)^{k}\right)^{l} \\
& \quad \text { for any } k \text { there exist } r \text { \& } I
\end{aligned}
$$

Function r

－Suppose

$$
v \mid=(\square x \wedge 1) \geqq\left(\neg\left(\neg \square(x \wedge 1)^{r}\right)^{k}\right)^{l}
$$

－ $\mathrm{r}: \mathrm{N} \rightarrow \mathrm{N}$ ，
$r(i)$ the smallest number s．t．，$\exists \mid \in N$ with

$$
V \mid=(\square(x \wedge 1)) \geqq\left(\neg\left(\neg \square(x \wedge 1)^{r(i)}\right)^{i}\right)^{\prime}
$$

－Lemma：r is non－decreasing function

Semisimple forces $\square E M(1, n)$

－Lemma
$V \subseteq \square B C R L$ ，semisimple，
$V \mid=(\square(x \wedge 1))^{n+1}=(\square(x \wedge 1))^{n}$
for some natural number n

Main theorem

－ $\mathrm{V} \subseteq \square \mathrm{BCRL}, \mathrm{V}$ is discriminator $=\mathrm{V}$ is semisimple

$$
\begin{aligned}
&=V \mid=\square(x \wedge 1) \vee \neg \square(x \wedge 1)^{n} \\
& \text { for some natural number } n
\end{aligned}
$$

Corollary 1

－ $\mathrm{V} \subseteq \square \mathrm{FLe}, \mathrm{V}$ is discriminator $=\mathrm{V}$ is semisimple
$=\vee \mid=\square(x \wedge 1) \vee \neg \square(x \wedge 1)^{n}$ for some natural number n

Corollary 2

－ $\mathrm{V} \subseteq \square$ FLew， V is discriminator $=\mathrm{V}$ is semisimple

$$
=\vee \mid=\square x \vee \neg(\square x)^{n}
$$

for some natural number n

Corollary 3

－ $\mathrm{V} \subseteq$ FLew， V is discriminator $=\mathrm{V}$ is semisimple
$=V \mid=x \vee \neg x^{n}$ for some natural number n

