Minimal subvarieties of involutive residuated lattices

Daisuke Souma dsouma@jaist.ac.jp School of Information Sciences, Japan Advanced Institute of Science and Technology

Introduction

lattice of logics $\overset{dually \ isomorphic}{\leftrightarrow}$ subvariety lattice of algebras

Introduction

maximal consistent logics \leftrightarrow minimal subvarieties

Introduction

 ${\rm CL}$ is the only one maximal consistent logic over ${\rm FL}_{\rm ew}$

Minimal subvarieties of InRL

variety	minimal subvarieties
${\cal I}n{\cal RL}$	uncountably many (Tsinakis-Wille)
$\mathcal{I}n\mathcal{R}\mathcal{R}\mathcal{L}_{\perp} + (x^2 \le x)$?
$\mathcal{I}n\mathcal{R}\mathcal{R}\mathcal{L}_{\perp} + (x = x^2)$?

InRL: the class of all involutive residuated lattices $InRRL_{\perp}$: the class of all bounded representable involutive residuated lattices

Residuated lattices

An algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rangle, /, 1 \rangle$ is a residuated lattice (RL) if it satisfies the following conditions.

- (R1) $\langle A, \wedge, \vee, 1 \rangle$ is a lattice,
- (R2) $\langle A, \cdot, 1 \rangle$ is a monoid with the unit 1,
- (R3) for $x, y, z \in A$, $x \cdot y \leq z \Leftrightarrow y \leq x \setminus z \Leftrightarrow x \leq z/y$.

 \mathcal{RL} is the variety of all residuated lattices.

Involutive and Representable RL

- A RL A is bounded if it has the greatest element ⊤ and least element ⊥. (RL⊥)
- A RL A is representable if it can be represented as subdirect products of totally ordered algebras. (RRL)
- A RL A is involutive (InRL) if it has a fundamental unary operation ' called involution which satisfies the following conditions.(InRL)

1.
$$x'' = x$$
,

2.
$$x \setminus y' = x'/y$$
.

Strictly simple *RL*

A non-trivial RL A is strictly simple, if it has neither non-trivial proper subalgebras nor non-trivial congruences.

The bottom element $\bot \in \mathbf{A}$ is nearly term-definable, if there is an n-ary term-operation $t(\bar{x})$ such that for any n-tuple $\bar{a} \neq (\underbrace{1, \ldots, 1})$ of elements of A $t(\bar{a}) = \bot$ holds. *n*-times

A condition for a minimal subvariety

Lemma 1 Let A be a strictly simple RL with the nearly term definable bottom element \perp . Then, the variety V(A) generated by A is minimal.

Thus, it suffices to find such a RL A.

This construction is given by N. Galatos and J. G. Raftery

An upper-bounded RL A is given.

This construction is given by N. Galatos and J. G. Raftery

- A is an upper-bounded RL
- $A' = \{a' | a \in A\}$ is a disjoint copy of A, with the reverse order.

- This construction is given by N. Galatos and J. G. Raftery
 - **A** is an upper-bounded RL
 - $A' = \{a' | a \in A\}$ is a copy of A.
 - Take the union A^* of A and A'.
 - $\cdot a' < b$ and
 - $\cdot \ a' \le b' \leftrightarrow b \le a.$

This construction is given by N. Galatos and J. G. Raftery

- \checkmark A is an upper-bounded RL
- $A' = \{a' | a \in A\}$ is a copy of A.
- A^* is $A \cup A'$.
- Extend the monoid operation of A to A*.

$$\cdot \ a \cdot b' = (b/a)', b' \cdot a = (a \backslash b)'$$
 and

 $\cdot a' \cdot b' = \bot$.

This construction is given by N. Galatos and J. G. Raftery

- **A** is an upper-bounded RL
- $A' = \{a' | a \in A\}$ is a copy of A.
- A^* is $A \cup A'$.
- Extend the monoid operation.
- Extend the division operation of A to A*.

$$\cdot a \backslash b' = a'/b = (b \cdot a)',$$

$$\cdot b' \backslash a = a/b' = \top,$$

- $\cdot a' \backslash b' = a/b$,
- $\cdot b'/a' = b \backslash a.$

Facts

- The constructed algebra A* is a bounded InRL.
- If A is totally orderd then so is A^* .
- If A satisfies the mingle axiom $x^2 \le x$ then so does A^*

$\operatorname{RL} \mathbf{D}_{\mathbf{S}}$

Let D be the following bounded lattice

For each $S \subseteq \omega$, we define the monoid and division operations on D as follows.

Monoid operation of $\mathbf{D}_{\mathbf{S}}$

	I				1	1				
	a_1	a_2	a_3	•••	1	•••	b_2	b_1	b_0	
a_1	a_1	a_1	a_1	•••	a_1	•••	a_1	y_1	b_0	
a_2	a_1	a_2	a_2	•••	a_2	• • •	y_2	b_1	b_0	
a_3	a_1	a_2	a_3	•••	a_3	•••	b_2	b_1	b_0	$b_i \text{if } i \in S$
	÷	:	÷	·.	÷		÷	÷	÷	$a_i = a_i \text{if } i \notin S$
1	a_1	a_2	a_3	•••	1		b_2	b_1	b_0	
	:	:	:		-	•.	:	:	:	$\int b_j \text{if } i \notin S$
b_2	a_1	x_2	b_2	•••	b_2		b_2	b_1	b_0	$y_i = \begin{cases} a_i & \text{if } i \in S \end{cases}$
b_1	x_1	b_1	b_1	•••	b_1	•••	b_1	b_1	b_0	(°
b_0	b_0	b_0	b_0	•••	b_0		b_0	b_0	b_0	

Note that the operation $\cdot_{\rm S}$ is almost commutative.

Division operations of $D_{\rm S}$

Define two division operations by

$$x \setminus y = \bigvee \{ z | x \cdot_{\mathbf{S}} z \leq y \}$$

$$y/x = \bigvee \{ z | z \cdot_{\mathbf{S}} x \leq y \}$$

 $\mathbf{D}_{\mathbf{S}} = \langle \mathbf{D}, \wedge, \vee, \cdot_{\mathbf{S}}, \backslash, /, 1, \bot, \top \rangle$ is a bounded RL, where a_1 is the top and b_0 is the bottom element. Moreover $x \cdot_{\mathbf{S}} x = x$ holds for any $x \in \mathbf{D}$.

Constructing D_S^*

Constructing D_S^*

Uncountably many minimal subvarieties

Now we show that for any pair of distinct sets $S_1, S_2 \subseteq \omega$, $\mathbf{D}_{S_1}^*$ and $\mathbf{D}_{S_2}^*$ generate distinct varieties.

For any $a_i, b_i \in D$, we can find constant terms q_{a_i} and q_{b_i} such that

$$f(q_{a_i}) = a_i$$

$$f(q_{b_i}) = b_i$$

for any assignment f of D_{S}^{*} .

Suppose that $S_1 \neq S_2$. Without a loss of generality we can assume that $i \in S_1 \setminus S_2$ for some $i \in \omega$.

By the definition $b_i \cdot a_i = b_i$ but $b_i \cdot a_i = a_i$. Then,

•
$$\mathbf{D}_{\mathbf{S}_{1}}^{*} \models q_{b_{i}} \cdot q_{a_{i}} \approx q_{b_{i}}$$

• $\mathbf{D}_{\mathbf{S}_{2}}^{*} \models q_{b_{i}} \cdot q_{a_{i}} \approx q_{a_{i}} \text{ and } \mathbf{D}_{\mathbf{S}_{2}}^{*} \not\models q_{b_{i}} \cdot q_{a_{i}} \approx q_{b_{i}}$
Hence $V(\mathbf{D}_{\mathbf{S}_{1}}^{*}) \neq V(\mathbf{D}_{\mathbf{S}_{2}}^{*})$.

Theorem 3 There are uncountably many minimal subvarieties of $InRRL_{\perp} + (x^2 \le x)$.

Minimal subvarietites of InRL

variety	minimal subvarieties
${\cal I}n{\cal RL}$	uncountably many(Tsinakis-Wille)
$\mathcal{I}n\mathcal{R}\mathcal{R}\mathcal{L}_{\perp} + (x^2 \le x)$	uncountably many
$\mathcal{I}n\mathcal{R}\mathcal{R}\mathcal{L}_{\perp} + (x = x^2)$?

InRL with idempotent axiom

Let 2, 3 and 4 be the following bounded representable involutive residuated lattices with idempotent.

where the monoid operations are defined as follows.

Minimal subvarieties with $x = x^2$

Theorem 4 There exists only two minimal subvarieties of $InRRL_{\perp} + (x = x^2).$

Outline of the proof

- Every subdirect irreducible $A \in InRRL_{\perp} + (x = x^2)$ has a subalgebra which is isomorphic to one of 2, 3 and 4.
- \bullet 3 is a homomorphic image of 4.

Conclusion and future work

We have show that there are

- uncountably many minimal subvarieties in $\mathcal{I}n\mathcal{RRL}_{\perp} + (x^2 \leq x)$ (mingle)
- but only two in $\mathcal{I}n\mathcal{RRL}_{\perp} + (x = x^2)$ (idempotent)

How many minimal subvarieties are there in $\mathcal{I}n\mathcal{RRL}_{\perp} + (x \leq x^2)$ (contraction)?