Minimal subvarieties of involutive residuated lattices

Daisuke Souma
dsouma@jaist.ac.jp
School of Information Sciences, Japan Advanced Institute of Science and Technology

Introduction

lattice of logics $\stackrel{\text { dually }}{\stackrel{\text { isomorphic }}{ } \text { subvariety lattice of algebras }}$

Introduction

maximal consistent logics \leftrightarrow minimal subvarieties

Introduction

CL is the only one maximal consistent logic over $\mathrm{FL}_{\text {ew }}$

Minimal subvarieties of InRL

variety	minimal subvarieties
$\mathcal{I} n \mathcal{R} \mathcal{L}$	uncountably many (Tsinakis-Wille)
$\mathcal{I} n \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}+\left(x^{2} \leq x\right)$	$?$
$\mathcal{I} n \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}+\left(x=x^{2}\right)$	$?$

$\mathcal{I n} \mathcal{R} \mathcal{L}$: the class of all involutive residuated lattices $\mathcal{I} n \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}$: the class of all bounded representable involutive residuated lattices

Residuated lattices

An algebra $\mathbf{A}=\langle\mathrm{A}, \wedge, \vee, \cdot, \backslash, /, 1\rangle$ is a residuated lattice (RL) if it satisfies the following conditions.
(R1) $\langle\mathrm{A}, \wedge, \vee, 1\rangle$ is a lattice,
(R2) $\langle\mathrm{A}, \cdot, 1\rangle$ is a monoid with the unit 1 ,
(R3) for $x, y, z \in \mathrm{~A}, x \cdot y \leq z \Leftrightarrow y \leq x \backslash z \Leftrightarrow x \leq z / y$.
$\mathcal{R L}$ is the variety of all residuated lattices.

Involutive and Representable RL

- $\mathbf{A} R L \mathbf{A}$ is bounded if it has the greatest element T and least element \perp. $\left(\mathcal{R} \mathcal{L}_{\perp}\right)$
- A $R L \mathbf{A}$ is representable if it can be represented as subdirect products of totally ordered algebras. ($\mathcal{R} \mathcal{R} \mathcal{L}$)
- A $R L \mathbf{A}$ is involutive (InRL) if it has a fundamental unary operation ' called involution which satisfies the following conditions. (In $\mathcal{R L}$)

1. $x^{\prime \prime}=x$,
2. $x \backslash y^{\prime}=x^{\prime} / y$.

Strictly simple $R L$

A non-trivial $R L \mathbf{A}$ is strictly simple, if it has neither non-trivial proper subalgebras nor non-trivial congruences.

The bottom element $\perp \in \mathbf{A}$ is nearly term-definable, if there is an n -ary term-operation $t(\bar{x})$ such that for any n -tuple $\bar{a} \neq(\underbrace{1, \ldots, 1}_{n \text {-times }})$ of elements of $\mathrm{A} t(\bar{a})=\perp$ holds.

A condition for a minimal subvariety

Lemmma 1 Let A be a strictly simple RL with the nearly term definable bottom element \perp. Then, the variety $V(\mathbf{A})$ generated by \mathbf{A} is minimal.

Thus, it suffices to find such a $R L \mathbf{A}$.

A construction of InRL

This construction is given by N. Galatos and J. G. Raftery

- An upper-bounded RL A is given.

A construction of $\operatorname{In} R L$

This construction is given by N. Galatos and J. G. Raftery

- \mathbf{A} is an upper-bounded RL
- $\mathrm{A}^{\prime}=\left\{a^{\prime} \mid a \in \mathrm{~A}\right\}$ is a disjoint copy of A , with the reverse order.

A construction of InRL

This construction is given by N. Galatos and J. G. Raftery

- \mathbf{A} is an upper-bounded RL
- $\mathrm{A}^{\prime}=\left\{a^{\prime} \mid a \in \mathrm{~A}\right\}$ is a copy of A .
- Take the union A^{*} of A and A^{\prime}.
- $a^{\prime}<b$ and
- $a^{\prime} \leq b^{\prime} \leftrightarrow b \leq a$.

A construction of InRL

This construction is given by N. Galatos and J. G. Raftery

- \mathbf{A} is an upper-bounded RL
- $\mathrm{A}^{\prime}=\left\{a^{\prime} \mid a \in \mathrm{~A}\right\}$ is a copy of A .
- A^{*} is $\mathrm{A} \cup \mathrm{A}^{\prime}$.
- Extend the monoid operation of \mathbf{A} to A^{*}.
- $a \cdot b^{\prime}=(b / a)^{\prime}, b^{\prime} \cdot a=(a \backslash b)^{\prime}$ and
- $a^{\prime} \cdot b^{\prime}=\perp$.

A construction of $\operatorname{In} R L$

This construction is given by N. Galatos and J. G. Raftery

- \mathbf{A} is an upper-bounded RL
- $\mathrm{A}^{\prime}=\left\{a^{\prime} \mid a \in \mathrm{~A}\right\}$ is a copy of A .
- A^{*} is $\mathrm{A} \cup \mathrm{A}^{\prime}$.
- Extend the monoid operation.
- Extend the division operation of A to A^{*}.
- $a \backslash b^{\prime}=a^{\prime} / b=(b \cdot a)^{\prime}$,
- $b^{\prime} \backslash a=a / b^{\prime}=\top$,
- $a^{\prime} \backslash b^{\prime}=a / b$,
- $b^{\prime} / a^{\prime}=b \backslash a$.

A construction of $\operatorname{In} R L$

Facts

- The constructed algebra A^{*} is a bounded InRL.
- If \mathbf{A} is totally orderd then so is \mathbf{A}^{*}.
- If A satisfies the mingle axiom $x^{2} \leq x$ then so does A^{*}

$R L D_{S}$

Let D be the following bounded lattice

For each $S \subseteq \omega$, we define the monoid and division operations on D as follows.

Monoid operation of D_{S}

	a_{1}	a_{2}	a_{3}	\cdots	1	\cdots	b_{2}	b_{1}	b_{0}
a_{1}	a_{1}	a_{1}	a_{1}	\ldots	a_{1}	\ldots	a_{1}	y_{1}	b_{0}
a_{2}	a_{1}	a_{2}	a_{2}	\ldots	a_{2}	\cdots	y_{2}	b_{1}	b_{0}
a_{3}	a_{1}	a_{2}	a_{3}	\ldots	a_{3}	\cdots	b_{2}	b_{1}	b_{0}
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots		\vdots	\vdots	\vdots
1	a_{1}	a_{2}	a_{3}	\cdots	1	\cdots	b_{2}	b_{1}	b_{0}
\vdots	\vdots	\vdots	\vdots		\vdots	\ddots	\vdots	\vdots	\vdots
b_{2}	a_{1}	x_{2}	b_{2}	\cdots	b_{2}	\cdots	b_{2}	b_{1}	b_{0}
b_{1}	x_{1}	b_{1}	b_{1}	\cdots	b_{1}	\cdots	b_{1}	b_{1}	b_{0}
b_{0}	b_{0}	b_{0}	b_{0}	\cdots	b_{0}	\cdots	b_{0}	b_{0}	b_{0}

$$
\begin{aligned}
& x_{i}= \begin{cases}b_{i} & \text { if } i \in S \\
a_{i} & \text { if } i \notin S\end{cases} \\
& y_{i}= \begin{cases}b_{j} & \text { if } i \notin S \\
a_{i} & \text { if } i \in S\end{cases}
\end{aligned}
$$

Note that the operation $\cdot \mathrm{s}$ is almost commutative.

Division operations of D_{S}

Define two division operations by

$$
\begin{aligned}
& x \backslash y=\bigvee\{z \mid x \cdot \mathrm{~s} z \leq y\} \\
& y / x=\bigvee\{z \mid z \cdot \mathrm{~S} x \leq y\}
\end{aligned}
$$

$\mathrm{D}_{\mathbf{S}}=\langle\mathrm{D}, \wedge, \vee, \cdot \mathrm{s}, \backslash, /, 1, \perp, T\rangle$ is a bounded RL, where a_{1} is the top and b_{0} is the bottom element. Moreover $x \cdot \mathrm{~S} x=x$ holds for any $x \in \mathrm{D}$.

Constructing $\mathrm{D}_{\mathrm{S}}^{*}$

Let $\mathrm{D}_{\mathrm{S}}^{*}$ be the bounded representable InRL obtained from $\mathrm{D}_{\mathbf{S}}$ by the GalatosRaftery construction.

Then the $\mathrm{D}_{\mathrm{S}}^{*}$ satisfies mingle axiom.
Note that $x \cdot \mathrm{~s} x=\perp \leq x$ for $x \in \mathrm{D}^{\prime}$.

Constructing $\mathrm{D}_{\mathrm{S}}^{*}$

Moreover we can show that

- $\mathrm{D}_{\mathrm{S}}^{*}$ is strictly simple,
- $\mathrm{D}_{\mathrm{S}}^{*}$ has nearly term-definable bottom element.

Lemma 2 For each $S \subseteq \omega, \mathbf{D}_{\mathbf{S}}^{*}$ is a minimal subvariety in $\operatorname{In} \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}+\left(x^{2} \leq x\right)$

Uncountably many minimal subvarieties

Now we show that for any pair of distinct sets $S_{1}, S_{2} \subseteq \omega$, $\mathrm{D}_{\mathrm{S}_{1}}^{*}$ and $\mathrm{D}_{\mathrm{S}_{2}}^{*}$ generate distinct varieties.
For any $a_{i}, b_{i} \in \mathrm{D}$, we can find constant terms $q_{a_{i}}$ and $q_{b_{i}}$ such that

- $f\left(q_{a_{i}}\right)=a_{i}$
- $f\left(q_{b_{i}}\right)=b_{i}$
for any assignment f of $\mathrm{D}_{\mathbf{S}}^{*}$.

Suppose that $\mathrm{S}_{1} \neq \mathrm{S}_{2}$. Without a loss of generality we can assume that $i \in S_{1} \backslash S_{2}$ for some $i \in \omega$.
By the definition $b_{i} \cdot 1 a_{i}=b_{i}$ but $b_{i} \cdot 2 a_{i}=a_{i}$. Then,

- $\mathbf{D}_{\mathbf{S}_{1}}^{*} \models q_{b_{i}} \cdot q_{a_{i}} \approx q_{b_{i}}$.
- $\mathbf{D}_{\mathbf{S}_{2}}^{*} \models q_{b_{i}} \cdot q_{a_{i}} \approx q_{a_{i}}$ and $\mathbf{D}_{\mathbf{S}_{2}}^{*} \not \models q_{b_{i}} \cdot q_{a_{i}} \approx q_{b_{i}}$.

Hence $V\left(\mathbf{D}_{\mathbf{S}_{1}}^{*}\right) \neq V\left(\mathbf{D}_{\mathbf{S}_{2}}^{*}\right)$.

Theorem 3 There are uncountably many minimal subvarieties of $\mathcal{I n}^{\boldsymbol{R} \mathcal{R}} \mathcal{L}_{\perp}+\left(x^{2} \leq x\right)$.

Minimal subvarietites of InRL

variety	minimal subvarieties
$\mathcal{I} n \mathcal{R} \mathcal{L}$	uncountably many(Tsinakis-Wille)
$\mathcal{I} n \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}+\left(x^{2} \leq x\right)$	uncountably many
$\mathcal{I} n \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}+\left(x=x^{2}\right)$	$?$

In $R L$ with idempotent axiom

Let 2, 3 and 4 be the following bounded representable involutive residuated lattices with idempotent.

2
3
4
where the monoid operations are defined as follows.

Minimal subvarieties with $x=x^{2}$

Theorem 4 There exists only two minimal subvarieties of $\mathcal{I}_{n} \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}+\left(x=x^{2}\right)$.

Outline of the proof

- Every subdirect irreducible $\mathbf{A} \in \operatorname{In} \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}+\left(x=x^{2}\right)$ has a subalgebra which is isomorphic to one of 2,3 and 4.
- 3 is a homomorphic image of 4 .

Conclusion and future work

We have show that there are

- uncountably many minimal subvarieties in

$$
\mathcal{I} n \mathcal{R} \mathcal{R}^{\perp}+\left(x^{2} \leq x\right) \text { (mingle) }
$$

- but only two in $\operatorname{In} \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}+\left(x=x^{2}\right)$ (idempotent)

How many minimal subvarieties are there in
$\operatorname{In} \mathcal{R} \mathcal{R} \mathcal{L}_{\perp}+\left(x \leq x^{2}\right)$ (contraction)?

