Modal operators on bounded residuated *l*-monoids

Dana Šalounová

VŠB–Technical University of Ostrava Czech Republic

TANCL '07

August 2007, Oxford, UK

An algebra $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ of type $\langle 2, 2, 2, 2, 2, 2, 0, 0 \rangle$

- $(M; \odot, 1)$ is a monoid;
- $(M; \lor, \land, 0, 1)$ is a bounded lattice;

$$\bullet \quad x \odot y \leq z \text{ iff } x \leq y \to z \text{ iff } y \leq x \rightsquigarrow z;$$

•
$$(x \to y) \odot x = x \land y = y \odot (y \rightsquigarrow x).$$

Additional operations:

$$x^{-} := x \to 0$$
$$x^{\sim} := x \rightsquigarrow 0$$

Examples of $R\ell$ -monoids.

An $R\ell$ -monoid M is

- a) a pseudo *BL*-algebra iff $(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x);$
- b) a *GMV*-algebra (pseudo *MV*-algebra) iff $x^{-\sim} = x = x^{\sim -}$;
- c) a Heyting algebra iff " \odot " = " \land ".

References.

[1] Macnab, D. S. (1981)

Modal operators on Heyting algebras. Alg. Univ. 12.

[2] Harlenderová, M., Rachůnek, J. (2006)

Modal operators on MV-algebras. Math. Bohemica **131**.

[3] Rachůnek, J., Šalounová, D.

Modal operators on bounded commutative residuated ℓ -monoids. Math. Slovaca (to appear).

Modal operators. Definition.

Let M be an $R\ell$ -monoid. A mapping $f : M \longrightarrow M$ is called a *modal operator* on M if, for any $x, y \in M$,

- $x \leq f(x);$
- f(f(x)) = f(x);
- $f(x \odot y) = f(x) \odot f(y).$

Proposition 1.

If f is a modal operator on an $R\ell$ -monoid $M, x, y \in M$, then

(1)
$$x \leq y \implies f(x) \leq f(y);$$

(2)
$$f(x \to y) \leq f(x) \to f(y) = f(f(x) \to f(y)) =$$
$$= x \to f(y) = f(x \to f(y)),$$
$$f(x \rightsquigarrow y) \leq f(x) \rightsquigarrow f(y) = f(f(x) \rightsquigarrow f(y)) =$$
$$= x \rightsquigarrow f(y) = f(x \rightsquigarrow f(y));$$

(3)
$$f(x) \leq (x \rightarrow f(0)) \rightsquigarrow f(0),$$

 $f(x) \leq (x \rightsquigarrow f(0)) \rightarrow f(0),$

(4)
$$x^- \odot f(x) \leq f(0),$$

 $f(x) \odot x^\sim \leq f(0);$

(5) $f(x \lor y) \leq f(x \lor f(y)) = f(f(x) \lor f(y)).$

Theorem 2.

Let M be an $R\ell$ -monoid and $f : M \longrightarrow M$ be a mapping. Then f is a modal operator on M if and only if for any $x, y \in M$ it is satisfied:

(a)
$$x \to f(y) = f(x) \to f(y);$$

(b)
$$x \rightsquigarrow f(y) = f(x) \rightsquigarrow f(y);$$

(c)
$$f(x) \odot f(y) \ge f(x \odot y)$$
.

Modal operators – the example.

For an
$$R\ell$$
-monoid M :
 $I(M) = \{a \in M : a \odot a = a\},\$
 $a \odot x = a \land x, a \in I(M), x \in M.$
 $\psi_a^1 : M \longrightarrow M, \quad \psi_a^1(x) := a \rightarrow x$
 $\psi_a^2 : M \longrightarrow M, \quad \psi_a^2(x) := a \rightsquigarrow x$

Proposition 3.

For
$$a \in I(M)$$
 and $x, y \in M$,
 $x \to \psi_a^1(y) = \psi_a^1(x) \to \psi_a^1(y),$
 $x \rightsquigarrow \psi_a^2(y) = \psi_a^2(x) \rightsquigarrow \psi_a^2(y).$

Corollary 4.

Let M be an $R\ell$ -monoid and $a \in I(M)$. Then ψ_a^1 is a modal operator on M if and only if for any $x, y \in M$

$$x \rightsquigarrow \psi_a^1(y) = \psi_a^1(x) \rightsquigarrow \psi_a^1(y),$$

$$\psi_a^1(x) \odot \psi_a^1(y) \ge \psi_a^1(x \odot y).$$

The set of fixed elements.

For an $R\ell$ -monoid M and a modal operator f:

$$Fix(f) = \{x \in M : f(x) = x\},\$$
$$Fix(f) = Im(f).$$

(Fix(f); \lor_F , \land), where $x \lor_F y = f(x \lor y)$, is a lattice.

Theorem 5.

If f is a modal operator on an $R\ell$ -monoid M then Fix(f)is closed under the operations " \odot ", " \rightarrow " and " \rightsquigarrow ", and $Fix(f) = (Fix(f); \odot, \lor_F, \land, \rightarrow, \rightsquigarrow, f(0), 1)$ is an $R\ell$ -monoid.

Good *Rl*-monoids.

An $R\ell$ -monoid is called *good* if it satisfies

$$x^{-\sim} = x^{\sim -}.$$

For a good $R\ell$ -monoid:

$$(x^- \odot y^-)^{\sim} = (x^{\sim} \odot y^{\sim})^-.$$

Define the binary operation " \oplus ": $x \oplus y := (y^- \odot x^-)^{\sim}$.

Properties:

• $(x \oplus y)^{-\sim} = x^{-\sim} \oplus y^{-\sim} = x^{-\sim} \oplus y = x \oplus y^{-\sim} = x \oplus y;$

•
$$x \oplus y = (y^{\sim} \odot x^{\sim})^{-};$$

•
$$x \oplus (y \oplus z) = (x \oplus y) \oplus z;$$

- $x, y \leq x \oplus y;$
- $x \oplus 0 = x^{-\sim} = 0 \oplus x;$
- $x \oplus 1 = 1 = 1 \oplus x;$
- $x \oplus y = x^- \rightsquigarrow y^{-\sim} = y^{\sim} \to x^{-\sim}.$

Modal operators. Definition.

Let M be an $R\ell$ -monoid. A mapping $f : M \longrightarrow M$ is called a *modal operator* on M if, for any $x, y \in M$,

- $x \leq f(x);$
- f(f(x)) = f(x);
- $f(x \odot y) = f(x) \odot f(y).$

Strong modal operators. Definition.

Let *M* be a good $R\ell$ -monoid. A mapping $f : M \longrightarrow M$ is called a *strong modal operator* on *M* if, for any $x, y \in M$,

• $x \leq f(x);$

•
$$f(f(x)) = f(x);$$

•
$$f(x \odot y) = f(x) \odot f(y);$$

• $f(x \oplus y) = f(x \oplus f(y)) = f(f(x) \oplus y).$

Properties:

(6)
$$f(x \oplus y) = f(f(x) \oplus f(y));$$

(7)
$$x \oplus f(0) = f(x^{-\sim}) = f(0) \oplus x.$$

Strong modal operators – examples.

An $R\ell$ -monoid M is called *normal* if M satisfies $(x \odot y)^{-\sim} = x^{-\sim} \odot y^{-\sim},$ $(x \odot y)^{\sim-} = x^{\sim-} \odot y^{\sim-}.$

For a normal $R\ell$ -monoid M:

$$a \in I(M) \implies a^{-\sim} \in I(M).$$

$$\varphi_a: M \longrightarrow M, \quad \varphi_a(x) = a \oplus x$$

Theorem 6.

If M is a good normal $R\ell$ -monoid and $a \in M$ then φ_a is a strong modal operator on M if and only if $a^-, a^{-\sim} \in I(M)$.

Theorem 7.

Let M be a good normal $R\ell$ -monoid and f be a modal operator on M such that $f(x) = f(x^{-\sim})$ for all $x \in M$. Then f is strong if and only if $f = \varphi_{f(0)}$ and $f(0)^{-} \in I(M)$.

On intervals of $R\ell$ -monoids.

For an $R\ell$ -monoid M and $a \in I(M)$: $I(a) := [0, a] = \{x \in M : 0 \le x \le a\}.$ Set, for any $x, y \in I(a)$: $x \odot_a y = x \odot y, x \rightarrow_a y := (x \rightarrow y) \land a, x \rightsquigarrow_a y := (x \rightsquigarrow y) \land a.$

Theorem 8. $I(a) = (I(a); \odot_a, \lor, \land, \rightarrow_a, \rightsquigarrow_a, 0, a)$ is an $R\ell$ -monoid.

Proposition 9.

a) If M is an $R\ell$ -monoid, $a \in I(M)$ and $x \in I(a)$, then $x^{-a} = x^{-} \wedge a, \quad x^{\sim a} = x^{\sim} \wedge a.$

b) Moreover, if M is good and satisfying the identities $(v \wedge w)^- = v^- \lor w^-, (v \wedge w)^- = v^- \lor w^-,$ (*) then the $R\ell$ -monoid I(a) is good, too, and

$$x\oplus_a y = (x\oplus y) \wedge a.$$

Modal operators on intervals.

For an $R\ell$ -monoid M, $a \in I(M)$ and modal operator f on M:

 $f^a : I(a) \longrightarrow I(a), \quad f^a(x) = f(x) \wedge a \ (= f(x) \odot a)$

Theorem 10.

a) Let M be an $R\ell$ -monoid, $a \in I(M)$ and f be a modal operator on M. Then f^a is a modal operator on the $R\ell$ -monoid I(a).

b) If M is good and it satisfies the identities (*), and f is strong, then f^a is also a strong modal operator on I(a).