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• What is lambda calculus?

– A theory of functions

– The name of a function contains a description of the function as a
program

– Untyped world: every element in lambda calculus is contemporane-
ously

∗ Function

∗ A possible argument for a function

∗ A possible result of the application of a function to an argument

– No Partiality: every function can be applied to any other function
including itself



Lambda terms

• λ-notation:
Expression: a + 2 Function: f(a) = a + 2 λa(a + 2)

• Algebraic similarity type Σ:
– Nullary operators: a, b, c, · · · ∈ A (formal parameters)
– Binary operator: • (application)
– Unary operators: λa (a ∈ A) (λ-abstractions)

• A λ-term is a ground Σ-term (no algebraic variable x, y, z, . . . )

λa(a) YES λa(x) NO

– a = generic function

– M ·N = function M applied to argument N

– λa(M) = function of a whose body is expression M



How to compute (informally)

• Bound and free parameters: λa(a · b)

• α-conversion: λa(a·b) = λc(c·b)
The name of a bound parameter does not matter

• β-conversion: λa(a) · b = b

λa(aa) · λa(aa) = λa(aa) · λa(aa) = . . .



The classic λ-calculus

• The λ-term algebra is the absolutely free Σ-algebra over an empty set of
generators:

Λ = (Λ, ·, λa, a)a∈A

The object of study of λ-calculus is any congruence on Λ (called λ-theory)
including α- and β-conversion:

– β-conversion:

λa(M) ·N = M [N/a]

M [N/a] is a “meta-operation” defined by induction over M .

– α-conversion:

λa(M) = λb(M [b/a]) (b not free in M)

• The lattice of λ-theories ≡ The congruence lattice of Λ/λβ
(λβ is the least congruence on Λ including α- and β-conversion)



Is the untyped λ-calculus algebraic? YES

• CA combinatory algebras (Curry-Schönfinkel)

• LAA lambda abstraction algebras (Pigozzi-S. 1993)

Theorem 1 (S. 2000)

1. Variety(Λ/λβ) = LAA.

2. Lattice of λ-theories = Lattice of eq. theories of LAAs.
λ-theory T ⇔ variety generated by the term algebra of T .

Are CAs and LAAs good algebras?

The properties of a variety V of algebras are usually studied through the
lattice identities satisfied by the congruence lattices of all algebras in V



Some negative algebraic results

Theorem 2 (Lusin-S. 2004) Every nontrivial lattice identity fails in the con-
gruence lattice of a suitable LAA (CA).

Conclusion: We cannot apply thirty years of Universal Algebra to LAA (CA)!

Lambda calculus was introduced around 1930 by Alonzo Church as part of
a foundational formalism of mathematics and logic based on functions as
primitive. After some years this formalism was shown inconsistent. Why?

Theorem 3 Classic logic is inconsistent with combinatory logic.

Proof: The variety of Boolean algebras is congruence permutable. Plotkin
and Simpson have shown that the Malcev conditions for congruence per-
mutability are inconsistent with combinatory logic.

Theorem 4 The implication fragment of classic logic is inconsistent with
combinatory logic.

Proof: An implication algebra is 3-permutable. Plotkin and Selinger have
shown that the Malcev conditions for congruence 3-permutability are incon-
sistent with combinatory logic.

We should be pessimistic!



Boolean algebras for λ-calculus

• Let A be any algebra. There exists a bijective correspondence between:

– Pairs (ρ, ρ′) of complementary factor congruences: ρ∩ρ′ = ∆; ρ◦ρ′ =∇

– Factorizations A = A/ρ×A/ρ′.

– Decomposition operations f : A×A → A defined by

f(x, y) = u iff xρuρ′y.

• Let t ≡ λa(λb(a)) and f ≡ λa(λb(b)).

(tx)y = x; (fx)y = y.

(The least reflexive compatible relation on the term algebra Λ/λβ includ-
ing t = f is trivial)

• We have for a pair (ρ, ρ′) of complementary factor congruences:

tρeρ′f ⇒ (tx)y ρ (ex)y ρ′ (fx)y ⇒ xρ (ex)y ρ′y.

f(x, y) = (ex)y



The Boolean algebra of central elements

Definition 1 Let A be an LAA (CA). We say an element e ∈ A is central
when it satisfies the following equations, for all x, y, z, v ∈ A:

(i) (ex)x = x.

(ii) (e((ex)y))z = (ex)z = (ex)((ey)z).

(iii) (e(xy))(zv) = ((ex)z)((ey)v).

(iv) e = (et)f .

• e is central ⇔ A = A/θ(t, e)×A/θ(f , e)

• A is directly indecomposable iff t, f are the unique central elements.

Theorem 5 Let A be an LAA (CA). Then the algebra (C(A),∧,− ) of central
elements of A, defined by

e ∧ d = (et)d; e− = (ef)t,

is a Boolean algebra.

Proof: LAAs have skew factor congruences ⇒ Factor congruences are a
Boolean sublattice of Con(A).



The Stone representation theorem

Theorem 6 Let A be an LAA (or a CA) and I be the Boolean space of
maximal ideals of the Boolean algebra of central elements. Then the map

f : A → Πi∈I(A/ ∪ i),

defined by

f(x) = (x/ ∪ i : i ∈ I),

gives a weak Boolean product representation of A, where the quotient alge-
bras A/ ∪ i are directly indecomposable.

Proof: From a theorem by Vaggione.



Central elements at work

The directly indecomposable LAAs (CAs) (there exist a lot of them!) are the building blocks
of LAA (CA).

How to use central elements and directly indecomposable LAAs (CAs) to get results on
lambda calculus?

• Church (around 1930): Lambda calculus

• Scott (1969): First model

• Meyer-Scott (around 1980): There exists a first-order axiomatization of what is a model
of λ-calculus as a particular class of CAs.

D model ⇒ Th(D) = {M = N : M and N have the same interpretation}

• Scott Semantics and its refinements (1969-2007) A Scott topological space D and two
Scott continuous maps

i : D → [D → D]; j : [D → D] → D; i◦j = id[D→D]

• A semantics C of lambda calculus is incomplete if there exists a consistent λ-theory T
s.t.

T 6= Th(D), for all models D ∈ C.



Central elements at work

Theorem 7 The semantics of lambda calculus given in terms of directly
indecomposable models (this includes Scott Semantics and its refinements)
is incomplete.

Proof:

1. CAdi’s is a universal class ⇒ CAdi is closed under subalgebras ⇒ the
directly decomposable CAs are closed under expansion.

2. The lambda theory T generated by λa(aa) · λa(aa) = t is consistent.

3. The lambda theory S generated by λa(aa) · λa(aa) = f is consistent.

4. λa(aa) · λa(aa) is a nontrivial central element in the term model of T ∩ S

5. All the models of T ∩ S are directly decomposable.



Central elements at work

Theorem 8 For every r.e. lambda theory T , the lattice interval [T ) = {S :
T ⊆ T} contains a continuum of “decomposable” lambda theories.

Theorem 9 The set of lambda theories representable in EACH of the fol-
lowing semantics is not closed under finite intersection, so that it does not
constitute a sublattice of the lattice of lambda theories:

• Graph models

• Filter models

• Continuous models

• Stable models.



Finite Boolean Sublattices

λβ

1 = inconsistent theory

Non semisensible theories

Semisensible theories

Coa toms
T S

T ∩ S

T coatom containing  Ω = λxy.x

S coatom containing  Ω = λxy.y 

Ω is nontrivial central in T ∩ S

The interval [T ∩ S) = {T ∩ S, T, S, 1}



The lattice λT of λ-theories

Conjecture: Every nontrivial lattice identity fails in λT

• (S. 2000) λT is isomorphic to the lattice of equational theories of LAA’s.

• (Lampe 1986) λT satisfies the Zipper condition:

∨{b : a ∧ b = c} = 1 ⇒ a = c.

• (S. 2001) λT is not modular.

• (Berline-S. 2006) (∃ λ-theory T ) the interval [T,∇] is distributive.

• (Statman 2001) The meet of all coatoms is 6= λβ.

• (Visser 1980)

– Every countable poset embeds into λT by an order-preserving map.

– Every interval [T, S] with T, S r.e. has a continuum of elements.



• (S. 2006) (∀n)(∃Tn) such that the interval sublattice [Tn,∇] is isomorphic
to the finite Boolean lattice with 2n elements.

• (Diercks-Erné-Reinhold 1994) There exists no λ-theory T such that the
interval sublattice [T,∇] is isomorphic to an infinite Boolean lattice.


