Boolean Algebras and Lambda Calculus

Antonino Salibra

University of Venice Via Torino 54, Venice, Italy

- What is lambda calculus?
 - A theory of functions
 - The name of a function contains a description of the function as a program
 - Untyped world: every element in lambda calculus is contemporaneously
 - * Function
 - * A possible argument for a function
 - * A possible result of the application of a function to an argument
 - No Partiality: every function can be applied to any other function including itself

Lambda terms

- λ -notation: Expression: a + 2 Function: f(a) = a + 2 $\lambda_a(a + 2)$
- Algebraic similarity type Σ :
 - Nullary operators: $a, b, c, \dots \in A$ (formal parameters)
 - Binary operator:
 - Unary operators: λ_a $(a \in A)$

(formal parameters) (application) (λ -abstractions)

• A λ -term is a ground Σ -term (no algebraic variable x, y, z, ...)

 $\lambda_a(a)$ YES $\lambda_a(x)$ NO

- -a = generic function
- $M \cdot N$ = function M applied to argument N
- $-\lambda_a(M) =$ function of a whose body is expression M

How to compute (informally)

- Bound and free parameters: $\lambda_a(a \cdot b)$
- α -conversion: $\lambda_a(a \cdot b) = \lambda_c(c \cdot b)$ The name of a bound parameter does not matter
- β -conversion: $\lambda_a(a) \cdot b = b$

$$\lambda_a(aa) \cdot \lambda_a(aa) = \lambda_a(aa) \cdot \lambda_a(aa) = \dots$$

The classic λ -calculus

• The λ -term algebra is the absolutely free Σ -algebra over an empty set of generators:

$$\Lambda = (\Lambda, \cdot, \lambda_a, a)_{a \in A}$$

The object of study of λ -calculus is any congruence on Λ (called λ -theory) including α - and β -conversion:

– β -conversion:

$$\lambda_a(M) \cdot \mathbf{N} = M[\mathbf{N}/a]$$

M[N/a] is a "meta-operation" defined by induction over M.

–
$$\alpha$$
-conversion:

$$\lambda_a(M) = \lambda_b(M[b/a])$$
 (b not free in M)

• The lattice of λ -theories \equiv The congruence lattice of $\Lambda/\lambda\beta$ ($\lambda\beta$ is the least congruence on Λ including α - and β -conversion)

Is the untyped λ -calculus algebraic? YES

- CA combinatory algebras (Curry-Schönfinkel)
- LAA lambda abstraction algebras (Pigozzi-S. 1993)

Theorem 1 (S. 2000)

- 1. Variety $(\Lambda/\lambda\beta) = LAA$.
- 2. Lattice of λ -theories = Lattice of eq. theories of LAAs. λ -theory $T \Leftrightarrow$ variety generated by the term algebra of T.

Are CAs and LAAs good algebras?

The properties of a variety ${\cal V}$ of algebras are usually studied through the lattice identities satisfied by the congruence lattices of all algebras in ${\cal V}$

Some negative algebraic results

Theorem 2 (Lusin-S. 2004) Every nontrivial lattice identity fails in the congruence lattice of a suitable LAA (CA).

Conclusion: We cannot apply thirty years of Universal Algebra to LAA (CA)!

Lambda calculus was introduced around 1930 by Alonzo Church as part of a foundational formalism of mathematics and logic based on functions as primitive. After some years this formalism was shown inconsistent. Why?

Theorem 3 Classic logic is inconsistent with combinatory logic.

Proof: The variety of Boolean algebras is congruence permutable. Plotkin and Simpson have shown that the Malcev conditions for congruence permutability are inconsistent with combinatory logic.

Theorem 4 The implication fragment of classic logic is inconsistent with combinatory logic.

Proof: An implication algebra is 3-permutable. Plotkin and Selinger have shown that the Malcev conditions for congruence 3-permutability are inconsistent with combinatory logic.

We should be pessimistic!

Boolean algebras for λ -calculus

- Let A be any algebra. There exists a bijective correspondence between:
 - Pairs (ρ, ρ') of complementary factor congruences: $\rho \cap \rho' = \Delta$; $\rho \circ \rho' = \nabla$
 - Factorizations $\mathbf{A} = \mathbf{A}/\rho \times \mathbf{A}/\rho'$.
 - Decomposition operations $f: A \times A \rightarrow A$ defined by

$$f(x,y) = u$$
 iff $x \rho u \rho' y$.

• Let $\mathbf{t} \equiv \lambda_a(\lambda_b(a))$ and $\mathbf{f} \equiv \lambda_a(\lambda_b(b))$.

$$(\mathbf{t}x)y = x;$$
 $(\mathbf{f}x)y = y.$

(The least reflexive compatible relation on the term algebra $\Lambda/\lambda\beta$ including t=f is trivial)

• We have for a pair (ρ, ρ') of complementary factor congruences:

$$t\rho e\rho' f \Rightarrow (tx)y
ho (ex)y
ho' (fx)y \Rightarrow x
ho (ex)y
ho'y.$$

 $f(x,y) = (ex)y$

The Boolean algebra of central elements

Definition 1 Let A be an LAA (CA). We say an element $e \in A$ is central when it satisfies the following equations, for all $x, y, z, v \in A$:

- (i) (ex)x = x. (ii) (e((ex)y))z = (ex)z = (ex)((ey)z). (iii) (e(xy))(zv) = ((ex)z)((ey)v). (iv) e = (et)f.
 - e is central $\Leftrightarrow \mathbf{A} = \mathbf{A}/\theta(\mathbf{t}, e) \times \mathbf{A}/\theta(\mathbf{f}, e)$
 - A is directly indecomposable iff \mathbf{t}, \mathbf{f} are the unique central elements.

Theorem 5 Let A be an LAA (CA). Then the algebra $(C(A), \wedge, \bar{})$ of central elements of A, defined by

$$e \wedge d = (e\mathbf{t})d; \quad e^- = (e\mathbf{f})\mathbf{t},$$

is a Boolean algebra.

Proof: LAAs have skew factor congruences \Rightarrow Factor congruences are a Boolean sublattice of Con(A).

The Stone representation theorem

Theorem 6 Let A be an LAA (or a CA) and I be the Boolean space of maximal ideals of the Boolean algebra of central elements. Then the map

$$f: A \to \prod_{i \in I} (A/\cup i),$$

defined by

$$f(x) = (x/\cup i : i \in I),$$

gives a weak Boolean product representation of A, where the quotient algebras $A / \cup i$ are directly indecomposable.

Proof: From a theorem by Vaggione.

Central elements at work

The directly indecomposable LAAs (CAs) (there exist a lot of them!) are the building blocks of LAA (CA).

How to use central elements and directly indecomposable LAAs (CAs) to get results on lambda calculus?

- Church (around 1930): Lambda calculus
- Scott (1969): First model
- Meyer-Scott (around 1980): There exists a first-order axiomatization of what is a model of λ -calculus as a particular class of CAs.

 $\mathcal{D} \mod \Rightarrow \mathsf{Th}(\mathcal{D}) = \{M = N : M \text{ and } N \text{ have the same interpretation}\}$

• Scott Semantics and its refinements (1969-2007) A Scott topological space \mathcal{D} and two Scott continuous maps

$$i: \mathcal{D} \to [\mathcal{D} \to \mathcal{D}]; \quad j: [\mathcal{D} \to \mathcal{D}] \to \mathcal{D}; \quad i \circ j = id_{[\mathcal{D} \to \mathcal{D}]}$$

• A semantics C of lambda calculus is incomplete if there exists a consistent λ -theory T s.t.

 $T \neq \mathsf{Th}(\mathcal{D})$, for all models $\mathcal{D} \in \mathcal{C}$.

Central elements at work

Theorem 7 The semantics of lambda calculus given in terms of directly indecomposable models (this includes Scott Semantics and its refinements) is incomplete.

Proof:

- 1. CA_{di} 's is a universal class $\Rightarrow CA_{di}$ is closed under subalgebras \Rightarrow the directly decomposable CAs are closed under expansion.
- 2. The lambda theory T generated by $\lambda_a(aa) \cdot \lambda_a(aa) = t$ is consistent.
- 3. The lambda theory S generated by $\lambda_a(aa) \cdot \lambda_a(aa) = \mathbf{f}$ is consistent.
- 4. $\lambda_a(aa) \cdot \lambda_a(aa)$ is a nontrivial central element in the term model of $T \cap S$
- 5. All the models of $T \cap S$ are directly decomposable.

Central elements at work

Theorem 8 For every r.e. lambda theory T, the lattice interval $[T) = \{S : T \subseteq T\}$ contains a continuum of "decomposable" lambda theories.

Theorem 9 The set of lambda theories representable in EACH of the following semantics is not closed under finite intersection, so that it does not constitute a sublattice of the lattice of lambda theories:

- Graph models
- Filter models
- Continuous models
- Stable models.

Finite Boolean Sublattices

The lattice λT of λ -theories

Conjecture: Every nontrivial lattice identity fails in λT

- (S. 2000) λT is isomorphic to the lattice of equational theories of LAA's.
- (Lampe 1986) λT satisfies the Zipper condition:

$$\vee \{b : a \land b = c\} = 1 \implies a = c.$$

- (S. 2001) λT is not modular.
- (Berline-S. 2006) ($\exists \lambda$ -theory T) the interval $[T, \nabla]$ is distributive.
- (Statman 2001) The meet of all coatoms is $\neq \lambda\beta$.
- (Visser 1980)
 - Every countable poset embeds into λT by an order-preserving map.
 - Every interval [T, S] with T, S r.e. has a continuum of elements.

- (S. 2006) $(\forall n)(\exists T_n)$ such that the interval sublattice $[T_n, \nabla]$ is isomorphic to the finite Boolean lattice with 2^n elements.
- (Diercks-Erné-Reinhold 1994) There exists no λ -theory T such that the interval sublattice $[T, \nabla]$ is isomorphic to an infinite Boolean lattice.