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The aim of this lecture is to show that there is a close

connection between effect algebras with the Riesz de-

composition property and dimension theory of AF C*-

algebras.

Definition 1. (Foulis and Bennett, 1994) An

effect algebra is an algebraic system (E; 0, 1,⊕),

where ⊕ is a partial binary operation and 0 and 1 are

constants, such that the following axioms are satisfied

for every a, b, c ∈ E:

(i) if a⊕b is defined then b⊕a is defined and a⊕b =

b⊕ a (commutativity);

(ii) if a⊕b and (a⊕b)⊕c is defined then a⊕ (b⊕c) is

defined and (a⊕b)⊕c = a⊕(b⊕c) (associativity);

(iii) for every a ∈ E there is a unique a′ ∈ E such

that a⊕ a′ = 1;

(iv) a⊕ 1 is defined iff a = 0.
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In an effect algebra E, we define:

- a ≤ b if there is c ∈ E with a⊕ c = b.

- ≤ is a partial order, 0 ≤ a ≤ 1 for all a ∈ E.

- Cancelation: a⊕ c1 = a ⊕ c2, then c1 = c2, and we

define c = bª a iff a⊕ c = b.

- 1− a = a′ is called the orthosupplement of a.

E is:

- orthoalgebra iff a ⊥ a implies a = 0;

- orthomodular poset iff a⊕ b = a ∨ b;

- orthomodular lattice if it is a lattice-ordered or-

thomodular poset;

- MV-effect algebra if it is lattice-ordered and a∧
b = 0 =⇒ a ⊥ b;

- boolean algebra if it is an MV-effect algebra and

an orthoalgebra in the same time.

Notice that MV-effect algebras are equivalent with

MV-algebras introduced by Chang (1958) as algebraic

bases for many-valued logic.
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Let (G,G+) be a partially ordered abelian group,

v ∈ G+,

G+[0, v] = {a ∈ G : 0 ≤ a ≤ v}.
A partial binary operation on G+[0, v]:

a⊕ b = a + b, defined iff a + b ≤ v.

Then (G+[0, v]; 0, v,⊕) becomes an effect algebra.

Effect algebras arising this way are called interval

effect algebras. Two important examples of interval

effect algebras are the following.

Example 1 Let H be a Hilbert space and let G =

Bs(H) be the group of self-adjoint operators on H or-

dered by A ≤ B iff 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ H .

The interval E(H) := {A ∈ Bs(H) : 0 ≤ A ≤ I} (0 is

the zero, I is the identity operator) is an effect algebra of

so called Hilbert space effects.

Example 2 Let (G,G+) be a lattice ordered group,

v ∈ G+. Then the interval G+[0, v] becomes a MV-

effect algebra. By Mundici (1989), there is a cate-

gorical equivalence between the category of MV-algebras

with MV-algebra homomorphisms and `-groups with `-

group homomorphisms.
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Let (G,G+) be a partially ordered abelian group.

- G has the Riesz interpolation property (RIP)

or is an interpolation group if given ai, bj (1 ≤ i ≤
m, 1 ≤ j ≤ n) with ai ≤ bj for all i, j, there must be a

c ∈ G with ai ≤ c ≤ bj for all i, j.

The Riesz interpolation property is equivalent to the

- Riesz decomposition property (RDP): given

ai, bj in G+ (1 ≤ i ≤ m, 1 ≤ j ≤ n) with
∑

ai =
∑

bj,

there exist cij ∈ G+ with ai =
∑

j cij, bj =
∑

i cij.

Equivalently, RDP can be expressed as follows: given

a, bi, i ≤ n in G+ with a ≤ ∑
i≤n bi, there exist ai, i ≤ n

with ai ≤ bi, i ≤ n, and a =
∑

i≤n ai.

In order to verify both these properties, it is only nec-

essary to consider the case m = n = 2.

An element u of a partially ordered group G is an

order unit if for all a ∈ G, a ≤ nu for some n ∈ N. An

ordered group G is said to be directed if G = G+ −G+.

If G has an order unit u then it is directed.
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G-partially ordered abelian group.

- G is unperforated if given n ∈ N and a ∈ G,

na ∈ G+ implies a ∈ G+.

- G is archimedean in a, b ∈ G, na ≤ b∀n ∈ N
implies a ≤ 0.

If G is directed and archimedean, or if G is lattice

ordered, then G is unperforated (Goodearl).

Given partially ordered groups G and H , we say that

a group homomorphism φ : G → H is positive if

φ(G+) ⊆ H+, and that an isomorphism φ : G → H

is an order isomorphism if φ(G+) = H+. If G and H

have order units u and v respectively, then a positive ho-

momorphism φ : G → H such that φ(u) = v is called

unital.

Definition 2. A partially ordered group G is called a

Riesz group (Fuchs, 1965) if it is directed, unperfo-

rated and has the interpolation property.

An element u ∈ G+ is called generative unit or a

strong unit if every g ∈ G+ can be expressed in the

form of finite sum of (not necessarily different) elements

of the interval G+[0, u]. If G is an interpolation group,

then any order unit is generative.
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Definition 3. Let E be an effect algebra. A map

φ : E → K, where K is any abelian group, is called a

K-valued measure if φ(a⊕b) = φ(a)+φ(b) whenever

a⊕ b is defined in E.

Theorem 4. (Bennett and Foulis, 1997). Let E be

an interval effect algebra. Then there exists a unique

(up to isomorphism) partially ordered abelian group G

with generating cone G+ (in the sense that G = G+−
G+) and an element u ∈ G+ such that the following

conditions are satisfied:

(i) E is isomorphic to the interval effect algebra

G+[0, u],

(ii) G+[0, u] generates G+ (in the sense that every ele-

ment in G+ is a finite sum of elements of G[0, u]),

((iii) every K-valued measure φ : E → K can be ex-

tended uniquely to a group homomorphism φ∗ :

G → K.

The group G in the preceding theorem is called the

universal group for E. We will denote it by GE. The

element u is a generative unit in GE.



7

We say that an effect algebra E has the Riesz de-

composition property (RDP) if one of the following

equivalent properties is satisfied:

R1 a ≤ b1⊕ b2⊕· · ·⊕ bn implies a = a1⊕a2⊕· · ·⊕an

with ai ≤ bi, i ≤ n;

R2 ⊕i≤mai = ⊕j≤nbj, m,n ∈ Z, implies ai = ⊕jcij,

i ≤ m, and bj = ⊕icij, j ≤ n, where (cij)ij are

orthogonal elements in E.

Similarly as for partially ordered groups, it suffices to

prove the above properties for m,n = 2.

A partially ordered set P has the

interpolation property if a1, a2 ≤ b1, b2, there is an

element x ∈ P with a1, a2 ≤ x ≤ b1, b2.

Every effect algebra with RDP has the interpolation

property. But there are lattice ordered effect algebras

that do not satisfy the RDP (see e.g. ”diamond”: D =

{a, b, 0, 1}, 0⊕ x = x, x ∈ D, a⊕ a = 1 = b⊕ b).

Theorem 5. An effect algebra is an MV-effect alge-

bra iff it is lattice ordered and has RDP.
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There are effect algebras that are not interval effect

algebras. E.g., there exist orthomodular lattices with no

group valued measures (Navara, 1994).

Theorem 6. (Ravindran, 1996) Every effect algebra

with the Riesz decomposition property is an interval

effect algebra and its universal group is an interpola-

tion group.

The technique used in the proof goes back to Baer

(1049) and Wyler (1966). A sketch of the method is as

follows.

Let E be an effect algebra with the Riesz decomposi-

tion property. A word is any sequence

W = (a1, a2, . . . , an)

of elements of E. For each a ∈ E, the word (a) is of

length 1.

Introduce a binary operation + on the collectionW(E)

of all words as follows: for two words

W1 = (a1, a2, . . . , am),

W2 = (b1, b2, . . . , bn), the word

W1 + W2 = (a1, a2, . . . , am, b1, b1, . . . , b).

It is easily verified that W(E) is a semigroup. We will

say that two words W1 and W2 are directly similar

(written W1 → W2) if W1 = (a1, a2, . . . , an), ak ⊥ ak+1,

W2 = (a1, a2, . . . , ak−1, ak ⊕ ak+1, ak+2, . . . , an).
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Let ∼ be the transitive closure of direct similarity. Let

G+ be the collection of the equivalence classes on W(E)

with respect to ∼.

Define [W 1] + [W 2] = [W 1 + W 2]. This operation is

well-defined and so G+ is the quotient semigroup

W(E)/∼ consisting of the equivalence classes with the

operation +.

It was proved that G+ is a positive, cancellative,

abelian monoid satisfying RDP, and so there is an inter-

polation group G containing G+ as a positive cone. The

mapping a 7→ [a] is an embedding of E onto G+[[0], [1]].

By construction, this interval is generative, and G is the

universal group for E.

Theorem 7. (SP, 1999) Let u be an order unit in

an abelian interpolation group G, then G is a unital

group with unit u, and G is the universal group for

its own unit interval E = G+[0, u].

Theorem 8. (SP, 1999) There is a categorical equi-

valence between the category of unital interpolation

groups with unital group homomorphisms as morph-

isms, and the category of effect algebras with RDP

with effect algebra morphisms as morphisms.

The functors are S : (G, u) → G+[0, u], T : E →
(GE, u).
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The purpose of a dimension theory is to measure the

”dimensions” of projections in an algebra.

The dimension of a projection in a matrix algebra is

a non-negative integer, while in a finite von Neumann

factor one obtains a non-negative real number.

In a C*-algebra A the dimension function must be

given by values in a pre-ordered abelian group (so called

K0 group), rather than in real numbers.

A - a C*-algebra. Projections p, q ∈ A are equiva-

lent, written p ∼ g, if there is a partial isometry u such

that u∗u = p and uu∗ = q.

Let Proj(A) denote the set of all equivalence classes

of projections of A.

For two equivalence classes [p] and [q] their ”sum” [p]+

[q] exists iff there are representatives p′ ∈ [p] and q′ ∈ [q]

with p′q′ = 0, in which case [p] + [q] = [p′ + q′].
Recall that in the K0-theory of C*-algebras, the defini-

tion of K0(A) for a C*-algebra A, requires simultaneous

consideration of all matrix algebras over A.

K0 is a covariant functor from the category of C*-

algebras to the category of abelian semigroups, which

preserves direct products and inductive limits.
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To every abelian group G there is a C*-algebra A with

K0(A) = G. But this correspondence is not one-to-one;

the C*-algebra A is not uniquely defined by its K0(A).

The situation is better in the class of approximately finite

C*-algebras.

Definition 9. A C*-algebra A is called approxi-

mately finite-dimensional (AF) if A is the direct

limit of an increasing sequence of finite-dimensional

C*-algebras.

We will be concerned with unital AF C*-algebras that

arise as direct limits of sequences of unital finite dimen-

sional C*-algebras with the same unit.

Let Mn(C) denote the C*-algebra consisting n × n-

matrices with complex entries. Two projections in

Mn(C) are equivalent iff they have the same dimension.

Hence the range of dimension can be described by a finite

chain of integers (0, 1, . . . , n). This chain can be endowed

with a structure of an MV-effect algebra, its universal

group is Z, with order unit n.
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Every finite dimensional C*-algebraA is isomorphic to

the direct product Mn(1)(C)×Mn(2)(C)×· · ·×Mn(k)(C).

It is characterized by the k-tuple (n(1), n(2), . . . , n(k))

of positive integers. The range of dimension is then the

direct product of finite MV-chains

(0, 1, . . . , n(1))× · · · × (0, 1, . . . , n(k)).

The universal group for it is Zk with order unit

(n(1), . . . , n(k)), which is known to be the K0(A).

We recall that an abelian group G is called simplicial

if it is isomorphic with Zk, k ∈ N. An element u =

(u1, . . . , uk) is an order unit iff ui > 0, i ≤ k.

Lemma 10. (i) Every finite effect algebra with RDP

is an MV-algebra isomorphic to a direct product of fi-

nite chains. (ii) A unital interpolation group (G, u) is

simplicial iff its unit interval is a finite effect algebra

with RDP.
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LetA be a unital AF C*-algebra which is a direct limit

of a directed system

A1 → A2 → · · ·
of finite dimensional C*-algebras with the same unit.

Then there is a (unique up to isomorphism) directed sys-

tem

G1 → G2 → · · ·
of simplicial groups, the direct limit G of which is the

K0(A), and a directed system of finite effect algebras

with RDP

D1 → D2 → · · ·
with direct limit D, which is the unit interval for G.

Theorem 11. (Elliott, 1976) Let A be the induc-

tive limit of unital finite dimensional algebras C*-

algebras. The range of the dimension on A is isomor-

phic to a generating interval of a countable partially

ordered abelian group which is the inductive limit of

a sequence of simplicial groups with order units.

According to Elliott, a group G which is a direct limit

(of a sequence) of simplicial groups, is called a dimen-

sion group.



14

Theorem 12. (Efros, Handelman and Shen, 1980)

Any countable Riesz group with order unit is isomor-

phic to a direct limit of a countable sequence of simpli-

cial groups with order unit (in the category of partially

ordered abelian groups with order unit).

A dimension effect algebra can be analogously

defined as an effect algebra which is the direct limit of a

sequence of finite effect algebras with RDP.

A dimension effect algebra is countable, has RDP, and

its universal group is a dimension group.

Question. Is there an intrinsic characterization of the

countable effect algebras with RDP which are dimension

effect algebras?


