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Part I

Four ways of defining languages
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Words and languages

Words over the alphabet A = {a, b, c}: a, babb, cac,
the empty word 1, etc.

The set of all words A∗ is the free monoid on A. A
language is a set of words.

Recognizable (or regular) languages can be defined
in various ways:

⊲ by (extended) regular expressions

⊲ by finite automata

⊲ in terms of logic

⊲ by finite monoids
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Basic operations on languages

• Boolean operations: union, intersection,
complement.

• Product: L1L2 = {u1u2 | u1 ∈ L1, u2 ∈ L2}
Example: {ab, a}{a, ba} = {aa, aba, abba}.

• Star: L∗ is the submonoid generated by L

L∗ = {u1u2 · · · un | n > 0 and u1, . . . , un ∈ L}

{a, ba}∗ = {1, a, aa, ba, aaa, aba, . . .}.
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Various types of expressions

• Regular expressions: union, product, star:

(ab)∗ ∪ (ab)∗a

• Extended regular expressions (union,
intersection, complement, product and star):

A∗ \ (bA∗ ∪ A∗aaA∗ ∪ A∗bbA∗)

• Star-free expressions (union, intersection,
complement, product but no star):

∅c \ (b∅c ∪ ∅caa∅c ∪ ∅cbb∅c)
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Finite automata

The set of states is {1, 2, 3}.

The initial state is 1.

The final states are 1 and 2.

The transitions are

1 2

3

a

b

b a

a, b

1·a = 2 2·a = 3 3·a = 3

1·b = 3 2·b = 1 3·b = 3
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Language recognized by A

1 2

3

a

b
b a

a, b

Transitions extend to words: 1·aba = 2, 1·abb = 3.
The language accepted by A is the set of words u
such that 1·u is a final state. Here:

L(A) = (ab)∗ ∪ (ab)∗a
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Büchi’s logic to describe properties of words

• The formula ∃x ax is interpreted as:

There exists an integer x such that, in the
word, the letter in position x is an a.

It defines the language A∗aA∗.

• The first letter (of a word) is an a

∃x ∀y ((x < y) ∨ (x = y)) ∧ ax

defines the language aA∗.

• The formula ∃x ∃y (x < y) ∧ ax ∧ by defines the
language A∗aA∗bA∗.
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Recognition by monoids

A language L of A∗ is recognized by a monoid M if
there exists a surjective monoid morphism
ϕ : A∗ → M and a subset P of M such that
L = ϕ−1(P ).

Fact 1. There is a way of associating with each
finite automaton a finite monoid which recognizes
the same language.

Fact 2. There is a natural notion of minimal
automaton and a corresponding notion of syntactic
monoid.
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Recognizable languages

Definition

A language is recognizable if it is recognized by
some finite automaton, or, equivalently, by a finite
monoid.

A language is recognizable if and only if its
syntactic monoid is finite.

The syntactic monoid is an important algebraic
invariant. Its usage to classify recognizable
languages is reminiscent to the use of homotopy
groups in algebraic topology.
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Kleene’s theorem

Theorem (Kleene 1954)

Let L be a language. The following conditions are
equivalent:

(1) L is recognizable,

(2) L can be represented by a regular expression,

(3) L can be represented by an extended regular
expression.
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Back to logic

Monadic second order: set variables (unary
relations) are allowed.

Theorem (Büchi 1960, Elgot 1961)

Monadic second order of Büchi’s logic captures
recognizable languages.
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Two fundamental results

Theorem (McNaughton-Papert 1971)

First order captures star-free languages (defined by
star-free expressions).

Theorem (Schützenberger 1965)

A language is star-free iff its syntactic monoid is
aperiodic (for all x ∈ M , there exists n > 0 such
that xn = xn+1).
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Examples of star-free languages

(1) A∗ = ∅c is star-free.

(2) b∗ = (A∗aA∗)c is star-free.

(3) (ab)∗ =
(
b∅c ∪ ∅ca ∪ ∅caa∅c ∪ ∅cbb∅c

)c
is

star-free.

(4) (aa)∗ is not star-free since the syntactic
monoid of a2 is not aperiodic.

1 2

a

a

1 1 2
a 2 1
b − −

a2 = 1
b = 0
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The syntactic monoid of (ab)∗.

One has M = {1, a, b, ab, ba, aa}. It is aperiodic
since 12 = 1, a2 = a3, b2 = b3, (ab)2 = ab,
(ba)2 = ba, (aa)2 = (aa)3. Thus (ab)∗ is star-free.

1 2

3

a

b
b a

a, b

1 1 2 3
a 2 3 3
b 3 1 3
aa 3 3 3
ab 1 3 3
ba 3 2 3

bb = aa = 0
aba = a
bab = b
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The first virtuous circle

Logic Languages

Algebra Decidability
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An instance of the first virtuous circle

First order Star-free

Aperiodic Decidability
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Part II

The profinite world

Quotation (M. Stone)

A cardinal principle of modern mathematical
research may be stated as a maxim: One must
always topologize.
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Varieties

A Birkhoff variety of monoids is a class of monoids
closed under taking submonoids, quotients (=
homomorphic images) and direct products.

A variety of finite monoids is a class of finite
monoids closed under taking submonoids, quotients
and finite direct products.

Groups do not form a Birkhoff variety of monoids,
but finite groups form a variety of finite monoids.
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Birkhoff’s theorem

Theorem (Birkhoff 1935)

A class of monoids is a Birkhoff variety iff it is
defined by a set of identities.

For instance, commutative monoids are defined by
the identity xy = yx.

What happens for finite monoids?
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Separating words

A monoid M separates two words u and v of A∗ if
there exists a monoid morphism ϕ : A∗ → M such
that ϕ(u) 6= ϕ(v).

For instance, the morphism which maps each word
onto its length modulo 2 is a morphism from {a, b}∗

onto Z/2Z which separates abaaba and abaabab.
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The profinite metric

Let u and v be two words. Put

r(u, v) = min
{
|M | M is a finite monoid

that separates u and v}

d(u, v) = 2−r(u,v)

Intuitively, two words are close for d if one needs a
large monoid to separate them.

Then d is an ultrametric, for which the product of
words is uniformly continuous.
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Main properties of d

A sequence of words un is a Cauchy sequence iff, for
every monoid morphism ϕ from A∗ to a finite
monoid, the sequence ϕ(un) is ultimately constant.

A sequence of words un is converging to a word u
iff, for every monoid morphism ϕ from A∗ to a finite
monoid, the sequence ϕ(un) is ultimately equal to
ϕ(u).
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The free profinite monoid

The completion of the metric space (A∗, d) is the

free profinite monoid on A and is denoted by Â∗.
Its elements are called profinite words.

The product is uniformly continuous on A∗ and

hence can be extended to Â∗. Further, if A is finite,
Â∗ is compact.

Any morphism ϕ : A∗ → M , where M is a
(discrete) finite monoid is uniformly continuous.

Since A∗ is dense in Â∗, such a morphism extends
in a unique way to a uniformly continuous morphism

ϕ̂ : Â∗ → M .
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Profinite as projective limit

The profinite monoid can be viewed as the
projective limit of the directed system formed by the
surjective morphisms between finite monoids.

In particular, a profinite word ρ is completely
determined by its images ϕ(ρ), where ϕ runs over
the class of morphisms from A∗ onto a finite
monoid.
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A nonfinite profinite word

For each u ∈ A∗, the sequence un! is a Cauchy

sequence and hence converges in Â∗ to a limit,
denoted by uω. If ϕ is a morphism from A∗ onto a
finite monoid, ϕ(uω) is the unique idempotent of
the semigroup generated by x = ϕ(u).

1 x x2 x3

. . .
xi+p = xi

xi+1 xi+2

xi+p−1
xω
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Reiterman’s theorem

Define a profinite identity as a formal equality of the
form u = v, where u and v are elements of a free
profinite monoid.

Theorem (Reiterman 1982)

A class of finite semigroups is a variety iff it is
defined by a set of profinite identities.

The variety of finite groups is defined by the single
identity xω = 1 since, in a finite group, the unique
idempotent is the identity.
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The second virtuous circle

Varieties

of languages
Profinite

identities

Varieties of

finite monoids

Decidability

Eilenberg Reiterman
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An instance of the second virtuous circle

Star-free xω = xω+1

Aperiodic monoids

Decidability

Schützenberger
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Duality pops up. . .

Varieties

of languages
Profinite

identities

Varieties of

finite monoids

Decidability

Eilenberg Reiterman

Duality!!
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Part III

Duality
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The dual space of Rec(A∗)

Let Rec(A∗) be the distributive lattice of
recognizable languages of A∗.

Its dual space XA is the set of prime filters of
Rec(A∗) or, equivalently, the set of lattice
valuations

v : Rec(A∗) → {0, 1}

What are the prime filters?
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The prime filters

Prime filters, valuations and profinite words can be
identified. Indeed, if ρ is a profinite word, the set

{ϕ−1(ϕ(ρ)) | ϕ is a morphism from A∗

onto a finite monoid}

is a prime filter.

Conversely, if v is a valuation, one can define a
profinite word ρ by the condition ϕ(ρ) = m if
v(ϕ−1(m)) = 1 for each morphism ϕ from A∗ onto
a finite monoid.
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Priestley duality

Thus XA is the set of profinite words. By Priestley
duality, there is an injective morphism of distributive
lattices from Rec(A∗) into P(XA):

L → {prime filters containing L}

→ {valuations such that v(L) = 1}

→ {profinite words ρ such that ϕ(ρ) ∈ ϕ(L)}

These sets are exactly the clopen sets of XA.
Further, since each singleton {u} is a recognizable
language, A∗ embeds into P(XA).
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Residuals

The right and left residuals of L by K are defined
by:

K\L = {u ∈ A∗ | Ku ⊆ L}

L/K = {u ∈ A∗ | uK ⊆ L}

The unary versions, given by taking K to be a
singleton, are the most commonly used and are
called quotients. If v is a word and L is a language

v−1L = {u ∈ A∗ | vu ∈ L}

Lv−1 = {u ∈ A∗ | uv ∈ L}
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Residuals and product

It is easy to see that Rec(A∗) is closed under
residual. In fact (Rec(A∗), ·, /, \) is a residuated
Boolean algebra and

\, / : Rec(A∗) × Rec(A∗) → Rec(A∗)

are residuals of the concatenation product, that is,

HK ⊆ L ⇔ K ⊆ H\L ⇔ H ⊆ L/K

It follows that the product is a continous open map
on XA.
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Some other consequences of duality

The following properties hold:

(1) XA is the space of profinite words and each of
them induces a term function of arity |A| on
any finite monoid.

(2) The identity (H\L)/K = H\(L/K) in
Rec(A∗) is equivalent to stating that the
product is associative on XA.

(3) The map u → pu = {L | u ∈ L} embeds
(A∗, ·, 1) into (XA, ·, p1) as a discrete
submonoid.
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Part IV

Back to the future
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Reiterman revisited

For L ∈ Rec(A∗), the syntactic monoid of L is the
dual space of the quotient subalgebra of Rec(A∗)
generated by L.

Any quotient subalgebra of Rec(A∗) corresponds
dually to a topological monoid quotient of XA and
is thus given by a congruence on the profinite words
(Reiterman’s identities).
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Extensions of Eilenberg’s theorem

Eilenberg’s definition of varieties of languages
requires three conditions:

(1) closure under Boolean operations,

(2) closure under quotients,

(3) closure under inverse of morphisms between
free monoids

One can relax these conditions by changing the
algebraic counterpart.
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No complement (union and intersection only)

Positive varieties

of languages
Profinite

identities

Varieties of

finite ordered monoids

Decidability

Pin Pin-Weil

For instance, xω 6 1



LIAFA, CNRS and University Paris Diderot

Inverse of length-preserving morphims only

lp-varieties

of languages
Profinite

identities

Varieties of
stamps

Decidability

Straubing Kunc
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No residuals

streams

of languages
Profinite

identities

Varieties of

equivalences

Decidability

Pippenger



LIAFA, CNRS and University Paris Diderot

Hope for the future

All these extensions are particular cases of our
results. Further one can hope to merge the two
virtuous circles

Languages

Logic

Profinite

identities

Algebraic
structures

Decidability
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A case study

Let C be the lattice generated by the languages

〈u〉 = A∗uA∗, u ∈ A∗.

The languages of C are called positively strongly
locally testable (PSLT) languages.

Fact. A language is PSLT iff it can be expressed by
a Σ1-formula in Büchi’s logic with the successor
relation (instead of <).
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Equations for PSLT languages

xωyxω = xωyxωyxω

xωyxωzxω = xωzxωyxω

xωyxω
6 xω

xωuyωvxω ∈ P ⇔ yωvxωuyω ∈ P

y(xy)ω ∈ P ⇔ (xy)ω ∈ P ⇔ (xy)ωx ∈ P
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Connection with symbolic dynamics

An element of AZ is a two-sided infinite word

u = · · · u−2u−1u0u1u2 · · ·

In symbolic dynamics, a subshift is a subset of AZ

that is closed (for the product topology) and shift
invariant.

We are currently working on a representation of the
profinite quotient for PSLT languages using
subshifts.
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