A Generalization of Topology with an Eye on Stone Duality

M. Andrew Moshier

Chapman University

August 2007

Motivation

Stone Duality for Bitopological Spaces

Recent joint work with Achim Jung:

- Unifies several Stone-type dualities in a bitopological setting.
- Replaces two element lattice by Belnap's four element bilattice with additional structure.
- Exploits an interesting distinction between "logic" and "information."

Motivation

Stone Duality for Bitopological Spaces

Recent joint work with Achim Jung:

- Unifies several Stone-type dualities in a bitopological setting.
- Replaces two element lattice by Belnap's four element bilattice with additional structure.
- Exploits an interesting distinction between "logic" and "information."

This Talk

- Considers other generalizations of topology via other dualizing objects.
- Illustrates the value of maintaining "logic" versus "information."

Ingredients of point-set topology

The Familiar Definition

- A topology on a set X is a family τ ⊆ 𝒫(X) closed under finite intersection and arbitrary union.
- A continuous function from (X, σ) to (Y, τ) is a function from X to Y so that f⁻¹(V) ∈ σ for each V ∈ τ.

Ingredients of point-set topology

The Familiar Definition

- A topology on a set X is a family τ ⊆ 𝒫(X) closed under finite intersection and arbitrary union.
- A continuous function from (X, σ) to (Y, τ) is a function from X to Y so that f⁻¹(V) ∈ σ for each V ∈ τ.

Alternate Definition

- A topology on a set X is a sub-frame τ of 2^X .
- A continuous function from (X, σ) to (Y, τ) is a function from X to Y so that v ∘ f ∈ σ for each v ∈ τ.

Recalling Frames (with apologies for confusion with Kripke frames)

Definition

• A frame is a complete lattice satisfying the frame law:

$$a \land \bigvee B = \bigvee_{b \in B} (a \land b)$$

• A frame homomorphism preserves $(\top, \land, \bot, \lor)$.

Recalling Frames (with apologies for confusion with Kripke frames)

Definition

• A frame is a complete lattice satisfying the frame law:

$$\mathsf{a} \land \bigvee \mathsf{B} = \bigvee_{\mathsf{b} \in \mathsf{B}} (\mathsf{a} \land \mathsf{b})$$

• A frame homomorphism preserves $(\top, \land, \bot, \lor)$.

Alternate Definition

• A frame is

- a distributive lattice;
- a dcpo in its lattice order;
- having Scott continuous meet (and join).
- A frame homomorphism is a Scott continuous distributive lattice homomorphism.

The Neighborhood Map

The characteristic of open neighborhoods of a point:

$$N(\mathbf{x})(-): \tau \to \mathbf{2} \qquad u \mapsto u(\mathbf{x})$$

is a frame homomorphism for each $x \in X$.

The Neighborhood Map

The characteristic of open neighborhoods of a point:

$$N(\mathbf{x})(-): \tau \to \mathbf{2} \qquad u \mapsto u(\mathbf{x})$$

is a frame homomorphism for each $x \in X$. Let S denote the underlying set **2** with the Scott topology.

The Neighborhood Map

The characteristic of open neighborhoods of a point:

$$N(\mathbf{x})(-): \tau \to \mathbf{2} \qquad u \mapsto u(\mathbf{x})$$

is a frame homomorphism for each $x \in X$. Let S denote the underlying set **2** with the Scott topology. This makes

$$N(-)(u): X \to \mathbb{S} \qquad x \mapsto u(x)$$

continuous for each $u \in \tau$.

The Neighborhood Map

The characteristic of open neighborhoods of a point:

$$N(\mathbf{x})(-): \tau \to \mathbf{2} \qquad u \mapsto u(\mathbf{x})$$

is a frame homomorphism for each $x \in X$. Let S denote the underlying set **2** with the Scott topology. This makes

$$N(-)(u): X \to \mathbb{S} \qquad x \mapsto u(x)$$

continuous for each $u \in \tau$.

Theorem

The contravariant hom-set functors $\text{Top}(-, \mathbb{S})$ and Frm(-, 2) are interpretable as adjoint functors $\Omega: \text{Top} \to \text{Frm}^{\text{OP}}$ and spec: $\text{Frm} \to \text{Top}^{\text{OP}}$.

Bitopology

Standard Definition

- A bitopology on a set X is simply a pair of topologies on X.
- A bicontinuous map between bitopological spaces is continuous in each topology separately.

Bitopology

Standard Definition

- A bitopology on a set X is simply a pair of topologies on X.
- A bicontinuous map between bitopological spaces is continuous in each topology separately.
- \mathbb{R} with the upper open topology and the lower open topology.
- A sober space with its given topology and its co-compact topology.
- If ≤ ⊆ X × X is a topologically closed partial order on X, then the upper open and lower open sets form a bitopology (generalizes ℝ).

Bitopology (v2.0)

Alternate Definition

- A bitopology on a set X is a collection $\tau \subseteq (2.2)^X$ so that
 - τ is closed under \land and \lor ;
 - τ is closed under suprema of directed sets;
 - τ includes all (four) constant functions.

The operations are defined pointwise.

A bicontinuous function from (X, σ) to (Y, τ) is a function f from X to Y so that u ∘ f ∈ σ for each u ∈ τ.

Bitopology (v2.0)

Alternate Definition

- A bitopology on a set X is a collection $\tau \subseteq (2.2)^X$ so that
 - τ is closed under \land and \lor ;
 - τ is closed under suprema of directed sets;
 - τ includes all (four) constant functions.

The operations are defined pointwise.

A bicontinuous function from (X, σ) to (Y, τ) is a function f from X to Y so that u ∘ f ∈ σ for each u ∈ τ.

Lemma

The standard and alternate definitions of bitopologies and bicontinuity are equivalent.

What about the adjunction $\Omega \dashv \text{spec}$?

Definition

Let S.S denote the bitopology on the underlying set 2.2 equipped with the bitopology generated by id: $2.2 \rightarrow 2.2$.

What about the adjunction $\Omega \dashv \text{spec}$?

Definition

Let S.S denote the bitopology on the underlying set 2.2 equipped with the bitopology generated by id: $2.2 \rightarrow 2.2$.

Definition

- A trestle is a structure $L = (L; \land, tt, \lor, ft; \sqsubseteq, \bot)$ so that
 - (*L*; ∧, *tt*, ∨, *ff*) is a bounded distributive lattice;
 - $(L; \sqsubseteq, \bot)$ is a dcpo with least element \bot ;
 - \land and \lor are Scott continuous.
- A trestle homomorphism preserves all of this structure.

What about the adjunction $\Omega \dashv \text{spec}$?

Definition

Let S.S denote the bitopology on the underlying set 2.2 equipped with the bitopology generated by id: 2.2 \rightarrow 2.2.

Definition

- A trestle is a structure $L = (L; \land, tt, \lor, ft; \sqsubseteq, \bot)$ so that
 - (*L*; ∧, *tt*, ∨, *ff*) is a bounded distributive lattice;
 - (L; ⊆, ⊥) is a dcpo with least element ⊥;
 - \land and \lor are Scott continuous.
- A trestle homomorphism preserves all of this structure.

Lemma

For any bitopological space $\mathcal{X} = (X, \tau)$, the trestle τ is isomorphic to **biTop**($\mathcal{X}, \mathbb{S}.\mathbb{S}$) where the operations are defined point-wise.

Lemma

For two frames *K* and *L*, impose a bitopology on $Frm^2(K \times L, 2.2)$ generated by:

$$J_{(a,b)(h)} := h(a,b)$$

The maps U_u form a bitopology. In particular, $u \mapsto U_u$ is a surjective homomorphism in **Frm**². So **Frm**²(-, **2.2**) determines a contravariant functor spec: **Frm**² \rightarrow **biTop**

Lemma

For two frames *K* and *L*, impose a bitopology on $Frm^2(K \times L, 2.2)$ generated by:

$$J_{(a,b)(h)} := h(a,b)$$

The maps U_u form a bitopology. In particular, $u \mapsto U_u$ is a surjective homomorphism in **Frm**². So **Frm**²(-, **2.2**) determines a contravariant functor spec: **Frm**² \rightarrow **biTop**

Theorem

The functors Ω and spec are dually adjoint. [N.B. **Frm**² is a full subcategory of **Tre**, as is **Frm**.]

Generalized Topology

Definition

Let **T** be any fixed trestle.

- A T-topology on set X is a sub-trestle τ ⊆ T^X that includes all constant functions: x → a for each a ∈ T.
- A T-space is a set equipped with a T-topology.
- A T-continuous map from (X, σ) to (Y, τ) is a map from X to Y so that u ∘ f ∈ σ for each u ∈ τ.

Generalized Topology

Definition

Let **T** be any fixed trestle.

- A T-topology on set X is a sub-trestle τ ⊆ T^X that includes all constant functions: x → a for each a ∈ T.
- A T-space is a set equipped with a T-topology.
- A T-continuous map from (X, σ) to (Y, τ) is a map from X to Y so that u ∘ f ∈ σ for each u ∈ τ.
- 2-topologies are topologies; 2-continuous functions are continuous functions.
- 2.2-topologies are bitopologies; 2.2-continuous functions are bicontinuous functions.
- 1-topologies are sets; 1-continuous functions are functions.

The functor Ω_T

Lemma

For any **T**-continuous function $f: (X, \sigma) \to (Y, \tau)$, the map $v \mapsto v \circ f$ is a trestle homomorphism from τ to σ .

The functor Ω_{T}

Lemma

For any **T**-continuous function $f: (X, \sigma) \to (Y, \tau)$, the map $v \mapsto v \circ f$ is a trestle homomorphism from τ to σ .

Definition

 $\Omega_{\mathbf{T}}(X, \tau) := \tau$ and $\Omega_{\mathbf{T}}(f) := (\mathbf{v} \mapsto \mathbf{v} \circ f)$ define a contravariant functor from **T-space** to **Tres**.

- $\Omega_2(f) = f^{-1}$ restricted to open sets.
- $\Omega_1(f) = f^{-1}$ unrestricted.
- Ω_{2.2}(f) is determined by f⁻¹ restricted to opens in the two underlying topologies.

Theorem

The functor Ω_{T} has a right dual adjoint.

Theorem

The functor Ω_T has a right dual adjoint.

Proof Sketch

Define τ_T to be the T-topology on (the underlying set of) T generated by id: $T \rightarrow T$.

Theorem

The functor Ω_T has a right dual adjoint.

Proof Sketch

Define τ_T to be the T-topology on (the underlying set of) T generated by id: $T \rightarrow T$.

So Ω_{T} is represented by the hom-set functor **T-space**(-, **T**).

Basic Theorem continued

Proof Sketch continued

Define $\text{spec}_T \colon \text{Tres} \to \text{T-space}$ by

• $spec_T(L) := Tres(L, T)$.

• The T-topology is generated by the functions B_u : spec_T(L) \rightarrow T

$$B_u(p) := p(u)$$

for each $u \in \mathbf{L}$.

• spec_T(h)(p) = $p \circ h$

Basic Theorem continued

Proof Sketch continued

Define $\text{spec}_T \colon \text{Tres} \to \text{T-space}$ by

• $spec_T(L) := Tres(L, T)$.

• The T-topology is generated by the functions B_u : spec_T(L) \rightarrow T

$$B_u(p) := p(u)$$

for each $u \in \mathbf{L}$.

• spec_T
$$(h)(p) = p \circ h$$

Simple definition chasing shows that

```
\textbf{Tres}(\textbf{L}, \Omega_{\textbf{T}}(\mathcal{X})) \simeq \textbf{T-space}(\mathcal{X}, \text{spec}_{\textbf{T}}(\textbf{L}))
```

naturally in **L** and \mathfrak{X} .

Sobriety

Unit

On the "spatial side", the unit of the adjunction $\eta: \mathfrak{X} \to \text{spec}_{T}(\Omega_{T}(\mathfrak{X}))$ is given by

 $\eta(\mathbf{x})(\mathbf{u}) = \mathbf{u}(\mathbf{x})$

Sobriety

Unit

On the "spatial side", the unit of the adjunction $\eta: \mathfrak{X} \to \text{spec}_{T}(\Omega_{T}(\mathfrak{X}))$ is given by

$$\eta(\mathbf{x})(\mathbf{u}) = \mathbf{u}(\mathbf{x})$$

Theorem

For **T**-topology \mathcal{X} , the following are equivalent:

- $\mathfrak{X} \simeq \operatorname{spec}_{\mathbf{T}}(\Omega_{\mathbf{T}}(\mathfrak{X}))$
- η is an isomorphism
- η is a bijection
- η is a surjection and $\mathfrak{X} \simeq \operatorname{spec}_{\mathbf{T}}(\mathbf{L})$ for some \mathbf{L} .

Sobriety

Unit

On the "spatial side", the unit of the adjunction $\eta: \mathfrak{X} \to \text{spec}_{T}(\Omega_{T}(\mathfrak{X}))$ is given by

$$\eta(\mathbf{x})(\mathbf{u}) = \mathbf{u}(\mathbf{x})$$

Theorem

For **T**-topology \mathcal{X} , the following are equivalent:

- $\mathfrak{X} \simeq \operatorname{spec}_{\mathbf{T}}(\Omega_{\mathbf{T}}(\mathfrak{X}))$
- η is an isomorphism
- η is a bijection
- η is a surjection and $\mathfrak{X} \simeq \operatorname{spec}_{\mathbf{T}}(\mathbf{L})$ for some \mathbf{L} .

Definition

A **T**-space is sober iff it satisfies these conditions.

Spatiality

Co-unit

On the "algebra side", the (co)unit of the adjunction $\epsilon\colon \bm{L}\to \Omega_{\bm{T}}\mathsf{spec}_{\bm{T}}$ is given by

 $\epsilon(a)(p) = p(a)$

Spatiality

Co-unit

On the "algebra side", the (co)unit of the adjunction $\epsilon \colon L \to \Omega_T spec_T$ is given by

$$\epsilon(a)(p) = p(a)$$

Theorem

For a trestle L, the following are equivalent:

- $\mathbf{L} \simeq \Omega_{\mathbf{T}}(\operatorname{spec}_{\mathbf{T}}(\mathbf{L}))$
- e is an isomorphism
- η is an epimorphism and $\mathbf{L} \simeq \Omega_{\mathbf{T}}(\mathcal{X})$ for some **T**-space \mathcal{X}

Spatiality

Co-unit

On the "algebra side", the (co)unit of the adjunction $\epsilon \colon L \to \Omega_T spec_T$ is given by

$$\epsilon(a)(p) = p(a)$$

Theorem

For a trestle L, the following are equivalent:

- $\mathbf{L} \simeq \Omega_{\mathbf{T}}(\operatorname{spec}_{\mathbf{T}}(\mathbf{L}))$
- e is an isomorphism
- η is an epimorphism and $\mathbf{L} \simeq \Omega_{\mathbf{T}}(\mathcal{X})$ for some **T**-space \mathcal{X}

Definition

A trestle is T-spatial iff it satisfies these conditions.

Equivalence

Theorem

If **T** is itself **T**-spatial, then the functors Ω_T and $spec_T^* := spec_T \circ \Omega_T \circ spec_T$ cut down to a dual equivalence between the categories of sober **T**-spaces and **T**-spatial trestles.

Proof

Equivalence

Theorem

If **T** is itself **T**-spatial, then the functors Ω_T and $spec_T^* := spec_T \circ \Omega_T \circ spec_T$ cut down to a dual equivalence between the categories of sober **T**-spaces and **T**-spatial trestles.

Proof

- Let $T := \Omega_T \circ \text{spec}_T$ and $S := \text{spec}_T \circ \Omega_T$. Then
 - T(L) is T-spatial
 - S(X) is T-sober
 - $\Omega_{\mathbf{T}}(\mathcal{X})$ is **T**-spatial
 - $spec_T^* = S \circ spec_T$, so $spec_T^*(L)$ is T-sober.

Equivalence

Theorem

If **T** is itself **T**-spatial, then the functors Ω_T and $spec_T^* := spec_T \circ \Omega_T \circ spec_T$ cut down to a dual equivalence between the categories of sober **T**-spaces and **T**-spatial trestles.

Proof

- Let $T := \Omega_T \circ \text{spec}_T$ and $S := \text{spec}_T \circ \Omega_T$. Then
 - T(L) is T-spatial
 - S(X) is T-sober
 - Ω_T(X) is T-spatial
 - $spec_T^* = S \circ spec_T$, so $spec_T^*(L)$ is T-sober.

Thus

• If
$$\mathfrak{X} \simeq S(\mathfrak{X})$$
, then $\mathfrak{X} \simeq S^2(\mathfrak{X}) = \operatorname{spec}^*_{\mathsf{T}}(\Omega_{\mathsf{T}}(\mathfrak{X}))$

• If
$$L \simeq T(L)$$
 then $L \simeq T^2(L) = \Omega_T(\text{spec}^*_T(L))$

Examples

- A sober 2-space is a sober space in the usual sense
- A 2-spatial trestle is a spatial frame in the usual sense

Examples

- A sober 2-space is a sober space in the usual sense
- A 2-spatial trestle is a spatial frame in the usual sense
- A sober **2.2**-space (a bitopology) is one of the form $\mathfrak{X}.\mathfrak{Y}$ where \mathfrak{X} and \mathfrak{Y} are sober in the usual sense and

$$(\mathbf{X}, \sigma).(\mathbf{Y}, \tau) := (\mathbf{X} \times \mathbf{Y}, \sigma \otimes \tau)$$

 $\sigma \otimes \tau(\mathbf{X}, \mathbf{y}) := (\sigma(\mathbf{X}), \tau(\mathbf{y}))$

 A 2.2-spatial trestle is a product of two spatial frames K × L with ⊑ being the frame order, (a, b) ≤ (a', b') holding if and only if a ≤ a' and b ≥ b'

Examples

- A sober 2-space is a sober space in the usual sense
- A 2-spatial trestle is a spatial frame in the usual sense
- A sober **2.2**-space (a bitopology) is one of the form $\mathfrak{X}.\mathfrak{Y}$ where \mathfrak{X} and \mathfrak{Y} are sober in the usual sense and

$$egin{aligned} & (m{X},\sigma).(m{Y}, au) \coloneqq & (m{X} imesm{Y},\sigma\otimes au) \ & \sigma\otimes au(m{x},m{y}) \coloneqq & (\sigma(m{x}), au(m{y})) \end{aligned}$$

 A 2.2-spatial trestle is a product of two spatial frames K × L with ⊑ being the frame order, (a, b) ≤ (a', b') holding if and only if a ≤ a' and b ≥ b'

Question

In these examples, the equivalency theorem strengthens because $\mathsf{spec}_\mathsf{T}(\mathsf{L})$ is already sober.

What characterizes trestles for which this is true?

Example: V-spaces (entangled topology)

Entanglement of the two classical truth values

Let **V** be the set [0, 1] with \leq as the lattice order and $\frac{1}{2}$ as the least element in the information order. [Keye Martin's Bayesian order.]

Example: V-spaces (entangled topology)

Entanglement of the two classical truth values

Let **V** be the set [0, 1] with \leq as the lattice order and $\frac{1}{2}$ as the least element in the information order. [Keye Martin's Bayesian order.] A **V**-topology on *X* is a set τ of functions $X \rightarrow [0, 1]$ that includes the constant functions and is closed under min, max and \bigsqcup (defined pointwise).

Entanglement of the two classical truth values

Let **V** be the set [0, 1] with \leq as the lattice order and $\frac{1}{2}$ as the least element in the information order. [Keye Martin's Bayesian order.] A **V**-topology on *X* is a set τ of functions $X \rightarrow [0, 1]$ that includes the constant functions and is closed under min, max and \bigsqcup (defined pointwise).

- An "open" $u \in \tau$ assigns an 'entanglement' of $\{0, 1\}$ to each $x \in X$.
- More information means "more certainly 0 or more certainly 1."
- Think of the map u → u(x) as characterizing the state of a "particle" x.

V-sobriety

- (X, τ) is V-sober if and only if
 - For each $x \neq y$, there exists $u \in \tau$ so that $u(x) \neq u(y)$.
 - For any trestle map such that h(κ_q) = q for all q ∈ [0, 1], there is an x in that state: h(u) = u(x).

V-sobriety

- (X, τ) is V-sober if and only if
 - For each $x \neq y$, there exists $u \in \tau$ so that $u(x) \neq u(y)$.
 - For any trestle map such that h(κ_q) = q for all q ∈ [0, 1], there is an x in that state: h(u) = u(x).

I do not have an internal characterization of V-spatial trestles yet.

V is not **V**-spatial, so the theorem that allows us to cut down to an equivalence does not apply.

 By replacing 2 with alternative "truth value" structures, we obtain different notions of "space"

- By replacing 2 with alternative "truth value" structures, we obtain different notions of "space"
- At least some of these already occur naturally (topology, bi-topology, fuzzy topology).

- By replacing 2 with alternative "truth value" structures, we obtain different notions of "space"
- At least some of these already occur naturally (topology, bi-topology, fuzzy topology).
- The concepts of *T*₀ separation, sobriety and spatiality generalize to yield a form of Stone duality relative to any suitable concept truth values.

- By replacing 2 with alternative "truth value" structures, we obtain different notions of "space"
- At least some of these already occur naturally (topology, bi-topology, fuzzy topology).
- The concepts of *T*₀ separation, sobriety and spatiality generalize to yield a form of Stone duality relative to any suitable concept truth values.
- The key idea is the allow logic and information to determine separate orders.

- By replacing 2 with alternative "truth value" structures, we obtain different notions of "space"
- At least some of these already occur naturally (topology, bi-topology, fuzzy topology).
- The concepts of *T*₀ separation, sobriety and spatiality generalize to yield a form of Stone duality relative to any suitable concept truth values.
- The key idea is the allow logic and information to determine separate orders.
- The main open questions:
 - Which trestles **T** are already **T**-spatial (thus cutting the adjunction down to an equivalence)?
 - Are there principles to allow for added structure on trestles to obtain more interesting spatial categories?
 - Are there other (better) ways of thinking about the interplay between logic and information?