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Motivation

Stone Duality for Bitopological Spaces

Recent joint work with Achim Jung:

Unifies several Stone-type dualities in a bitopological setting.

Replaces two element lattice by Belnap’s four element bilattice
with additional structure.

Exploits an interesting distinction between “logic” and
“information.”
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Motivation

Stone Duality for Bitopological Spaces

Recent joint work with Achim Jung:

Unifies several Stone-type dualities in a bitopological setting.

Replaces two element lattice by Belnap’s four element bilattice
with additional structure.

Exploits an interesting distinction between “logic” and
“information.”

This Talk

Considers other generalizations of topology via other dualizing
objects.

Illustrates the value of maintaining “logic” versus “information.”
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Ingredients of point-set topology

The Familiar Definition

A topology on a set X is a family τ ⊆ P(X ) closed under finite
intersection and arbitrary union.

A continuous function from (X , σ) to (Y , τ) is a function from X to
Y so that f−1(V ) ∈ σ for each V ∈ τ .
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Ingredients of point-set topology

The Familiar Definition

A topology on a set X is a family τ ⊆ P(X ) closed under finite
intersection and arbitrary union.

A continuous function from (X , σ) to (Y , τ) is a function from X to
Y so that f−1(V ) ∈ σ for each V ∈ τ .

Alternate Definition

A topology on a set X is a sub-frame τ of 2X .

A continuous function from (X , σ) to (Y , τ) is a function from X to
Y so that v ◦ f ∈ σ for each v ∈ τ .
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Recalling Frames (with apologies for confusion with Kripke
frames)

Definition

A frame is a complete lattice satisfying the frame law:

a ∧
∨

B =
∨

b∈B

(a ∧ b)

A frame homomorphism preserves (⊤,∧,⊥,
∨

).
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Recalling Frames (with apologies for confusion with Kripke
frames)

Definition

A frame is a complete lattice satisfying the frame law:

a ∧
∨

B =
∨

b∈B

(a ∧ b)

A frame homomorphism preserves (⊤,∧,⊥,
∨

).

Alternate Definition

A frame is
a distributive lattice;
a dcpo in its lattice order;
having Scott continuous meet (and join).

A frame homomorphism is a Scott continuous distributive lattice
homomorphism.
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The adjunction Ω ⊣ spec

The Neighborhood Map

The characteristic of open neighborhoods of a point:

N(x)(−) : τ → 2 u 7→ u(x)

is a frame homomorphism for each x ∈ X .
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The adjunction Ω ⊣ spec

The Neighborhood Map

The characteristic of open neighborhoods of a point:

N(x)(−) : τ → 2 u 7→ u(x)

is a frame homomorphism for each x ∈ X . Let S denote the underlying
set 2 with the Scott topology.
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The adjunction Ω ⊣ spec

The Neighborhood Map

The characteristic of open neighborhoods of a point:

N(x)(−) : τ → 2 u 7→ u(x)

is a frame homomorphism for each x ∈ X . Let S denote the underlying
set 2 with the Scott topology. This makes

N(−)(u) : X → S x 7→ u(x)

continuous for each u ∈ τ .
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The adjunction Ω ⊣ spec

The Neighborhood Map

The characteristic of open neighborhoods of a point:

N(x)(−) : τ → 2 u 7→ u(x)

is a frame homomorphism for each x ∈ X . Let S denote the underlying
set 2 with the Scott topology. This makes

N(−)(u) : X → S x 7→ u(x)

continuous for each u ∈ τ .

Theorem

The contravariant hom-set functors Top(−, S) and Frm(−, 2) are
interpretable as adjoint functors Ω: Top → Frmop and
spec : Frm → Topop.
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Bitopology

Standard Definition

A bitopology on a set X is simply a pair of topologies on X .

A bicontinuous map between bitopological spaces is continuous in
each topology separately.

Examples:
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Bitopology

Standard Definition

A bitopology on a set X is simply a pair of topologies on X .

A bicontinuous map between bitopological spaces is continuous in
each topology separately.

Examples:

R with the upper open topology and the lower open topology.

A sober space with its given topology and its co-compact topology.

If ≤⊆ X × X is a topologically closed partial order on X , then the
upper open and lower open sets form a bitopology (generalizes
R).

For Stone duality, we need a treatment of bitopology via “characteristic
functions.”
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An alternate “Truth value” lattice (2 .2 – Belnap’s lattice)

ttff

⊥ (undefined)

⊤ (error)
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An alternate “Truth value” lattice (2 .2 – Belnap’s lattice)

ttff Information order
(dcpo)

Logic (distributive lattice)

⊤ (error)

⊥ (undefined)
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An alternate “Truth value” lattice (2 .2 – Belnap’s lattice)

2

⊥

⊤ttff Information order
(dcpo)

Logic (distributive lattice)

⊤ (error)

⊥ (undefined)
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Bitopology (v2.0)

Alternate Definition

A bitopology on a set X is a collection τ ⊆ (2.2)X so that
τ is closed under ∧ and ∨;
τ is closed under suprema of directed sets;
τ includes all (four) constant functions.

The operations are defined pointwise.

A bicontinuous function from (X , σ) to (Y , τ) is a function f from X
to Y so that u ◦ f ∈ σ for each u ∈ τ .
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Bitopology (v2.0)

Alternate Definition

A bitopology on a set X is a collection τ ⊆ (2.2)X so that
τ is closed under ∧ and ∨;
τ is closed under suprema of directed sets;
τ includes all (four) constant functions.

The operations are defined pointwise.

A bicontinuous function from (X , σ) to (Y , τ) is a function f from X
to Y so that u ◦ f ∈ σ for each u ∈ τ .

Lemma

The standard and alternate definitions of bitopologies and bicontinuity
are equivalent.
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What about the adjunction Ω ⊣ spec?

Definition

Let S.S denote the bitopology on the underlying set 2.2 equipped with
the bitopology generated by id : 2.2 → 2.2.
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What about the adjunction Ω ⊣ spec?

Definition

Let S.S denote the bitopology on the underlying set 2.2 equipped with
the bitopology generated by id : 2.2 → 2.2.

Definition

A trestle is a structure L = (L;∧, tt ,∨, ff ;⊑,⊥) so that
(L;∧, tt,∨, ff ) is a bounded distributive lattice;
(L;⊑,⊥) is a dcpo with least element ⊥;
∧ and ∨ are Scott continuous.

A trestle homomorphism preserves all of this structure.
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What about the adjunction Ω ⊣ spec?

Definition

Let S.S denote the bitopology on the underlying set 2.2 equipped with
the bitopology generated by id : 2.2 → 2.2.

Definition

A trestle is a structure L = (L;∧, tt ,∨, ff ;⊑,⊥) so that
(L;∧, tt,∨, ff ) is a bounded distributive lattice;
(L;⊑,⊥) is a dcpo with least element ⊥;
∧ and ∨ are Scott continuous.

A trestle homomorphism preserves all of this structure.

Lemma

For any bitopological space X = (X , τ), the trestle τ is isomorphic to
biTop (X, S.S) where the operations are defined point-wise.
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Bitopological Ω ⊣ spec

Lemma

For two frames K and L, impose a bitopology on Frm2(K × L, 2.2)
generated by:

U(a, b)(h) := h(a, b)

The maps Uu form a bitopology. In particular, u 7→ Uu is a surjective
homomorphism in Frm2. So Frm2(−, 2.2) determines a contravariant
functor spec : Frm2 → biTop
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Bitopological Ω ⊣ spec

Lemma

For two frames K and L, impose a bitopology on Frm2(K × L, 2.2)
generated by:

U(a, b)(h) := h(a, b)

The maps Uu form a bitopology. In particular, u 7→ Uu is a surjective
homomorphism in Frm2. So Frm2(−, 2.2) determines a contravariant
functor spec : Frm2 → biTop

Theorem

The functors Ω and spec are dually adjoint.
[N.B. Frm2 is a full subcategory of Tre, as is Frm .]
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Generalized Topology

Definition

Let T be any fixed trestle.

A T-topology on set X is a sub-trestle τ ⊆ TX that includes all
constant functions: x 7→ a for each a ∈ T.

A T-space is a set equipped with a T-topology.

A T-continuous map from (X , σ) to (Y , τ) is a map from X to Y so
that u ◦ f ∈ σ for each u ∈ τ .
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Generalized Topology

Definition

Let T be any fixed trestle.

A T-topology on set X is a sub-trestle τ ⊆ TX that includes all
constant functions: x 7→ a for each a ∈ T.

A T-space is a set equipped with a T-topology.

A T-continuous map from (X , σ) to (Y , τ) is a map from X to Y so
that u ◦ f ∈ σ for each u ∈ τ .

Examples:

2-topologies are topologies; 2-continuous functions are
continuous functions.

2.2-topologies are bitopologies; 2.2-continuous functions are
bicontinuous functions.

1-topologies are sets; 1-continuous functions are functions.
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The functor ΩT

Lemma

For any T-continuous function f : (X , σ) → (Y , τ), the map v 7→ v ◦ f is
a trestle homomorphism from τ to σ.
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The functor ΩT

Lemma

For any T-continuous function f : (X , σ) → (Y , τ), the map v 7→ v ◦ f is
a trestle homomorphism from τ to σ.

Thus

Definition

ΩT(X , τ) := τ and ΩT(f ) := (v 7→ v ◦ f ) define a contravariant functor
from T-space to Tres .

Examples:

Ω2(f ) = f−1 restricted to open sets.

Ω1(f ) = f−1 unrestricted.

Ω2.2(f ) is determined by f−1 restricted to opens in the two
underlying topologies.
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Basic Theorem

Theorem

The functor ΩT has a right dual adjoint.
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Basic Theorem

Theorem

The functor ΩT has a right dual adjoint.

Proof Sketch

Define τT to be the T-topology on (the underlying set of) T generated
by id : T → T.
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Basic Theorem

Theorem

The functor ΩT has a right dual adjoint.

Proof Sketch

Define τT to be the T-topology on (the underlying set of) T generated
by id : T → T.

So ΩT is represented by the hom-set functor T-space (−, T).

M. Andrew Moshier (Chapman University) T -topology August 2007 13 / 21



Basic Theorem continued

Proof Sketch continued

Define specT : Tres → T-space by

specT(L) := Tres(L, T).

The T-topology is generated by the functions Bu : specT(L) → T

Bu(p) := p(u)

for each u ∈ L.

specT(h)(p) = p ◦ h
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Basic Theorem continued

Proof Sketch continued

Define specT : Tres → T-space by

specT(L) := Tres(L, T).

The T-topology is generated by the functions Bu : specT(L) → T

Bu(p) := p(u)

for each u ∈ L.

specT(h)(p) = p ◦ h

Simple definition chasing shows that

Tres(L,ΩT(X)) ≃ T-space (X, specT(L))

naturally in L and X. �
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Sobriety

Unit

On the “spatial side”, the unit of the adjunction η : X → specT(ΩT(X)) is
given by

η(x)(u) = u(x)
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Sobriety

Unit

On the “spatial side”, the unit of the adjunction η : X → specT(ΩT(X)) is
given by

η(x)(u) = u(x)

Theorem

For T-topology X, the following are equivalent:

X ≃ specT(ΩT(X))

η is an isomorphism

η is a bijection

η is a surjection and X ≃ specT(L) for some L.
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Sobriety

Unit

On the “spatial side”, the unit of the adjunction η : X → specT(ΩT(X)) is
given by

η(x)(u) = u(x)

Theorem

For T-topology X, the following are equivalent:

X ≃ specT(ΩT(X))

η is an isomorphism

η is a bijection

η is a surjection and X ≃ specT(L) for some L.

Definition

A T-space is sober iff it satisfies these conditions.
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Spatiality

Co-unit

On the “algebra side”, the (co)unit of the adjunction ǫ : L → ΩTspecT is
given by

ǫ(a)(p) = p(a)
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Spatiality

Co-unit

On the “algebra side”, the (co)unit of the adjunction ǫ : L → ΩTspecT is
given by

ǫ(a)(p) = p(a)

Theorem

For a trestle L, the following are equivalent:

L ≃ ΩT(specT(L))

ǫ is an isomorphism

ǫ is a bijection.

η is an epimorphism and L ≃ ΩT(X) for some T-space X
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Spatiality

Co-unit

On the “algebra side”, the (co)unit of the adjunction ǫ : L → ΩTspecT is
given by

ǫ(a)(p) = p(a)

Theorem

For a trestle L, the following are equivalent:

L ≃ ΩT(specT(L))

ǫ is an isomorphism

ǫ is a bijection.

η is an epimorphism and L ≃ ΩT(X) for some T-space X

Definition

A trestle is T-spatial iff it satisfies these conditions.
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Equivalence

Theorem

If T is itself T-spatial, then the functors ΩT and
spec∗T := specT ◦ ΩT ◦ specT cut down to a dual equivalence between
the categories of sober T-spaces and T-spatial trestles.

Proof
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Equivalence

Theorem

If T is itself T-spatial, then the functors ΩT and
spec∗T := specT ◦ ΩT ◦ specT cut down to a dual equivalence between
the categories of sober T-spaces and T-spatial trestles.

Proof

Let T := ΩT ◦ specT and S := specT ◦ ΩT. Then

T (L) is T-spatial

S(X) is T-sober

ΩT(X) is T-spatial

spec∗T = S ◦ specT, so spec∗T(L) is T-sober.
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Equivalence

Theorem

If T is itself T-spatial, then the functors ΩT and
spec∗T := specT ◦ ΩT ◦ specT cut down to a dual equivalence between
the categories of sober T-spaces and T-spatial trestles.

Proof

Let T := ΩT ◦ specT and S := specT ◦ ΩT. Then

T (L) is T-spatial

S(X) is T-sober

ΩT(X) is T-spatial

spec∗T = S ◦ specT, so spec∗T(L) is T-sober.

Thus

If X ≃ S(X), then X ≃ S2(X) = spec∗T(ΩT(X))

If L ≃ T (L) then L ≃ T 2(L) = ΩT(spec∗T(L))
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Examples

A sober 2-space is a sober space in the usual sense
A 2-spatial trestle is a spatial frame in the usual sense
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Examples

A sober 2-space is a sober space in the usual sense
A 2-spatial trestle is a spatial frame in the usual sense
A sober 2.2-space (a bitopology) is one of the form X.Y where X

and Y are sober in the usual sense and

(X , σ).(Y , τ) := (X × Y , σ ⊗ τ)

σ ⊗ τ(x , y) := (σ(x), τ(y))

A 2.2-spatial trestle is a product of two spatial frames K × L with ⊑
being the frame order, (a, b) ≤ (a′

, b′) holding if and only if a ≤ a′

and b ≥ b′
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Examples

A sober 2-space is a sober space in the usual sense
A 2-spatial trestle is a spatial frame in the usual sense
A sober 2.2-space (a bitopology) is one of the form X.Y where X

and Y are sober in the usual sense and

(X , σ).(Y , τ) := (X × Y , σ ⊗ τ)

σ ⊗ τ(x , y) := (σ(x), τ(y))

A 2.2-spatial trestle is a product of two spatial frames K × L with ⊑
being the frame order, (a, b) ≤ (a′

, b′) holding if and only if a ≤ a′

and b ≥ b′

Question

In these examples, the equivalency theorem strengthens because
specT(L) is already sober.

What characterizes trestles for which this is true?
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Example: V-spaces (entangled topology)

Entanglement of the two classical truth values

Let V be the set [0, 1] with ≤ as the lattice order and 1
2 as the least

element in the information order. [Keye Martin’s Bayesian order.]
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element in the information order. [Keye Martin’s Bayesian order.]
A V-topology on X is a set τ of functions X → [0, 1] that includes the
constant functions and is closed under min, max and

⊔
(defined

pointwise).
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Example: V-spaces (entangled topology)

Entanglement of the two classical truth values

Let V be the set [0, 1] with ≤ as the lattice order and 1
2 as the least

element in the information order. [Keye Martin’s Bayesian order.]
A V-topology on X is a set τ of functions X → [0, 1] that includes the
constant functions and is closed under min, max and

⊔
(defined

pointwise).

An “open” u ∈ τ assigns an ‘entanglement’ of {0, 1} to each
x ∈ X .

More information means “more certainly 0 or more certainly 1.”

Think of the map u 7→ u(x) as characterizing the state of a
“particle” x .
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V-spaces continued

V-sobriety

(X , τ) is V-sober if and only if

For each x 6= y , there exists u ∈ τ so that u(x) 6= u(y).

For any trestle map such that h(κq) = q for all q ∈ [0, 1], there is
an x in that state: h(u) = u(x).

M. Andrew Moshier (Chapman University) T -topology August 2007 20 / 21



V-spaces continued

V-sobriety

(X , τ) is V-sober if and only if

For each x 6= y , there exists u ∈ τ so that u(x) 6= u(y).

For any trestle map such that h(κq) = q for all q ∈ [0, 1], there is
an x in that state: h(u) = u(x).

I do not have an internal characterization of V-spatial trestles yet.

V is not V-spatial, so the theorem that allows us to cut down to an
equivalence does not apply.
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Conclusions

By replacing 2 with alternative “truth value” structures, we obtain
different notions of “space”
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Conclusions

By replacing 2 with alternative “truth value” structures, we obtain
different notions of “space”
At least some of these already occur naturally (topology,
bi-topology, fuzzy topology).
The concepts of T0 separation, sobriety and spatiality generalize
to yield a form of Stone duality relative to any suitable concept
truth values.
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At least some of these already occur naturally (topology,
bi-topology, fuzzy topology).
The concepts of T0 separation, sobriety and spatiality generalize
to yield a form of Stone duality relative to any suitable concept
truth values.
The key idea is the allow logic and information to determine
separate orders.
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Conclusions

By replacing 2 with alternative “truth value” structures, we obtain
different notions of “space”
At least some of these already occur naturally (topology,
bi-topology, fuzzy topology).
The concepts of T0 separation, sobriety and spatiality generalize
to yield a form of Stone duality relative to any suitable concept
truth values.
The key idea is the allow logic and information to determine
separate orders.
The main open questions:

Which trestles T are already T-spatial (thus cutting the adjunction
down to an equivalence)?
Are there principles to allow for added structure on trestles to obtain
more interesting spatial categories?
Are there other (better) ways of thinking about the interplay
between logic and information?
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