On the structure of linear pseudo-BCK-algebras

Jan Kühr

Department of Algebra and Geometry Faculty of Science Palacký University at Olomouc Olomouc, Czech Republic kuhr@inf.upol.cz

Joint work with Anatolij Dvurečenskij

- Every linear hoop/BL-algebra is an ordinal sum of linear Wajsberg hoops [Agliano & Montagna]
- ② The {→,1}-subreducts of hoops are BCK-algebras satisfying the identity

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z)$$

- Every linear pseudo-hoop/pseudo-BL-algebra is an ordinal sum of linear Wajsberg pseudo-hoops [Dvurečenskij]
- ② The $\{\rightarrow, \rightsquigarrow, 1\}$ -subreducts of pseudo-hoops are pseudo-BCK-algebras satisfying

?

- Every linear hoop/BL-algebra is an ordinal sum of linear Wajsberg hoops [Agliano & Montagna]
- **②** The $\{\rightarrow, 1\}$ -subreducts of hoops are BCK-algebras satisfying the identity

$$(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)$$

- Every linear pseudo-hoop/pseudo-BL-algebra is an ordinal sum of linear Wajsberg pseudo-hoops [Dvurečenskij]
- ② The {→, \rightsquigarrow , 1}-subreducts of pseudo-hoops are pseudo-BCK-algebras satisfying

?

- Every linear hoop/BL-algebra is an ordinal sum of linear Wajsberg hoops [Agliano & Montagna]
- **②** The $\{\rightarrow, 1\}$ -subreducts of hoops are BCK-algebras satisfying the identity

$$(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)$$

- Every linear pseudo-hoop/pseudo-BL-algebra is an ordinal sum of linear Wajsberg pseudo-hoops [Dvurečenskij]
- ② The {→, \rightsquigarrow , 1}-subreducts of pseudo-hoops are pseudo-BCK-algebras satisfying

- Every linear hoop/BL-algebra is an ordinal sum of linear Wajsberg hoops [Agliano & Montagna]
- **②** The $\{\rightarrow, 1\}$ -subreducts of hoops are BCK-algebras satisfying the identity

$$(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)$$

- Every linear pseudo-hoop/pseudo-BL-algebra is an ordinal sum of linear Wajsberg pseudo-hoops [Dvurečenskij]

?

- 4 E b 4 E b

A **porim** (= partially ordered residuated integral monoid) is a structure $(A, \leq, \cdot, \rightarrow, \rightsquigarrow, 1)$ where

- (A, \leq) is a poset with greatest element 1,
- $(A, \cdot, 1)$ is a monoid,
- $c \leq a \rightarrow b$ iff $c \cdot a \leq b$, and $c \leq a \rightsquigarrow b$ iff $a \cdot c \leq b$.

A **pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a porim satisfying

$$(x \to y) \cdot x = y \cdot (y \rightsquigarrow x).$$

A **Wajsberg pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a pseudo-hoop satisfying

$$(x \to y) \rightsquigarrow y = (y \rightsquigarrow x) \to x.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

A **porim** (= partially ordered residuated integral monoid) is a structure $(A, \leq, \cdot, \rightarrow, \rightsquigarrow, 1)$ where

- (A, \leq) is a poset with greatest element 1,
- $(A, \cdot, 1)$ is a monoid,
- $c \leq a \rightarrow b$ iff $c \cdot a \leq b$, and $c \leq a \rightsquigarrow b$ iff $a \cdot c \leq b$.

A **pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a porim satisfying

$$(x \rightarrow y) \cdot x = y \cdot (y \rightsquigarrow x).$$

A **Wajsberg pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a pseudo-hoop satisfying

$$(x \to y) \rightsquigarrow y = (y \rightsquigarrow x) \to x.$$

伺下 イヨト イヨト

A **porim** (= partially ordered residuated integral monoid) is a structure $(A, \leq, \cdot, \rightarrow, \rightsquigarrow, 1)$ where

- (A, \leq) is a poset with greatest element 1,
- $(A, \cdot, 1)$ is a monoid,
- $c \leq a \rightarrow b$ iff $c \cdot a \leq b$, and $c \leq a \rightsquigarrow b$ iff $a \cdot c \leq b$.

A **pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a porim satisfying

$$(x \rightarrow y) \cdot x = y \cdot (y \rightsquigarrow x).$$

A **Wajsberg pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a pseudo-hoop satisfying

$$(x \rightarrow y) \rightsquigarrow y = (y \rightsquigarrow x) \rightarrow x.$$

伺下 イヨト イヨト

Pseudo-MV-algebras = bounded Wajsberg pseudo-hoops

Pseudo-BL-algebras = bounded pseudo-hoops satisfying

$$(x \to y) \to z \le ((y \to x) \to z) \to z (x \rightsquigarrow y) \rightsquigarrow z \le ((y \rightsquigarrow x) \rightsquigarrow z) \rightsquigarrow z$$

3 1 4 3

Pseudo-MV-algebras = bounded Wajsberg pseudo-hoops

Pseudo-BL-algebras = bounded pseudo-hoops satisfying

$$(x \rightarrow y) \rightarrow z \leq ((y \rightarrow x) \rightarrow z) \rightarrow z$$

 $(x \rightsquigarrow y) \rightsquigarrow z \leq ((y \rightsquigarrow x) \rightsquigarrow z) \rightsquigarrow z$

$$(x \to y) \rightsquigarrow ((y \to z) \rightsquigarrow (x \to z)) = 1,$$
(1)

$$(x \rightsquigarrow y) \to ((y \rightsquigarrow z) \to (x \rightsquigarrow z)) = 1,$$
(2)

$$1 \to x = x,$$
(3)

$$1 \rightsquigarrow x = x, \tag{4}$$

$$x \to 1 = 1, \tag{5}$$

$$(x \cdot y) \to z = x \to (y \to z),$$
 (6)

$$x \to y = 1$$
 & $y \to x = 1$ \Rightarrow $x = y$. (7)

A **pseudo-BCK-algebra** [Georgescu & lorgulescu] is an algebra $(A, \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) satisfying (1)—(5) and (7).

Pseudo-BCK-algebras are the $\{\rightarrow, \rightsquigarrow, 1\}$ -subreducts of porims.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$(x \to y) \rightsquigarrow ((y \to z) \rightsquigarrow (x \to z)) = 1,$$
 (1)

$$(x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) = 1,$$
 (2)

$$1 \to x = x, \tag{3}$$

$$1 \rightsquigarrow x = x, \tag{4}$$

$$x \to 1 = 1, \tag{5}$$

$$(x \cdot y) \to z = x \to (y \to z),$$
 (6)

$$x \to y = 1$$
 & $y \to x = 1$ \Rightarrow $x = y$. (7)

A **pseudo-BCK-algebra** [Georgescu & lorgulescu] is an algebra $(A, \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) satisfying (1)—(5) and (7).

Pseudo-BCK-algebras are the $\{\rightarrow, \rightsquigarrow, 1\}$ -subreducts of porims.

4 冊 ト 4 戸 ト 4 戸 ト

$$(x \to y) \rightsquigarrow ((y \to z) \rightsquigarrow (x \to z)) = 1,$$
 (1)

$$(x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) = 1,$$
 (2)

$$1 \to x = x, \tag{3}$$

$$1 \rightsquigarrow x = x, \tag{4}$$

$$x \to 1 = 1, \tag{5}$$

$$(x \cdot y) \to z = x \to (y \to z),$$
 (6)

$$x \to y = 1$$
 & $y \to x = 1$ \Rightarrow $x = y$. (7)

A **pseudo-BCK-algebra** [Georgescu & lorgulescu] is an algebra $(A, \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) satisfying (1)—(5) and (7).

Pseudo-BCK-algebras are the $\{\rightarrow, \rightsquigarrow, 1\}$ -subreducts of porims.

伺下 イヨト イヨト ニヨ

$$(x \to y) \rightsquigarrow ((y \to z) \rightsquigarrow (x \to z)) = 1,$$
 (1)

$$(x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) = 1,$$
 (2)

$$1 \to x = x, \tag{3}$$

$$1 \rightsquigarrow x = x, \tag{4}$$

$$x \to 1 = 1, \tag{5}$$

$$(x \cdot y) \to z = x \to (y \to z),$$
 (6)

$$x \to y = 1$$
 & $y \to x = 1$ \Rightarrow $x = y$. (7)

A **pseudo-BCK-algebra** [Georgescu & lorgulescu] is an algebra $(A, \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) satisfying (1)—(5) and (7).

Pseudo-BCK-algebras are the $\{\rightarrow, \rightsquigarrow, 1\}$ -subreducts of porims.

Let $\mathbf{A} = (A, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCK-algebra. The relation \leq given by

$$x \leq y$$
 iff $x \rightarrow y = 1$ (iff $x \rightsquigarrow y = 1$)

is a partial order on A; 1 is the greatest element of (A, \leq) . If (A, \leq) is a chain, then **A** is a **linear** pseudo-BCK-algebra.

Let $\mathbf{A} = (A, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCK-algebra. The relation \leq given by

$$x \leq y$$
 iff $x \rightarrow y = 1$ (iff $x \rightsquigarrow y = 1$)

is a partial order on A; 1 is the greatest element of (A, \leq) . If (A, \leq) is a chain, then **A** is a **linear** pseudo-BCK-algebra.

4 B K 4 B K

$$(x \to y) \rightsquigarrow y = (y \rightsquigarrow x) \to x,$$

and the following "relative cancellation" property:

$$x \ge y$$
 & $x \ge z$ & $x \to y = x \to z$ \Rightarrow $y = z$.

• RCP can be replaced by the identity

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z)$$

- pseudo-ŁBCK-algebras = the {→, →, 1}-subreducts of Wajsberg pseudo-hoops and pseudo-MV-algebras
- pseudo-ŁBCK-algebras = Bosbach's cone algebras

$$(x \to y) \rightsquigarrow y = (y \rightsquigarrow x) \to x,$$

and the following "relative cancellation" property:

$$x \ge y$$
 & $x \ge z$ & $x \to y = x \to z$ \Rightarrow $y = z$.

RCP can be replaced by the identity

$$(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)$$

- pseudo-ŁBCK-algebras = the {→, →, 1}-subreducts of Wajsberg pseudo-hoops and pseudo-MV-algebras
- pseudo-LBCK-algebras = Bosbach's cone algebras

4 3 4 4 3

$$(x \to y) \rightsquigarrow y = (y \rightsquigarrow x) \to x,$$

and the following "relative cancellation" property:

$$x \ge y$$
 & $x \ge z$ & $x \to y = x \to z$ \Rightarrow $y = z$.

RCP can be replaced by the identity

$$(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)$$

- pseudo-ŁBCK-algebras = the {→, →, 1}-subreducts of Wajsberg pseudo-hoops and pseudo-MV-algebras
- pseudo-ŁBCK-algebras = Bosbach's cone algebras

$$(x \to y) \rightsquigarrow y = (y \rightsquigarrow x) \to x,$$

and the following "relative cancellation" property:

$$x \ge y$$
 & $x \ge z$ & $x \to y = x \to z$ \Rightarrow $y = z$.

RCP can be replaced by the identity

$$(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)$$

- pseudo-ŁBCK-algebras = the {→, →, 1}-subreducts of Wajsberg pseudo-hoops and pseudo-MV-algebras
- pseudo-ŁBCK-algebras = Bosbach's cone algebras

Let (I, \leq) be a non-empty chain. The ordinal sum of linear pseudo-BCK-algebras \mathbf{A}_i $(i \in I)$ such that $A_i \cap A_j = \{1\}$ for all $i \neq j \in I$ is a pseudo-BCK-algebra $\bigoplus_{i \in I} \mathbf{A}_i = (\bigcup_{i \in I} A_i, \rightarrow, \rightsquigarrow, 1)$ where the operations $\rightarrow, \rightsquigarrow$ are defined as follows:

$$\begin{aligned} x &\to y = \begin{cases} x \to_i y & \text{if } x, y \in A_i, \\ 1 & \text{if } x \in A_i \setminus \{1\}, y \in A_j, i < j, \\ y & \text{if } x \in A_i, y \in A_j, i > j, \end{cases} \\ x &\to y = \begin{cases} x \rightsquigarrow_i y & \text{if } x, y \in A_i, \\ 1 & \text{if } x \in A_i \setminus \{1\}, y \in A_j, i < j, \\ y & \text{if } x \in A_i, y \in A_j, i > j. \end{cases}$$

Image: A image: A

$$\begin{array}{c|c} y \in A_{j} \\ i < j \\ x \rightarrow y = 1 = x \rightsquigarrow y \\ y \rightarrow x = x = y \rightsquigarrow x \\ x \in A_{i} \end{array}$$

・ロト ・日・・日・・日・・ つくの

Which linear pseudo-BCK-algebras arise as ordinal sums of linear pseudo-LBCK-algebras?

A linear pseudo-BCK-algebra is an ordinal sum of linear pseudo-ŁBCK-algebras iff it satisfies the identities

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z),$$
(H)

$$(((x \to y) \rightsquigarrow y) \to x) \rightsquigarrow x = (((y \rightsquigarrow x) \to x) \rightsquigarrow y) \to y.$$
(J)

The identity (H), as well as

$$(x \rightsquigarrow y) \rightsquigarrow (x \rightsquigarrow z) = (y \rightsquigarrow x) \rightsquigarrow (y \rightsquigarrow z),$$
 (H')

holds in all pseudo-hoops, but there exist pseudo-hoops that do not satisfy (J) (though it holds in hoops).

4 3 5 4

Which linear pseudo-BCK-algebras arise as ordinal sums of linear pseudo-LBCK-algebras?

A linear pseudo-BCK-algebra is an ordinal sum of linear pseudo-ŁBCK-algebras iff it satisfies the identities

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z),$$
 (H)

$$(((x \to y) \rightsquigarrow y) \to x) \rightsquigarrow x = (((y \rightsquigarrow x) \to x) \rightsquigarrow y) \to y. \quad (\mathsf{J})$$

The identity (H), as well as

$$(x \rightsquigarrow y) \rightsquigarrow (x \rightsquigarrow z) = (y \rightsquigarrow x) \rightsquigarrow (y \rightsquigarrow z),$$
 (H')

holds in all pseudo-hoops, but there exist pseudo-hoops that do not satisfy (J) (though it holds in hoops).

4 3 5 4

Which linear pseudo-BCK-algebras arise as ordinal sums of linear pseudo-LBCK-algebras?

A linear pseudo-BCK-algebra is an ordinal sum of linear pseudo-ŁBCK-algebras iff it satisfies the identities

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z), \tag{H}$$

$$(((x \to y) \rightsquigarrow y) \to x) \rightsquigarrow x = (((y \rightsquigarrow x) \to x) \rightsquigarrow y) \to y. \quad (\mathsf{J})$$

The identity (H), as well as

$$(x \rightsquigarrow y) \rightsquigarrow (x \rightsquigarrow z) = (y \rightsquigarrow x) \rightsquigarrow (y \rightsquigarrow z),$$
 (H')

holds in all pseudo-hoops, but there exist pseudo-hoops that do not satisfy (J) (though it holds in hoops).

- x < y for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow , \rightsquigarrow ,
- $y \to x = x = y \rightsquigarrow x$ for all $x \in X$ and $y \in A \setminus X$.
- A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.
 - If A is the ordinal sum A₁ ⊕ A₂ of linear pseudo-BCK-algebras A₁ and A₂, then X = A₁ \ {1} is a cut of A. If A₁ and A₂ are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.
 - Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then A₁ = (X ∪ {1}, →, →, 1) and A₂ = (A \ X, →, →, 1) are subalgebras of A, and A = A₁ ⊕ A₂. If the cut X is non-trivial, then A₁, A₂ are non-trivial pseudo-BCK-algebras.

- 4 周 ト 4 戸 ト 4 戸 ト

• x < y for all $x \in X$ and $y \in A \setminus X$,

• $A \setminus X$ is closed under \rightarrow , \rightsquigarrow ,

• $y \to x = x = y \rightsquigarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.

- If A is the ordinal sum A₁ ⊕ A₂ of linear pseudo-BCK-algebras A₁ and A₂, then X = A₁ \ {1} is a cut of A. If A₁ and A₂ are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.
- Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then A₁ = (X ∪ {1}, →, →, 1) and A₂ = (A \ X, →, →, 1) are subalgebras of A, and A = A₁ ⊕ A₂. If the cut X is non-trivial, then A₁, A₂ are non-trivial pseudo-BCK-algebras.

- 4 周 ト 4 戸 ト 4 戸 ト

- x < y for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow , \rightsquigarrow ,

• $y \to x = x = y \rightsquigarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.

- If A is the ordinal sum A₁ ⊕ A₂ of linear pseudo-BCK-algebras A₁ and A₂, then X = A₁ \ {1} is a cut of A. If A₁ and A₂ are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.
- Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then A₁ = (X ∪ {1}, →, →, 1) and A₂ = (A \ X, →, →, 1) are subalgebras of A, and A = A₁ ⊕ A₂. If the cut X is non-trivial, then A₁, A₂ are non-trivial pseudo-BCK-algebras.

- x < y for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow , \rightsquigarrow ,
- $y \rightarrow x = x = y \rightsquigarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.

- If A is the ordinal sum A₁ ⊕ A₂ of linear pseudo-BCK-algebras A₁ and A₂, then X = A₁ \ {1} is a cut of A. If A₁ and A₂ are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.
- 2 Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then A₁ = (X ∪ {1}, →, →, 1) and A₂ = (A \ X, →, →, 1) are subalgebras of A, and A = A₁ ⊕ A₂. If the cut X is non-trivial, then A₁, A₂ are non-trivial pseudo-BCK-algebras.

- x < y for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow , \rightsquigarrow ,
- $y \rightarrow x = x = y \rightsquigarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.

- If A is the ordinal sum A₁ ⊕ A₂ of linear pseudo-BCK-algebras A₁ and A₂, then X = A₁ \ {1} is a cut of A. If A₁ and A₂ are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.
- Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then A₁ = (X ∪ {1}, →, →, 1) and A₂ = (A \ X, →, →, 1) are subalgebras of A, and A = A₁ ⊕ A₂. If the cut X is non-trivial, then A₁, A₂ are non-trivial pseudo-BCK-algebras.

- x < y for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow , \rightsquigarrow ,
- $y \to x = x = y \rightsquigarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is trivial if $X = \emptyset$ or $X = A \setminus \{1\}$.

- If A is the ordinal sum A₁ ⊕ A₂ of linear pseudo-BCK-algebras A₁ and A₂, then X = A₁ \ {1} is a cut of A. If A₁ and A₂ are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.
- Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then A₁ = (X ∪ {1}, →, →, 1) and A₂ = (A \ X, →, →, 1) are subalgebras of A, and A = A₁ ⊕ A₂. If the cut X is non-trivial, then A₁, A₂ are non-trivial pseudo-BCK-algebras.

- x < y for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow , \rightsquigarrow ,
- $y \to x = x = y \rightsquigarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.

- If A is the ordinal sum A₁ ⊕ A₂ of linear pseudo-BCK-algebras A₁ and A₂, then X = A₁ \ {1} is a cut of A. If A₁ and A₂ are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.
- 2 Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then A₁ = (X ∪ {1}, →, →, 1) and A₂ = (A \ X, →, →, 1) are subalgebras of A, and A = A₁ ⊕ A₂. If the cut X is non-trivial, then A₁, A₂ are non-trivial pseudo-BCK-algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let **A** be a linear pseudo-BCK-algebra. For $a \in A \setminus \{1\}$ we put

$$X_{a} = \{x \in A \setminus \{1\} \mid a \to x = x\}.$$

We have

$$X_{a} = \{x \in A \setminus \{1\} \mid a \rightsquigarrow x = x\}.$$

If **A** satisfies the identities (H) and (J), then for every $a \in A \setminus \{1\}$, X_a is a cut of **A**. The cut is non-trivial provided that $X_a \neq \emptyset$.

Let **A** be a linear pseudo-BCK-algebra satisfying (H) and (J). The following statements are equivalent:

- **A** is sum irreducible.
- ② For all a, b ∈ A, if a → b = b (or a → b = b), then a = 1 or b = 1.
- **A** is a pseudo-ŁBCK-algebra.

Let **A** be a linear pseudo-BCK-algebra. For $a \in A \setminus \{1\}$ we put

$$X_{a} = \{x \in A \setminus \{1\} \mid a \to x = x\}.$$

We have

$$X_{a} = \{x \in A \setminus \{1\} \mid a \rightsquigarrow x = x\}.$$

If **A** satisfies the identities (H) and (J), then for every $a \in A \setminus \{1\}$, X_a is a cut of **A**. The cut is non-trivial provided that $X_a \neq \emptyset$.

Let **A** be a linear pseudo-BCK-algebra satisfying (H) and (J). The following statements are equivalent:

- **A** is sum irreducible.
- ② For all $a, b \in A$, if a → b = b (or a → b = b), then a = 1 or b = 1.
- A is a pseudo-LBCK-algebra.

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z)$$
 (H)

$$(((x \to y) \rightsquigarrow y) \to x) \rightsquigarrow x = (((y \rightsquigarrow x) \to x) \rightsquigarrow y) \rightsquigarrow y) \quad (\mathsf{J})$$

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-LBCK-algebras.

For every linear pseudo-BCK-algebra **A**, the following statements are equivalent:

- A satisfies the identities (H) and (J).
- A is an ordinal sum of linear pseudo-LBCK-algebras.
- **()** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-hoop.
- **()** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-BL-algebra.

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z)$$
(H)
$$(((x \to y) \rightsquigarrow y) \to x) \rightsquigarrow x = (((y \rightsquigarrow x) \to x) \rightsquigarrow y) \rightsquigarrow y)$$
(J)

For every linear pseudo-BCK-algebra **A**, the following statements are equivalent:

- **•** A satisfies the identities (H) and (J).
- 2 A is an ordinal sum of linear pseudo-ŁBCK-algebras.
- **(3)** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-hoop.
- **()** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-BL-algebra.

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z) \tag{H}$$

$$(((x \to y) \rightsquigarrow y) \to x) \rightsquigarrow x = (((y \rightsquigarrow x) \to x) \rightsquigarrow y) \rightsquigarrow y) \quad (\mathsf{J})$$

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-LBCK-algebras.

For every linear pseudo-BCK-algebra **A**, the following statements are equivalent:

- A satisfies the identities (H) and (J).
- A is an ordinal sum of linear pseudo-LBCK-algebras.
- **(3)** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-hoop.
- **()** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-BL-algebra.

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z)$$
 (H)

$$(((x \to y) \rightsquigarrow y) \to x) \rightsquigarrow x = (((y \rightsquigarrow x) \to x) \rightsquigarrow y) \rightsquigarrow y) \quad (\mathsf{J})$$

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-LBCK-algebras.

For every linear pseudo-BCK-algebra **A**, the following statements are equivalent:

- **A** satisfies the identities (H) and (J).
- **Q** A is an ordinal sum of linear pseudo-ŁBCK-algebras.
- **(3)** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-hoop.
- **()** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-BL-algebra.

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z)$$
 (H)

$$(((x \to y) \rightsquigarrow y) \to x) \rightsquigarrow x = (((y \rightsquigarrow x) \to x) \rightsquigarrow y) \rightsquigarrow y) \quad (\mathsf{J})$$

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-LBCK-algebras.

For every linear pseudo-BCK-algebra **A**, the following statements are equivalent:

- **•** A satisfies the identities (H) and (J).
- **Q** A is an ordinal sum of linear pseudo-ŁBCK-algebras.

③ A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-hoop.

() A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-BL-algebra.

$$(x \to y) \to (x \to z) = (y \to x) \to (y \to z)$$
 (H)

$$(((x \to y) \rightsquigarrow y) \to x) \rightsquigarrow x = (((y \rightsquigarrow x) \to x) \rightsquigarrow y) \rightsquigarrow y) \quad (\mathsf{J})$$

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-LBCK-algebras.

For every linear pseudo-BCK-algebra **A**, the following statements are equivalent:

- **•** A satisfies the identities (H) and (J).
- **Q** A is an ordinal sum of linear pseudo-ŁBCK-algebras.

3 A is a
$$\{\rightarrow, \rightsquigarrow, 1\}$$
-subreduct of a linear pseudo-hoop.

③ A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a linear pseudo-BL-algebra.

Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

$$(x \to y) \to u \leq (((((((y \to x) \to z) \to z) \to w) \to w) \to u) \to u.$$
(R)

For every pseudo-BCK-algebra **A**, the following are equivalent:

- A is a {→, ~→, 1}-subreduct of a representable pseudo-BLalgebra;
- $\textcircled{O} A \text{ is a } \{\rightarrow, \rightsquigarrow, 1\} \text{-subreduct of a representable pseudo-hoop;}$
- **A** satisfies the equations (R), (H) and (J).

Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

$$(x \to y) \to u \leq (((((((y \to x) \to z) \to z) \to w) \to w) \to u) \to u.$$
(R)

For every pseudo-BCK-algebra **A**, the following are equivalent:

- A is a {→, ~→, 1}-subreduct of a representable pseudo-BLalgebra;
- $\textcircled{O} \ \textbf{A} \ \text{is a} \ \{\rightarrow, \rightsquigarrow, 1\} \text{-subreduct of a representable pseudo-hoop};$
- **A** satisfies the equations (R), (H) and (J).

Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

$$(x \to y) \to u \le (((((((y \to x) \to z) \to z) \to w) \to w) \to u) \to u.$$
(R)

For every pseudo-BCK-algebra **A**, the following are equivalent:

- A is a {→, ~→, 1}-subreduct of a representable pseudo-BLalgebra;
- **2** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a representable pseudo-hoop;
- **A** satisfies the equations (R), (H) and (J).

Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

$$(x \to y) \to u \le (((((((y \to x) \to z) \to z) \to w) \to w) \to u) \to u.$$
(R)

For every pseudo-BCK-algebra **A**, the following are equivalent:

- A is a {→, ~→, 1}-subreduct of a representable pseudo-BLalgebra;
- **2** A is a $\{\rightarrow, \rightsquigarrow, 1\}$ -subreduct of a representable pseudo-hoop;

A satisfies the equations (R), (H) and (J).

直 と く ヨ と く ヨ と

Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

$$(x \to y) \to u \leq (((((((y \to x) \to z) \to z) \to w) \to w) \to u) \to u.$$
(R)

For every pseudo-BCK-algebra **A**, the following are equivalent:

- A is a {→, ~→, 1}-subreduct of a representable pseudo-BLalgebra;
- $\textbf{2} \ \textbf{A} \ \text{is a} \ \{\rightarrow, \rightsquigarrow, 1\} \text{-subreduct of a representable pseudo-hoop;}$
- **③** A satisfies the equations (R), (H) and (J).

The class of all $\{\to, \rightsquigarrow, 1\}$ -subreducts of representable pseudo-BL-algebras/pseudo-hoops is the variety of pseudo-BCK-algebras satisfying

$$\begin{aligned} (x \to y) \to u &\leq (((((((y \to x) \to z) \to z) \to w) \to w) \to u) \to u, \\ (R) \\ (x \to y) \to (x \to z) &= (y \to x) \to (y \to z), \\ (((x \to y) \to y) \to x) \to x &= (((y \to x) \to x) \to y) \to y. \end{aligned}$$

The class of all $\{\to, \rightsquigarrow, 1\}$ -subreducts of representable pseudo-BL-algebras/pseudo-hoops is the variety of pseudo-BCK-algebras satisfying

$$\begin{aligned} (x \to y) \to u &\leq (((((((y \to x) \to z) \to z) \to w) \to w) \to u) \to u, \\ (R) \\ (x \to y) \to (x \to z) &= (y \to x) \to (y \to z), \\ (((x \to y) \to y) \to x) \to x &= (((y \to x) \to x) \to y) \to y. \end{aligned}$$

THANK YOU