# On Topological Modal Logic of Real Line with Difference Modality 

Andrey Kudinov<br>Moscow State University

August 6, 2007

## Plan of Talk

(1) Introduction

- Topological semantic for modal logic
- History of the Question
(2) Results
- Main results
- Proof sketch

Topological semantic for modal logic History of the Question

## Outline

(1) Introduction

- Topological semantic for modal logic
- History of the Question
(2) Results
- Main results
- Proof sketch

Topological semantic for modal logic History of the Question

## Topological semantic

$\mathcal{M L}(\square): \quad A \rightleftharpoons \perp\left|p_{i}\right| A \rightarrow A \mid \square A$

Topological semantic for modal logic History of the Question

## Topological semantic

$$
\mathcal{M L}(\square): \quad A \rightleftharpoons \perp\left|p_{i}\right| A \rightarrow A \mid \square A
$$

## Definition

Topological space $\mathfrak{X}=(X, \mathbf{I})$, where $\mathbf{I}$ is an open operator, $\mathbf{C} Y=-\mathbf{I}(-Y)$ is a closer operator.

Topological semantic for modal logic History of the Question

## Topological semantic

$$
\mathcal{M L}(\square): \quad A \rightleftharpoons \perp\left|p_{i}\right| A \rightarrow A \mid \square A
$$

## Definition

Topological space $\mathfrak{X}=(X, \mathbf{I})$, where $\mathbf{I}$ is an open operator, $\mathbf{C} Y=-\mathbf{I}(-Y)$ is a closer operator.

## Definition

Topological model $(\mathfrak{X}, V), V: P V \rightarrow \mathcal{P}(X)$

Topological semantic for modal logic History of the Question

## Topological semantic

$$
\mathcal{M L}(\square): \quad A \rightleftharpoons \perp\left|p_{i}\right| A \rightarrow A \mid \square A
$$

## Definition

Topological space $\mathfrak{X}=(X, \mathbf{I})$, where $\mathbf{I}$ is an open operator, $\mathbf{C} Y=-\mathbf{I}(-Y)$ is a closer operator.

## Definition

Topological model $(\mathfrak{X}, V), V: P V \rightarrow \mathcal{P}(X)$

Topological semantic for modal logic History of the Question

## Topological semantic

$$
\mathcal{M L}(\square): \quad A \rightleftharpoons \perp\left|p_{i}\right| A \rightarrow A \mid \square A
$$

## Definition

Topological space $\mathfrak{X}=(X, \mathbf{I})$, where $\mathbf{I}$ is an open operator, $\mathbf{C} Y=-\mathbf{I}(-Y)$ is a closer operator.

## Definition

Topological model $(\mathfrak{X}, V), V: P V \rightarrow \mathcal{P}(X)$

$$
\begin{array}{rlrl}
V(\perp) & =\varnothing, & & X, V, x \not \models \perp \\
V(A \rightarrow B) & =(X-V(A)) \cup V(B), & \mathfrak{X}, V, x \models A \rightarrow B \Leftrightarrow \mathfrak{X}, V, x \neq B \vee \mathfrak{X}, V, x \nLeftarrow A \\
V(\square A) & =\mathbf{I} V(A), & \mathfrak{X}, V, x \vDash \square A \Leftrightarrow \exists U(x)(\forall y \in U(x) \mathfrak{X}, V, y \models A)
\end{array}
$$

Topological semantic for modal logic History of the Question

## Logic of topological space

## Definition

$L_{\square}(\mathcal{C}) \leftrightharpoons\{A \in \mathcal{M L}(\square) \mid \forall \mathfrak{X} \in \mathcal{C}(\mathfrak{X} \models A)\}$ is logic of the class of topological spaces $\mathcal{C}$ in language $\mathcal{M} \mathcal{L}(\square) . L_{\square}(\mathfrak{X}) \leftrightharpoons L_{\square}(\{\mathfrak{X}\})$

Topological semantic for modal logic History of the Question

## Logic of topological space

## Definition

$L_{\square}(\mathcal{C}) \leftrightharpoons\{A \in \mathcal{M L}(\square) \mid \forall \mathfrak{X} \in \mathcal{C}(\mathfrak{X} \models A)\}$ is logic of the class of topological spaces $\mathcal{C}$ in language $\mathcal{M} \mathcal{L}(\square) . L_{\square}(\mathfrak{X}) \leftrightharpoons L_{\square}(\{\mathfrak{X}\})$

## Logic of topological space

## Definition

$L_{\square}(\mathcal{C}) \leftrightharpoons\{A \in \mathcal{M L}(\square) \mid \forall \mathfrak{X} \in \mathcal{C}(\mathfrak{X} \models A)\}$ is logic of the class of topological spaces $\mathcal{C}$ in language $\mathcal{M L}(\square) . L_{\square}(\mathfrak{X}) \leftrightharpoons L_{\square}(\{\mathfrak{X}\})$

|  | Axioms | Property of I |
| :---: | :---: | :---: |
| $\left(K_{\square}\right)$ | $\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q)$ | $\mathbf{I}\left(Y_{1} \cap Y_{2}\right)=\mathbf{I} Y_{1} \cap \mathbf{I} Y_{2}$ |
| (Gen) | $\frac{A}{\square A}$ | $\mathbf{I} X=X$ |
| $\left(T_{\square}\right)$ | $\square p \rightarrow p$ | $\mathbf{I} Y \subseteq Y$ |
| (4ロ) | $\square p \rightarrow \square \square p$ | $\mathbf{I} Y \subseteq \mathbf{I I} Y$ |
| (Sub) | $\frac{A}{[p / B] A}$ |  |
| (MP) | $\frac{A}{}{ }^{\text {a }}$ A ${ }^{\text {a }}$ |  |

Logic S4.

## Outline

(1) Introduction

- Topological semantic for modal logic
- History of the Question
(2) Results
- Main results
- Proof sketch

Introduction
Results
Conclusion

Topological semantic for modal logic History of the Question

## Logic S4

## Theorem (McKinsey, Tarski, 1944)

$L_{\square}([$ all topological spaces $])=\mathbf{S} 4$

Topological semantic for modal logic History of the Question

## Logic S4

## Theorem (McKinsey, Tarski, 1944) <br> $L_{\square}([$ all topological spaces $])=\mathbf{S} 4$

## Theorem (McKinsey, Tarski, 1944)

If $\mathfrak{X}$ is a separable metric dense-in-itself space then $L_{\square}(\mathfrak{X})=\mathbf{S} 4$.

Topological semantic for modal logic History of the Question

## Logic S4

## Theorem (McKinsey, Tarski, 1944)

$L_{\square}([$ all topological spaces $])=\mathbf{S} 4$

## Theorem (McKinsey, Tarski, 1944)

If $\mathfrak{X}$ is a separable metric dense-in-itself space then $L_{\square}(\mathfrak{X})=\mathbf{S} 4$.

## Theorem (Ladner, 1977)

S 4 is a PSPACE-complete logic.

## Universal modality

$$
\begin{aligned}
\mathcal{M L}(\square,[\forall]): \quad \phi & \rightleftharpoons \perp\left|p_{i}\right| \phi \rightarrow \psi|\square \phi|[\forall] \phi \\
\mathfrak{X}, V, x \models[\forall] A & \rightleftharpoons \forall y \in \mathfrak{X}(\mathfrak{X}, V, y \models A)
\end{aligned}
$$

Property of connectedness of a topological space is expressible in this language.

## Difference modality

$$
\begin{gathered}
\mathcal{M L}(\square,[\neq]): \quad \phi \rightleftharpoons \perp\left|p_{i}\right| \phi \rightarrow \psi|\square \phi|[\neq] \phi \\
\mathfrak{X}, V, x \models[\neq] A \rightleftharpoons \forall y \in \mathfrak{X}(y \neq x \Rightarrow \mathfrak{X}, V, y \models A) \\
{[\forall] A \rightleftharpoons[\neq] A \wedge A}
\end{gathered}
$$

The following properties are expressible:

- connectedness


## Difference modality

$$
\begin{gathered}
\mathcal{M L}(\square,[\neq]): \quad \phi \rightleftharpoons \perp\left|p_{i}\right| \phi \rightarrow \psi|\square \phi|[\neq] \phi \\
\mathfrak{X}, V, x \models[\neq] A \rightleftharpoons \forall y \in \mathfrak{X}(y \neq x \Rightarrow \mathfrak{X}, V, y \models A) \\
{[\forall] A \rightleftharpoons[\neq] A \wedge A}
\end{gathered}
$$

The following properties are expressible:

- connectedness
- density-in-itself


## Difference modality

$$
\begin{gathered}
\mathcal{M L}(\square,[\neq]): \quad \phi \rightleftharpoons \perp\left|p_{i}\right| \phi \rightarrow \psi|\square \phi|[\neq] \phi \\
\mathfrak{X}, V, x \models[\neq] A \rightleftharpoons \forall y \in \mathfrak{X}(y \neq x \Rightarrow \mathfrak{X}, V, y \models A) \\
{[\forall] A \rightleftharpoons[\neq] A \wedge A}
\end{gathered}
$$

The following properties are expressible:

- connectedness
- density-in-itself
- $T_{0}, T_{1}$


## Difference modality

$$
\begin{gathered}
\mathcal{M L}(\square,[\neq]): \quad \phi \rightleftharpoons \perp\left|p_{i}\right| \phi \rightarrow \psi|\square \phi|[\neq] \phi \\
\mathfrak{X}, V, x \models[\neq] A \rightleftharpoons \forall y \in \mathfrak{X}(y \neq x \Rightarrow \mathfrak{X}, V, y \mid=A) \\
{[\forall] A \rightleftharpoons[\neq] A \wedge A}
\end{gathered}
$$

The following properties are expressible:

- connectedness
- density-in-itself
- $T_{0}, T_{1}$
- local $n$-connectedness

Topological semantic for modal logic History of the Question

## D-logic

## Definition

$L_{\square,[\neq]}(\mathcal{C}) \leftrightharpoons\{A \in \mathcal{M L}(\square,[\neq]) \mid \forall \mathfrak{X} \in \mathcal{C}(\mathfrak{X} \models A)\}$ - D-logic of a class of topological spaces $\mathcal{C}$ in $\mathcal{M L}(\square,[\neq])$. $L_{\square,[\neq]}(\mathfrak{X}) \leftrightharpoons L_{\square,[\neq]}(\{\mathfrak{X}\})$

## Known logics

## Theorem

$$
\begin{aligned}
& L_{\square,[\neq]}([\text { all topological spaces }])=\mathbf{S} 4 \mathbf{D} \\
& L_{\square,[\neq]}([\text { all dense-in-itself spaces }])=\mathbf{S} 4 \mathbf{D}+(D S) \\
& L_{\square,[\neq]}(\text { Cantor space })=\mathbf{S 4 D T}_{\mathbf{1}} \mathbf{S} \quad L_{\square,[\neq]}\left(\mathbb{R}^{n}\right)=\mathbf{S} 4 \mathbf{E C}, n \geq 2
\end{aligned}
$$

all mentioned logics are finitely axiomatizable and decidable.

## $L_{\square,[\neq]}(\mathbb{R})=$ ?

$$
L_{\square,[\neq]}(\mathbb{R})=\text { ? }
$$

$\left(A E_{2}\right) \quad[\neq] p \wedge \neg p \wedge \square\left(p \rightarrow \square Q_{1} \vee \square Q_{2} \vee \square Q_{3}\right) \rightarrow$

$$
\rightarrow \square\left(p \rightarrow \neg Q_{1}\right) \vee \square\left(p \rightarrow \neg Q_{2}\right) \vee \square\left(p \rightarrow \neg Q_{3}\right),
$$

where $Q_{1}=q_{1} \wedge q_{2}, Q_{2}=q_{1} \wedge \neg q_{2}$ and $Q_{3}=\neg q_{1}$.

Topological semantic for modal logic History of the Question

$$
L_{\square,[\neq]}(\mathbb{R})=\mathbf{S}_{4} \mathbf{D E}_{\mathbf{2}} \mathbf{C}=\mathbf{S}_{4} \mathbf{D} \mathbf{T}_{1} \mathbf{S}+\left(A E_{2}\right)+(A C) ?
$$

$\left(A E_{2}\right) \quad[\neq] p \wedge \neg p \wedge \square\left(p \rightarrow \square Q_{1} \vee \square Q_{2} \vee \square Q_{3}\right) \rightarrow$

$$
\rightarrow \square\left(p \rightarrow \neg Q_{1}\right) \vee \square\left(p \rightarrow \neg Q_{2}\right) \vee \square\left(p \rightarrow \neg Q_{3}\right),
$$

where $Q_{1}=q_{1} \wedge q_{2}, Q_{2}=q_{1} \wedge \neg q_{2}$ and $Q_{3}=\neg q_{1}$.

## Outline

(1) Introduction

- Topological semantic for modal logic
- History of the Question
(2) Results
- Main results
- Proof sketch


## Main results

## Theorem

$L_{\square,[\neq]}(\mathbb{R})$ is not axiomatizable by formulas using predefined finite set of variables; hence it is not finitely axiomatizable.

## Main results

## Theorem

$L_{\square,[\neq]}(\mathbb{R})$ is not axiomatizable by formulas using predefined finite set of variables; hence it is not finitely axiomatizable.

Decidability of $L_{\square,[\neq]}(\mathbb{R})$ follows from decidability of monadic second order theory of $(\mathbb{R}, \leq)$, proved by M.O.Rabin (1969).

## Outline

(1) Introduction

- Topological semantic for modal logic
- History of the Question
(2) Results
- Main results
- Proof sketch


## p-morphism like maps

The technic is very like the technic in paper of L.Maksimova, D.Skvorcov, V.Shehtman (1979)

## Definition

$\mathfrak{X}$ is a topological space, $F=\left(W, R, R_{D}\right)$ is a finite $\mathbf{S 4 D}$-frame. Surjective map $f: \mathfrak{X} \rightarrow F$ is called $c d$-p-morphism, iff

- $\mathbf{C} f^{-1}(w)=f^{-1}\left(R^{-1}(w)\right)$,
- $\neg w R_{D} w \Rightarrow\left|f^{-1}(w)\right|=1$.

Notation $f: \mathfrak{X} \xrightarrow{c d} F$.

## p-morphism like maps

The technic is very like the technic in paper of L.Maksimova, D.Skvorcov, V.Shehtman (1979)

## Definition

$\mathfrak{X}$ is a topological space, $F=\left(W, R, R_{D}\right)$ is a finite $\mathbf{S 4 D}$-frame. Surjective map $f: \mathfrak{X} \rightarrow F$ is called $c d$-p-morphism, iff

- $\mathbf{C} f^{-1}(w)=f^{-1}\left(R^{-1}(w)\right)$,
- $\neg w R_{D} w \Rightarrow\left|f^{-1}(w)\right|=1$.

Notation $f: \mathfrak{X} \xrightarrow{c d} F$.
Lemma
$f: \mathfrak{X} \xrightarrow{c d} \mathcal{F} \Rightarrow \mathbf{L}(\mathfrak{X}) \subseteq \mathbf{L}(\mathcal{F})$.

## $n$-equivalent frames

## Definition

Formula $A$ is called $n$-formula, if it uses only $n$ first variables. For a set $L$ of formulas $L\lceil n$ stands for all $n$-formulas from $L$. $F \sim_{n} F^{\prime}$ iff $L_{\square,[\neq]}(F)\left\lceil n=L_{\square,[\neq]}\left(F^{\prime}\right)\lceil n\right.$.

## $n$-equivalent frames

## Definition

Formula $A$ is called $n$-formula, if it uses only $n$ first variables. For a set $L$ of formulas $L\lceil n$ stands for all $n$-formulas from $L$.
$F \sim_{n} F^{\prime}$ iff $L_{\square,[\neq]}(F)\left\lceil n=L_{\square,[\neq]}\left(F^{\prime}\right)\lceil n\right.$.


## Characteristic graph

## Theorem

$F$ is a $\mathbf{S} 4 \mathbf{D E}_{\mathbf{2}} \mathbf{C}$-frame, we can construct graph $\Gamma(F)$ such that

$$
\mathbb{R} \xrightarrow{c d} F \Longleftrightarrow \Gamma(F)-\text { is an Euler graph. }
$$

## Characteristic graph

$$
F_{n}
$$



$$
F_{n}^{\prime}
$$



## Characteristic graph

$$
F_{n}
$$



$$
F_{n}^{\prime}
$$

## Characteristic graph



## Characteristic graph



## Conclusion

- $L_{\square,[\neq]}(\mathbb{R})$ is decidable.


## Conclusion

- $L_{\square,[\neq]}(\mathbb{R})$ is decidable.
- $L_{\square,[\neq]}(\mathbb{R})$ is not axiomatizable by formulas using predefined finite set of variables.


## Conclusion

- $L_{\square,[\neq]}(\mathbb{R})$ is decidable.
- $L_{\square,[\neq]}(\mathbb{R})$ is not axiomatizable by formulas using predefined finite set of variables.
- Open problems


## Conclusion

- $L_{\square,[\neq]}(\mathbb{R})$ is decidable.
- $L_{\square,[\neq]}(\mathbb{R})$ is not axiomatizable by formulas using predefined finite set of variables.
- Open problems
- Axiomatization of $L_{\square,[\neq]}(\mathbb{R})$


## Conclusion

- $L_{\square,[\neq]}(\mathbb{R})$ is decidable.
- $L_{\square,[\neq]}(\mathbb{R})$ is not axiomatizable by formulas using predefined finite set of variables.
- Open problems
- Axiomatization of $L_{\square,[\neq]}(\mathbb{R})$
- Does $L_{\square,[\neq]}(\mathbb{R})$ have fmp or not?


## Conclusion

- $L_{\square,[\neq]}(\mathbb{R})$ is decidable.
- $L_{\square,[\neq]}(\mathbb{R})$ is not axiomatizable by formulas using predefined finite set of variables.
- Open problems
- Axiomatization of $L_{\square,[\neq]}(\mathbb{R})$
- Does $L_{\square,[\neq]}(\mathbb{R})$ have fmp or not?
- Gratitude


## Conclusion

- $L_{\square,[\neq]}(\mathbb{R})$ is decidable.
- $L_{\square,[\neq]}(\mathbb{R})$ is not axiomatizable by formulas using predefined finite set of variables.
- Open problems
- Axiomatization of $L_{\square,[\neq]}(\mathbb{R})$
- Does $L_{\square,[\neq]}(\mathbb{R})$ have fmp or not?
- Gratitude
- to my supervisor Valentin Shehtman for ideas, advices and supervising.

