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Topological semantic

ML(2) : A 
 ⊥ | pi | A→ A | 2A

De�nition

Topological space X = (X, I), where I is an open operator,

CY = −I(−Y ) is a closer operator.

De�nition

Topological model (X, V ), V : PV → P(X)

V (⊥) = ∅, X, V, x 6|= ⊥,
V (A → B) = (X − V (A)) ∪ V (B), X, V, x |= A → B ⇔ X, V, x |= B ∨ X, V, x 6|= A,

V (2A) = IV (A), X, V, x |= 2A ⇔ ∃U(x)(∀y ∈ U(x) X, V, y |= A).
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Logic of topological space

De�nition

L2(C) � {A ∈ML(2) | ∀X ∈ C(X |= A)} is logic of the class of

topological spaces C in language ML(2). L2(X) � L2({X})

Axioms Property of I
(K2) 2(p→ q) → (2p→ 2q) I(Y1 ∩ Y2) = IY1 ∩ IY2

(Gen) A
2A IX = X

(T2) 2p→ p IY ⊆ Y
(42) 2p→ 22p IY ⊆ IIY
(Sub) A

[p/B]A

(MP) A A→B
B

Logic S4.
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Logic S4

Theorem (McKinsey, Tarski, 1944)

L2([all topological spaces]) = S4

Theorem (McKinsey, Tarski, 1944)

If X is a separable metric dense-in-itself space then L2(X) = S4.

Theorem (Ladner, 1977)

S4 is a PSPACE-complete logic.
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Universal modality

ML(2, [∀]) : φ 
 ⊥ | pi | φ→ ψ | 2φ | [∀]φ

X, V, x |= [∀]A 
 ∀y ∈ X(X, V, y |= A)

Property of connectedness of a topological space is expressible in

this language.
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Di�erence modality

ML (2, [6=]) : φ 
 ⊥ | pi | φ→ ψ | 2φ | [6=]φ

X, V, x |= [6=]A 
 ∀y ∈ X(y 6= x⇒ X, V, y |= A)

[∀]A 
 [6=]A ∧A

The following properties are expressible:

connectedness

density-in-itself

T0, T1

local n-connectedness
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D-logic

De�nition

L2,[ 6=](C) � {A ∈ML(2, [6=]) | ∀X ∈ C(X |= A)} � D-logic of a

class of topological spaces C in ML(2, [6=]).
L2,[ 6=](X) � L2,[ 6=]({X})
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Known logics

S4DEC



S4DT1S


S4D


S4

{
(T2) 2p → p
(42) 2p → 22p

DL

{
(BD) p → [6=]〈6=〉p
(4−D) (p ∧ [6=]p) → [6=][6=]p

(D2) [∀]p → 2p
(DS) [6=]p → 3p
(AT1) [6=]p → [6=]2p

(AE1) [6=]p ∧ ¬p ∧ 2(p → 2q ∨ 2¬q) → 2(p → q) ∨ 2(p → ¬q)
(AC) [∀](2p ∨ 2¬p) → [∀]p ∨ [∀]¬p

Theorem

L2,[6=]([all topological spaces]) = S4D
L2,[6=]([all dense-in-itself spaces]) = S4D + (DS)
L2,[6=](Cantor space) = S4DT1S L2,[6=](Rn) = S4EC, n ≥ 2

all mentioned logics are �nitely axiomatizable and decidable.
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L2,[ 6=](R) = ?S4DE2C = S4DT1S + (AE2) + (AC)

(AE2) [6=]p ∧ ¬p ∧2(p→ 2Q1 ∨2Q2 ∨2Q3) →
→ 2(p→ ¬Q1) ∨2(p→ ¬Q2) ∨2(p→ ¬Q3),

where Q1 = q1 ∧ q2, Q2 = q1 ∧ ¬q2 and Q3 = ¬q1.
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Main results

Theorem

L2,[ 6=](R) is not axiomatizable by formulas using prede�ned �nite

set of variables; hence it is not �nitely axiomatizable.

Decidability of L2,[ 6=](R) follows from decidability of monadic

second order theory of (R,≤), proved by M.O.Rabin (1969).
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p-morphism like maps

The technic is very like the technic in paper of L.Maksimova,

D.Skvorcov, V.Shehtman (1979)

De�nition

X is a topological space, F = (W,R,RD) is a �nite S4D-frame.

Surjective map f : X → F is called cd-p-morphism, i�

Cf−1(w) = f−1(R−1(w)),
¬wRDw ⇒

∣∣f−1(w)
∣∣ = 1.

Notation f : X
cd
−� F .

Lemma

f : X
cd
−� F ⇒ L(X) ⊆ L(F).
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n-equivalent frames

De�nition

Formula A is called n-formula, if it uses only n �rst variables. For a

set L of formulas Ldn stands for all n-formulas from L.
F ∼n F

′ i� L2,[ 6=](F )dn = L2,[ 6=](F ′)dn.

times

times
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Characteristic graph

Theorem

F is a S4DE2C-frame, we can construct graph Γ(F )such that

R
cd
−� F ⇐⇒ Γ(F )− is an Euler graph.
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times

times
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Conclusion

L2,[ 6=](R) is decidable.

L2,[ 6=](R) is not axiomatizable by formulas using prede�ned

�nite set of variables.

Open problems

Axiomatization of L2,[ 6=](R)
Does L2,[ 6=](R) have fmp or not?

Gratitude

to my supervisor Valentin Shehtman for ideas, advices and

supervising.
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