Games over Formulas in Łukasiewicz Logic

Tomáš Kroupa

Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
Prague

Motivation

Game-theoretic insights into Łukasiewicz propositional calculus:

- Ulam game: a 2-player game of questions and (possibly false) answers (Ulam; Mundici)
- Dutch-book theorem: no sure losers and winners in bookmaking over infinite-valued events (Paris; Gerla; Mundici)

Motivation

Game-theoretic insights into Łukasiewicz propositional calculus:

- Ulam game: a 2-player game of questions and (possibly false) answers (Ulam; Mundici)
- Dutch-book theorem: no sure losers and winners in bookmaking over infinite-valued events (Paris; Gerla; Mundici)

non-cooperative games

VS.
cooperative games ?

Cooperative Game Theory

Coalition games first studied by J．von Neumann in 1928：
Players form coalitions to maximize their profit in a certain social environment
Coalition acts in the common players＇interest on specific issues
Worth of each coalition can be obtained by acting in concert towards the common objective
－players may simultaneously belong to many coalitions which can have conflicting interests

Cooperative Game Theory (cont.)

The main problem is to find a set of final payoffs of coalitions.
Core is a set of payoffs satisfying
coalition rationality - every payoff of each coalition is not smaller than the worth of the coalition
social rationality - every payoff of the "grand coalition" equals its worth

- the role of coalitions is predominating in games with a "large" (infinite) number of players whose power is negligible
- e.g. stock market games, voting games

Coalition Game over Formulas

- every coalition substantiates a principle of behavior φ : e.g. "I am a minor shareholder of the company A", "I am a faithful voter of the political party B"
- every player V expresses a level of conformity $V(\varphi)$ with the principle φ
- a worth $\mu(\cdot)$ of each coalition should depend only on the "meaning" of φ

Coalition Game over Formulas

- every coalition substantiates a principle of behavior φ : e.g. "I am a minor shareholder of the company A", "I am a faithful voter of the political party B"
- every player V expresses a level of conformity $V(\varphi)$ with the principle φ
- a worth $\mu(\cdot)$ of each coalition should depend only on the "meaning" of φ

Definition

Let Φ be a set of formulas with $\overline{1} \in \Phi$, and \mathcal{F} be the set of corresponding equivalence classes. A (coalition) game is a pair (Φ, μ), where $\mu: \mathcal{F} \rightarrow \mathbb{R}$ is such that $m(0)=0$, whenever $0 \in \mathcal{F}$.

Łukasiewicz Logic

- formulas are obtained from propositional variables $\omega_{1}, \ldots, \omega_{k}$ by applying negation \neg, disjunction \oplus, and conjunction \odot
- a valuation is a function $V: \operatorname{Form}\left(\omega_{1}, \ldots, \omega_{k}\right) \rightarrow[0,1]$ s.t.

$$
\begin{aligned}
V(\neg \varphi) & =1-V(\varphi) \\
V(\varphi \oplus \psi) & =\min (1, V(\varphi)+V(\psi)) \\
V(\varphi \odot \psi) & =\max (0, V(\varphi)+V(\psi)-1)
\end{aligned}
$$

- Lindenbaum algebra \mathcal{L}_{k} is an MV-algebra

Theorem (McNaughton)
\mathcal{L}_{k} is the $M V$-algebra of all k-variable $M c N a u g h t o n$ functions: continuous piecewise linear functions $[0,1]^{k} \rightarrow[0,1]$, each piece having integer coefficients.

Coalition Game over Formulas（cont．）

Player is a valuation V or a point $x_{V} \in[0,1]^{k}$ under the bijection

$$
V \mapsto\left(V\left(\omega_{1}, \ldots, \omega_{k}\right)\right)
$$

Coalition is a k－variable McNaughton function $f \in \mathcal{F}$ corresponding to $\varphi \in \Phi$
Worth of a coalition $f \in \mathcal{F}$ is given by $\mu(f) \in \mathbb{R}$

An acceptable solution is any＂distribution＂of worth $m: \mathcal{F} \rightarrow \mathbb{R}$ such that $m(1)=\mu(1)$ and $m(f) \geq \mu(f)$ ，for each $f \in \mathcal{F}$ ．

Measures on MV-algebras

"Distribution" of worth should satisfy the axiom of a measure:

Definition

A measure on \mathcal{L}_{k} is a mapping $m: \mathcal{L}_{k} \rightarrow \mathbb{R}$ such that

$$
\text { if } f \odot g=0 \text { for } f, g \in \mathcal{L}_{k}, \text { then } m(f \oplus g)=m(f)+m(g) \text {. }
$$

A measure m is called a state if it is nonnegative and $m(1)=1$.
Properties

- $m(0)=0$
- m is nonnegative iff it is monotone
- every homomorphism $\mathcal{L}_{k} \rightarrow[0,1]$ is a state

Representation of Measures

Theorem
－If s is a state on \mathcal{L}_{k} ，then there is a Borel probability measure P such that

$$
s(f)=\int_{[0,1]^{k}} f d P, \quad \text { for every } f \in \mathcal{L}_{k}
$$

－Each bounded nonnegative measure that is nonzero is a positive multiple of a state．

Solution of Games

Definition

Let (Φ, μ) be a game, where μ is nonnegative. A core of (Φ, μ) is a set
$C(\Phi, \mu)=\left\{m \in \mathscr{M}^{+}\left(\mathcal{L}_{k}\right) \mid m(1)=\mu(1), m(f) \geq \mu(f)\right.$, for each $\left.f \in \mathcal{F}\right\}$

Theorem

(1) The core $C(\Phi, \mu)$ is a compact convex subset of $\mathbb{R}^{\mathcal{L}_{k}}$.
(2) Each of the following sets is a closed face of $C(\Phi, \mu)$:

$$
\begin{aligned}
F_{i} & =\left\{m \in C(\Phi, \mu) \mid m\left(f_{i}\right)=\mu\left(f_{i}\right)\right\}, \quad i=1, \ldots, n \\
F & =\bigcap_{i \in I} F_{i}, \quad I \subseteq\{1, \ldots, n\} .
\end{aligned}
$$

A Game with no Solution

Example

$$
\begin{aligned}
& \Phi=\{\omega, \neg \omega, \overline{1}\}, \quad \mathcal{F}=\{\text { id }, 1-\mathrm{id}, 1\} \subseteq \mathcal{L}_{1} \\
& \mu(\mathrm{id})=\mu(1)=10, \quad \mu(1-\mathrm{id})=5
\end{aligned}
$$

$$
C(\Phi, \mu)=\emptyset \quad \text { since }
$$

$$
\mathrm{id}+(1-\mathrm{id})=1 \quad \text { but } \quad \mu(\mathrm{id})+\mu(1-\mathrm{id})>\mu(1)
$$

The coalition corresponding to ω is too demanding. . .

A Game with a Solution

Example
$\Phi=\{\omega, \neg \omega, \overline{1}\}, \quad \mathcal{F}=\{\mathrm{id}, 1-\mathrm{id}, 1\} \subseteq \mathcal{L}_{1}$
$\mu(\mathrm{id})=\mu(1-\mathrm{id})=5, \quad \mu(1)=10$
$C(\Phi, \mu) \neq \emptyset \quad$ since both these mappings are acceptable distributions of worth:

$$
\begin{gathered}
m_{1}: f \in \mathcal{L}_{1} \mapsto 10 \int_{0}^{1} f(x) d x \\
m_{2}: f \in \mathcal{L}_{1} \mapsto 10 f\left(\frac{1}{2}\right)
\end{gathered}
$$

A Game with a Solution

Example
$\Phi=\{\omega, \neg \omega, \overline{1}\}, \quad \mathcal{F}=\{\mathrm{id}, 1-\mathrm{id}, 1\} \subseteq \mathcal{L}_{1}$
$\mu(\mathrm{id})=\mu(1-\mathrm{id})=5, \quad \mu(1)=10$
$C(\Phi, \mu) \neq \emptyset \quad$ since both these mappings are acceptable distributions of worth:

$$
\begin{gathered}
m_{1}: f \in \mathcal{L}_{1} \mapsto 10 \int_{0}^{1} f(x) d x \\
m_{2}: f \in \mathcal{L}_{1} \mapsto 10 f\left(\frac{1}{2}\right)
\end{gathered}
$$

Both m_{1} and m_{2} are the "least acceptable" since $\mu=m_{1}=m_{2}$

Checking Nonemptiness of Core

Theorem
Let (Φ, μ) be a game, where $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, and μ is nonnegative. The following assertions are equivalent:
(1) There is $m \in C(\Phi, \mu)$ such that $m\left(f_{i}\right)=\mu\left(f_{i}\right)$ for each $i=1, \ldots, n$.
(2) There is no payoff $\sigma: \mathcal{F} \rightarrow \mathbb{R}$ such that

$$
\sum_{i=1}^{n} \sigma\left(f_{i}\right) \max _{V \in \mathcal{V}} V\left(\varphi_{i}\right)<\sum_{i=1}^{n} \sigma\left(f_{i}\right) V\left(\varphi_{i}\right)
$$

for every valuation (player) V.

Incompatible Coalitions

If

$$
\varphi_{1} \odot \varphi_{2} \equiv \overline{0}
$$

(coalitions f_{1} and f_{2} are based on incompatible principles), then

$$
V\left(\varphi_{1}\right) \odot V\left(\varphi_{2}\right)=0
$$

for every player V.
An "imaginary player" might try to increase his average payoff by setting his level of conformity to the value

$$
\max _{V \in \mathcal{V}} V(\varphi)
$$

for each $\varphi \in \Phi$.

