Quasi-p-morphisms and small varieties of KTB-algebras

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens
Australian National University (ANU), Hokkaido University, ANU

August 3, 2007

Modal logics of undirected graphs: NEXT(KTB)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.

Modal logics of undirected graphs: NEXT(KTB)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.

Modal logics of undirected graphs: NEXT(KTB)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.

Modal logics of undirected graphs: NEXT(KTB)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.
- A few years ago Yutaka Miyazaki began working towards redressing the balance.

Modal logics of undirected graphs: NEXT(KTB)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.
- A few years ago Yutaka Miyazaki began working towards redressing the balance.
- Many classical questions were open then-and many still are.

Modal logics of undirected graphs: NEXT(KTB)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.
- A few years ago Yutaka Miyazaki began working towards redressing the balance.
- Many classical questions were open then-and many still are.
- This talk is about one of such questions: the structure of the lattice Next(KTB).

Modal logics of undirected graphs: NEXT(KTB)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.
- A few years ago Yutaka Miyazaki began working towards redressing the balance.
- Many classical questions were open then-and many still are.
- This talk is about one of such questions: the structure of the lattice NEXT(KTB).
- And so is the next, I'm happy to add.

KTB-algebras and KTB-frames

An algebra $\mathbf{A}=\langle A ; \vee, \wedge, \neg, f, 0,1\rangle$ is a $K T B$-algebra if \mathbf{A} is a modal algebra and f satisfies:
(i) $x \leq f x$
(ii) $x \leq \neg f \neg f x$

KTB-algebras and KTB-frames

An algebra $\mathbf{A}=\langle A ; \vee, \wedge, \neg, f, 0,1\rangle$ is a $K T B$-algebra if \mathbf{A} is a modal algebra and f satisfies:
(i) $x \leq f x$
(ii) $x \leq \neg f \neg f x$

Note that (ii) is equivalent to the property

$$
f x \wedge y=0 \quad \text { iff } \quad x \wedge f y=0
$$

which means that f is a self-conjugate operator.

KTB-algebras and KTB-frames

An algebra $\mathbf{A}=\langle A ; \vee, \wedge, \neg, f, 0,1\rangle$ is a $K T B$-algebra if \mathbf{A} is a modal algebra and f satisfies:
(i) $x \leq f x$
(ii) $x \leq \neg f \neg f x$

Note that (ii) is equivalent to the property

$$
f x \wedge y=0 \quad \text { iff } \quad x \wedge f y=0
$$

which means that f is a self-conjugate operator. Example: let $G=(V, E)$ be a (possibly infinite) graph and \mathcal{I} a Boolean algebra of subsets of V (with set-theoretical operations) closed under the unary operation $\diamond(X)=E^{-1}(X)$. Then, $\langle\mathcal{I} ; \cup, \cap,-, \diamond, \emptyset, V\rangle$ is a KTB-algebra.

KTB-algebras and KTB-frames

An algebra $\mathbf{A}=\langle A ; \vee, \wedge, \neg, f, 0,1\rangle$ is a $K T B$-algebra if \mathbf{A} is a modal algebra and f satisfies:
(i) $x \leq f x$
(ii) $x \leq \neg f \neg f x$

Note that (ii) is equivalent to the property

$$
f x \wedge y=0 \quad \text { iff } \quad x \wedge f y=0
$$

which means that f is a self-conjugate operator. Example: let $G=(V, E)$ be a (possibly infinite) graph and \mathcal{I} a Boolean algebra of subsets of V (with set-theoretical operations) closed under the unary operation $\diamond(X)=E^{-1}(X)$. Then, $\langle\mathcal{I} ; \cup, \cap,-, \diamond, \emptyset, V\rangle$ is a KTB-algebra. The structure $\mathfrak{G}=(V, E, \mathcal{I})$ is the usual KTB-frame, of course.

Modal logics, graphs and KTB-algebras

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

- Finite subdirectly irreducibles are simple.

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

- Finite subdirectly irreducibles are simple.
- $\mathcal{V} \models f^{n+1} x \leq f^{n}(x)$ implies \mathcal{V} is a discriminator variety.

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

- Finite subdirectly irreducibles are simple.
- $\mathcal{V} \models f^{n+1} x \leq f^{n}(x)$ implies \mathcal{V} is a discriminator variety.
- The equation above means graph-theoretically that the diameter (the longest shortest path) in each graph from the variety is not greater than n.

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

- Finite subdirectly irreducibles are simple.
- $\mathcal{V} \models f^{n+1} x \leq f^{n}(x)$ implies \mathcal{V} is a discriminator variety.
- The equation above means graph-theoretically that the diameter (the longest shortest path) in each graph from the variety is not greater than n.
- (V, E) in (V, E, \mathcal{I}) is connected implies $\langle\mathcal{I} ; \cup, \cap,-\rangle,, \emptyset, V\rangle$ is subdirectly irreducible (simple, if the diameter of (V, E) is finite).

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

- Finite subdirectly irreducibles are simple.
- $\mathcal{V} \models f^{n+1} x \leq f^{n}(x)$ implies \mathcal{V} is a discriminator variety.
- The equation above means graph-theoretically that the diameter (the longest shortest path) in each graph from the variety is not greater than n.
- (V, E) in (V, E, \mathcal{I}) is connected implies $\langle\mathcal{I} ; \cup, \cap,-\rangle,, \emptyset, V\rangle$ is subdirectly irreducible (simple, if the diameter of (V, E) is finite).
One conclusion (most important for this talk): if all graphs from \mathcal{V} are of finite diameter, then they are of a bounded finite diameter.

Varieties of KTB-algebras

Old hat: lattice $\operatorname{Next}(\mathbf{K T B})$ of normal extensions of KTB is dually isomorphic to the lattice $\Lambda^{K T B}$ of varieties of KTB-algebras.

Varieties of KTB-algebras

Old hat: lattice $\operatorname{Next}(\mathbf{K T B})$ of normal extensions of KTB is dually isomorphic to the lattice $\Lambda^{K T B}$ of varieties of KTB-algebras.

Theorem (Miyazaki 2004)

The bottom of $\wedge^{K T B}$ is a three element chain: trivial $\prec V\left(K_{1}\right) \prec V\left(K_{2}\right)$.
where $V\left(K_{1}\right)$ is the variety generated by the algebra of the complete graph on one element and $V\left(K_{2}\right)$ is the variety generated by the algebra of the complete graph on two elements.

Varieties of KTB-algebras

Old hat: lattice $\operatorname{Next}(\mathbf{K T B})$ of normal extensions of KTB is dually isomorphic to the lattice $\Lambda^{K T B}$ of varieties of KTB-algebras.

Theorem (Miyazaki 2004)

The bottom of $\wedge^{K T B}$ is a three element chain: trivial $\prec V\left(K_{1}\right) \prec V\left(K_{2}\right)$.
where $V\left(K_{1}\right)$ is the variety generated by the algebra of the complete graph on one element and $V\left(K_{2}\right)$ is the variety generated by the algebra of the complete graph on two elements. Miyazaki: What is the next level like?

Varieties of KTB-algebras

Old hat: lattice $\operatorname{Next}(\mathbf{K T B})$ of normal extensions of KTB is dually isomorphic to the lattice $\wedge^{K T B}$ of varieties of KTB-algebras.

Theorem (Miyazaki 2004)

The bottom of $\wedge^{K T B}$ is a three element chain: trivial $\prec V\left(K_{1}\right) \prec V\left(K_{2}\right)$.
where $V\left(K_{1}\right)$ is the variety generated by the algebra of the complete graph on one element and $V\left(K_{2}\right)$ is the variety generated by the algebra of the complete graph on two elements. Miyazaki: What is the next level like?

Theorem (T.K., Stevens 2006)

There are at least \aleph_{0} covers of $V\left(K_{2}\right)$ in $\Lambda^{K T B}$.

Lame spiders

Figure: The graph S_{n}

Lame spiders

Figure: The graph S_{n}

For each n, the variety $V\left(S_{n}\right)$ is a cover of $V\left(K_{2}\right)$ in $\Lambda^{K T B}$.

Lame spiders

Figure: The graph S_{n}

For each n, the variety $V\left(S_{n}\right)$ is a cover of $V\left(K_{2}\right)$ in $\Lambda^{K T B}$. So there should be an algebra of subsets of S_{ω} with the same property...

Lame spiders

Figure: The graph S_{n}

For each n, the variety $V\left(S_{n}\right)$ is a cover of $V\left(K_{2}\right)$ in $\Lambda^{K T B}$. So there should be an algebra of subsets of S_{ω} with the same property. . . one would hope.

Lame spiders

Figure: The graph S_{n}

For each n, the variety $V\left(S_{n}\right)$ is a cover of $V\left(K_{2}\right)$ in $\Lambda^{K T B}$. So there should be an algebra of subsets of S_{ω} with the same property. . . one would hope. Alas, that cannot work.

Modal logics, graphs and KTB-algebras
Small varieties of KTB-algebras Interlude: quasi-p-morphisms Small varieties of KTB-algebras again

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.

Quasi-p-morphisms: defined

Results in this section are not limited to KTB

Let $\mathfrak{F}=(W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not \vDash \diamond_{+}^{n+1} x \rightarrow \diamond_{+}^{n} x$ for all $n \in \omega$, where $\diamond_{+} x=x \vee \diamond x$.

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.

Let $\mathfrak{F}=(W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not \models \diamond_{+}^{n+1} x \rightarrow \diamond_{+}^{n} x$ for all $n \in \omega$, where $\diamond_{+} x=x \vee \diamond x$. Let $\mathfrak{G}=(U, S)$ be a finite frame.

Quasi-p-morphisms: defined

Results in this section are not limited to KTB

Let $\mathfrak{F}=(W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not \models \diamond_{+}^{n+1} x \rightarrow \diamond_{+}^{n} \times$ for all $n \in \omega$, where $\diamond_{+} x=x \vee \diamond x$. Let $\mathfrak{G}=(U, S)$ be a finite frame. Let further W_{R} (set of regular points) and W_{S} (set of singular points) constitute a bi-partition of W, and $f: W \rightarrow U$ be an onto map with the following properties:

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.

Let $\mathfrak{F}=(W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not \models \diamond_{+}^{n+1} x \rightarrow \diamond_{+}^{n} \times$ for all $n \in \omega$, where $\diamond_{+} x=x \vee \diamond x$. Let $\mathfrak{G}=(U, S)$ be a finite frame. Let further W_{R} (set of regular points) and W_{S} (set of singular points) constitute a bi-partition of W, and $f: W \rightarrow U$ be an onto map with the following properties:

- aRb implies $f(a) \operatorname{Sf}(b)$ for all $a, b \in W$.

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.

Let $\mathfrak{F}=(W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not \models \diamond_{+}^{n+1} x \rightarrow \diamond_{+}^{n} \times$ for all $n \in \omega$, where $\diamond_{+} x=x \vee \diamond x$. Let $\mathfrak{G}=(U, S)$ be a finite frame. Let further W_{R} (set of regular points) and W_{S} (set of singular points) constitute a bi-partition of W, and $f: W \rightarrow U$ be an onto map with the following properties:

- aRb implies $f(a) \operatorname{Sf}(b)$ for all $a, b \in W$.
- if $f(a) S u$ and $a \in W_{R}$, then there is a $b \in W$ such that $f(b)=u$ and $a R b$.

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.
Let $\mathfrak{F}=(W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not \vDash \diamond_{+}^{n+1} x \rightarrow \diamond_{+}^{n} \times$ for all $n \in \omega$, where $\diamond_{+} x=x \vee \diamond x$. Let $\mathfrak{G}=(U, S)$ be a finite frame. Let further W_{R} (set of regular points) and W_{S} (set of singular points) constitute a bi-partition of W, and $f: W \rightarrow U$ be an onto map with the following properties:

- aRb implies $f(a) \operatorname{Sf}(b)$ for all $a, b \in W$.
- if $f(a) S u$ and $a \in W_{R}$, then there is a $b \in W$ such that $f(b)=u$ and $a R b$.
- $\forall u \in U \exists\left(X_{i}^{u}\right)_{i \in \omega} \subseteq \mathcal{P}$ such that

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.
Let $\mathfrak{F}=(W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not \vDash \diamond_{+}^{n+1} x \rightarrow \diamond_{+}^{n} x$ for all $n \in \omega$, where $\diamond_{+} x=x \vee \diamond x$. Let $\mathfrak{G}=(U, S)$ be a finite frame. Let further W_{R} (set of regular points) and W_{S} (set of singular points) constitute a bi-partition of W, and $f: W \rightarrow U$ be an onto map with the following properties:

- aRb implies $f(a) \operatorname{Sf}(b)$ for all $a, b \in W$.
- if $f(a) S u$ and $a \in W_{R}$, then there is a $b \in W$ such that $f(b)=u$ and $a R b$.
- $\forall u \in U \exists\left(X_{i}^{u}\right)_{i \in \omega} \subseteq \mathcal{P}$ such that
- $X_{i}^{u} \cap X_{j}^{\mu}=\emptyset$ for $i \neq j$

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.
Let $\mathfrak{F}=(W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not \vDash \diamond_{+}^{n+1} x \rightarrow \diamond_{+}^{n} x$ for all $n \in \omega$, where $\diamond_{+} x=x \vee \diamond x$. Let $\mathfrak{G}=(U, S)$ be a finite frame. Let further W_{R} (set of regular points) and W_{S} (set of singular points) constitute a bi-partition of W, and $f: W \rightarrow U$ be an onto map with the following properties:

- aRb implies $f(a) S f(b)$ for all $a, b \in W$.
- if $f(a) S u$ and $a \in W_{R}$, then there is a $b \in W$ such that $f(b)=u$ and $a R b$.
- $\forall u \in U \exists\left(X_{i}^{u}\right)_{i \in \omega} \subseteq \mathcal{P}$ such that
- $X_{i}^{u} \cap X_{j}^{\mu}=\emptyset$ for $i \neq j$
- $f^{-1}(u)=\bigcup_{i \in \omega} X_{i}^{u}$

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.
Let $\mathfrak{F}=(W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not \vDash \diamond_{+}^{n+1} x \rightarrow \diamond_{+}^{n} \times$ for all $n \in \omega$, where $\diamond_{+} x=x \vee \diamond x$. Let $\mathfrak{G}=(U, S)$ be a finite frame. Let further W_{R} (set of regular points) and W_{S} (set of singular points) constitute a bi-partition of W, and $f: W \rightarrow U$ be an onto map with the following properties:

- aRb implies $f(a) \operatorname{Sf}(b)$ for all $a, b \in W$.
- if $f(a) S u$ and $a \in W_{R}$, then there is a $b \in W$ such that $f(b)=u$ and $a R b$.
- $\forall u \in U \exists\left(X_{i}^{u}\right)_{i \in \omega} \subseteq \mathcal{P}$ such that
- $X_{i}^{u} \cap X_{j}^{\mu}=\emptyset$ for $i \neq j$
- $f^{-1}(u)=\bigcup_{i \in \omega} X_{i}^{u}$
- $\forall a \in W_{S} \exists K \in \omega \forall n \in \omega$ the distance from a to $\bigcup_{u \in U} \bigcup_{i=0}^{n} X_{i}^{u}$ is not greater than K.

Quasi-p-morphisms: what good are they?

Such an f we call a quasi-p-morphism. Accordingly, \mathfrak{G} is a quasi-p-morphic image of \mathfrak{F}.

Quasi-p-morphisms: what good are they?

Such an f we call a quasi-p-morphism. Accordingly, \mathfrak{G} is a quasi-p-morphic image of \mathfrak{F}.

Theorem (T.K., Miyazaki, 2007)
Let \mathfrak{F} and \mathfrak{G} be frames, and \mathfrak{G} be finite. Let \mathfrak{F}^{*} and \mathfrak{G}^{*} be the respective dual algebras of \mathfrak{F} and \mathfrak{G}. Let $f: \mathfrak{F} \rightarrow \mathfrak{G}$ be a quasi-p-morphism. Then $\mathfrak{G}^{*} \in \operatorname{SHP}\left(\mathfrak{F}^{*}\right)$.

Quasi-p-morphisms: what good are they?

Such an f we call a quasi-p-morphism. Accordingly, \mathfrak{G} is a quasi-p-morphic image of \mathfrak{F}.

Theorem (T.K., Miyazaki, 2007)
Let \mathfrak{F} and \mathfrak{G} be frames, and \mathfrak{G} be finite. Let \mathfrak{F}^{*} and \mathfrak{G}^{*} be the respective dual algebras of \mathfrak{F} and \mathfrak{G}. Let $f: \mathfrak{F} \rightarrow \mathfrak{G}$ be a quasi-p-morphism. Then $\mathfrak{G}^{*} \in \operatorname{SHP}\left(\mathfrak{F}^{*}\right)$.

Proof.
Let $U=\{1, \ldots, m\}$ (for notational convenience). Idea: for $\ell \in U$ put $Z_{n}^{\ell}=\bigcup_{i=0}^{\ell}$. Then let $Z^{\ell}=\left(Z_{n}^{\ell}: n \in \omega\right)$. This is an element of $\left(\mathfrak{F}^{*}\right)^{\omega}$. Consider the congruence $\Theta=C g\left(\bigvee_{\ell=1}^{m}, 1\right)$ on $\left(\mathfrak{F}^{*}\right)^{\omega}$ and show that $\left(\mathfrak{F}^{*}\right)^{\omega} / \Theta$ has a subalgebra isomorphic to \mathfrak{G}^{*}.

Finite saws

Figure: A finite saw

Finite saws

Figure: A finite saw

Any such thing generates a cover of $V\left(K_{2}\right)$.

An infinite saw

Figure: An infinite saw

An infinite saw

Figure: An infinite saw

That generates a cover of $V\left(K_{2}\right)$, too.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

How does a saw cut?

A European carpenter saw cuts on the push stroke, like this:

How does a saw cut?

A European carpenter saw cuts on the push stroke, like this:

How does a saw cut?

A European carpenter saw cuts on the push stroke, like this:

But a Japanese carpenter saw cuts on the pull stroke, like that:

How does a saw cut?

A European carpenter saw cuts on the push stroke, like this:

But a Japanese carpenter saw cuts on the pull stroke, like that:

A better sort of infinite saws

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define $\left(N_{Q}, E_{Q}\right)$ to be the following countably infinite graph:

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define $\left(N_{Q}, E_{Q}\right)$ to be the following countably infinite graph:

- N_{Q} is the disjoint union of sets A_{Q}, B_{Q} and C.

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define $\left(N_{Q}, E_{Q}\right)$ to be the following countably infinite graph:

- N_{Q} is the disjoint union of sets A_{Q}, B_{Q} and C.
- $C=\left\{c, d_{1}, e_{1}, e_{2}, f_{1}, f_{2} . f_{3}\right\}, A=\left\{a_{i}: i \in \omega\right\}$, $B=\left\{b_{i}: b \in \omega \backslash\{0\}\right\}$.

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define $\left(N_{Q}, E_{Q}\right)$ to be the following countably infinite graph:

- N_{Q} is the disjoint union of sets A_{Q}, B_{Q} and C.
- $C=\left\{c, d_{1}, e_{1}, e_{2}, f_{1}, f_{2} . f_{3}\right\}, A=\left\{a_{i}: i \in \omega\right\}$, $B=\left\{b_{i}: b \in \omega \backslash\{0\}\right\}$.
- $d_{1} E_{Q} c, e_{1} E_{Q C}, f_{1} E_{Q C}$.

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define $\left(N_{Q}, E_{Q}\right)$ to be the following countably infinite graph:

- N_{Q} is the disjoint union of sets A_{Q}, B_{Q} and C.
- $C=\left\{c, d_{1}, e_{1}, e_{2}, f_{1}, f_{2} . f_{3}\right\}, A=\left\{a_{i}: i \in \omega\right\}$, $B=\left\{b_{i}: b \in \omega \backslash\{0\}\right\}$.
- $d_{1} E_{Q} c, e_{1} E_{Q C}, f_{1} E_{Q C}$.
- $e_{1} E_{Q} e_{2}, f_{1} E_{Q} f_{2}, f_{2} E_{Q} f_{3}$.

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define $\left(N_{Q}, E_{Q}\right)$ to be the following countably infinite graph:

- N_{Q} is the disjoint union of sets A_{Q}, B_{Q} and C.
- $C=\left\{c, d_{1}, e_{1}, e_{2}, f_{1}, f_{2} . f_{3}\right\}, A=\left\{a_{i}: i \in \omega\right\}$, $B=\left\{b_{i}: b \in \omega \backslash\{0\}\right\}$.
- $d_{1} E_{Q} c, e_{1} E_{Q C}, f_{1} E_{Q C}$.
- $e_{1} E_{Q} e_{2}, f_{1} E_{Q} f_{2}, f_{2} E_{Q} f_{3}$.
- $a_{0} E_{Q} a_{1}, c E_{Q} a_{i}$ for all $a_{i} \in A_{Q}$.

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define $\left(N_{Q}, E_{Q}\right)$ to be the following countably infinite graph:

- N_{Q} is the disjoint union of sets A_{Q}, B_{Q} and C.
- $C=\left\{c, d_{1}, e_{1}, e_{2}, f_{1}, f_{2} . f_{3}\right\}, A=\left\{a_{i}: i \in \omega\right\}$, $B=\left\{b_{i}: b \in \omega \backslash\{0\}\right\}$.
- $d_{1} E_{Q} c, e_{1} E_{Q C}, f_{1} E_{Q C}$.
- $e_{1} E_{Q} e_{2}, f_{1} E_{Q} f_{2}, f_{2} E_{Q} f_{3}$.
- $a_{0} E_{Q} a_{1}, c E_{Q} a_{i}$ for all $a_{i} \in A_{Q}$.
- $a_{i} E_{Q} b_{i}$ for every $i>0$.

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define $\left(N_{Q}, E_{Q}\right)$ to be the following countably infinite graph:

- N_{Q} is the disjoint union of sets A_{Q}, B_{Q} and C.
- $C=\left\{c, d_{1}, e_{1}, e_{2}, f_{1}, f_{2} . f_{3}\right\}, A=\left\{a_{i}: i \in \omega\right\}$, $B=\left\{b_{i}: b \in \omega \backslash\{0\}\right\}$.
- $d_{1} E_{Q c}, e_{1} E_{Q c}, f_{1} E_{Q c}$.
- $e_{1} E_{Q} e_{2}, f_{1} E_{Q} f_{2}, f_{2} E_{Q} f_{3}$.
- $a_{0} E_{Q} a_{1}, c E_{Q} a_{i}$ for all $a_{i} \in A_{Q}$.
- $a_{i} E_{Q} b_{i}$ for every $i>0$.
- $a_{2 k+1} E_{Q} b_{2 k}$ iff $2 k \notin Q$ and $a_{2 k+1} E_{Q} b_{2 k+2}$ iff $2 k+2 \in Q$.

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define $\left(N_{Q}, E_{Q}\right)$ to be the following countably infinite graph:

- N_{Q} is the disjoint union of sets A_{Q}, B_{Q} and C.
- $C=\left\{c, d_{1}, e_{1}, e_{2}, f_{1}, f_{2} . f_{3}\right\}, A=\left\{a_{i}: i \in \omega\right\}$, $B=\left\{b_{i}: b \in \omega \backslash\{0\}\right\}$.
- $d_{1} E_{Q c}, e_{1} E_{Q c}, f_{1} E_{Q c}$.
- $e_{1} E_{Q} e_{2}, f_{1} E_{Q} f_{2}, f_{2} E_{Q} f_{3}$.
- $a_{0} E_{Q} a_{1}, c E_{Q} a_{i}$ for all $a_{i} \in A_{Q}$.
- $a_{i} E_{Q} b_{i}$ for every $i>0$.
- $a_{2 k+1} E_{Q} b_{2 k}$ iff $2 k \notin Q$ and $a_{2 k+1} E_{Q} b_{2 k+2}$ iff $2 k+2 \in Q$.
- $a_{2 k} E_{Q} b_{2 k-1}$ iff $2 k \notin Q$ and $a_{2 k} E_{Q} b_{2 k+1}$ iff $2 k+2 \in Q$.

Uncountably many covers of $V\left(K_{2}\right)$

Let $\mathfrak{N}_{Q}=\left(N_{Q}, E_{Q}, \mathcal{I}_{Q}\right)$ be the frame on $\left(N_{Q}, E_{Q}\right)$ with \mathcal{I}_{Q} the modal algebra generated by $\left\{f_{3}\right\}$. It is easy to see that \mathcal{I}_{Q} consists of precisely these subsets of N_{Q} whose intersection with A is either finite of cofinite in A and intersection with B is either finite of cofinite in B. Moreover, for distinct Q and Q^{\prime}, the dual algebras of \mathfrak{N}_{Q} and $\mathfrak{N}_{Q^{\prime}}$ are non-isomorphic.

Uncountably many covers of $V\left(K_{2}\right)$

Let $\mathfrak{N}_{Q}=\left(N_{Q}, E_{Q}, \mathcal{I}_{Q}\right)$ be the frame on $\left(N_{Q}, E_{Q}\right)$ with \mathcal{I}_{Q} the modal algebra generated by $\left\{f_{3}\right\}$. It is easy to see that \mathcal{I}_{Q} consists of precisely these subsets of N_{Q} whose intersection with A is either finite of cofinite in A and intersection with B is either finite of cofinite in B. Moreover, for distinct Q and Q^{\prime}, the dual algebras of \mathfrak{N}_{Q} and $\mathfrak{N}_{Q^{\prime}}$ are non-isomorphic.

Theorem (T.K., Stevens)

Let $V\left(N_{Q}\right)$ be the variety generated by the dual algebra of \mathfrak{N}_{Q}. Then, $V\left(N_{Q}\right)$ is a cover of $V\left(K_{2}\right)$ in $\Lambda^{K T B}$. Thus, there are continuum covers of $V\left(K_{2}\right)$ in $\Lambda^{K T B}$.

An intimation of a proof

Proof.

Sketch: (1) show that any subset $X \subset N_{Q}$ such that $\diamond X \backslash X \neq \neg X$, generates \mathcal{I}_{Q}. (2) show that any element x of any ultrapower of the dual algebra of \mathfrak{N}_{Q} such that $\diamond x \wedge \neg x \neq \neg x$, generates an algebra containing a subalgebra isomorphic to the dual algebra of \mathfrak{N}_{Q}. (3) show for distinct Q and Q^{\prime}, the varieties $V\left(N_{Q}\right)$ and $V\left(N_{Q^{\prime}}\right)$ are also distinct. From (1), (2) and some fiddling with Jónsson's Lemma conclude that $V\left(N_{Q}\right)$ covers $V\left(K_{2}\right)$. From (3) conclude that there are continuum such covers. \qquad

