Quasi-p-morphisms and small varieties of KTB-algebras

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Australian National University (ANU), Hokkaido University, ANU

August 3, 2007

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Quasi-p-morphisms and small varieties of KTB-algebras

Modal logics of undirected graphs: NEXT(**KTB**)

 Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.

▲□▶ ▲□▶ ▲□▶ ▲□▶

Modal logics of undirected graphs: NEXT(**KTB**)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.

Modal logics of undirected graphs: NEXT(**KTB**)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.

(日)

Modal logics of undirected graphs: NEXT(**KTB**)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.
- A few years ago Yutaka Miyazaki began working towards redressing the balance.

< □ > < 同 > < 三 > < 三 >

Modal logics of undirected graphs: NEXT(**KTB**)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.
- A few years ago Yutaka Miyazaki began working towards redressing the balance.
- Many classical questions were open then—and many still are.

< □ > < 同 > < 三 > < 三 >

Modal logics of undirected graphs: NEXT(**KTB**)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.
- A few years ago Yutaka Miyazaki began working towards redressing the balance.
- Many classical questions were open then—and many still are.
- This talk is about one of such questions: the structure of the lattice NEXT(KTB).

Modal logics of undirected graphs: NEXT(**KTB**)

- Modal logics are equational theories of algebras of certain subsets of directed graphs, otherwise known as (general) frames.
- Transitive digraphs (aka transitive frames, aka logics extending K4) have been by far the most investigated class.
- Undirected graphs (aka symmetric frames, aka logics extending KTB) have been rather neglected.
- A few years ago Yutaka Miyazaki began working towards redressing the balance.
- Many classical questions were open then—and many still are.
- This talk is about one of such questions: the structure of the lattice NEXT(KTB).
- And so is the next, I'm happy to add.

< □ > < 同 > < Ξ > < Ξ >

KTB-algebras and KTB-frames

An algebra $\mathbf{A} = \langle A; \vee, \wedge, \neg, f, 0, 1 \rangle$ is a *KTB-algebra* if **A** is a modal algebra and *f* satisfies:

(i) $x \le fx$ (ii) $x \le \neg f \neg fx$

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Quasi-p-morphisms and small varieties of KTB-algebras

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■

KTB-algebras and KTB-frames

An algebra $\mathbf{A} = \langle A; \vee, \wedge, \neg, f, 0, 1 \rangle$ is a *KTB-algebra* if **A** is a modal algebra and *f* satisfies:

- (i) $x \leq fx$
- (ii) $x \leq \neg f \neg fx$

Note that (ii) is equivalent to the property

 $fx \wedge y = 0$ iff $x \wedge fy = 0$

which means that f is a self-conjugate operator.

▲□▶ ▲□▶ ▲□▶ ▲□▶

KTB-algebras and KTB-frames

An algebra $\mathbf{A} = \langle A; \lor, \land, \neg, f, 0, 1 \rangle$ is a *KTB-algebra* if **A** is a modal algebra and *f* satisfies:

- (i) $x \leq fx$
- (ii) $x \leq \neg f \neg f x$

Note that (ii) is equivalent to the property

$$fx \wedge y = 0$$
 iff $x \wedge fy = 0$

which means that f is a *self-conjugate operator*. Example: let G = (V, E) be a (possibly infinite) graph and \mathcal{I} a Boolean algebra of subsets of V (with set-theoretical operations) closed under the unary operation $\Diamond(X) = E^{-1}(X)$. Then, $\langle \mathcal{I}; \cup, \cap, -, \Diamond, \emptyset, V \rangle$ is a KTB-algebra.

KTB-algebras and KTB-frames

An algebra $\mathbf{A} = \langle A; \lor, \land, \neg, f, 0, 1 \rangle$ is a *KTB-algebra* if **A** is a modal algebra and *f* satisfies:

- (i) $x \leq fx$
- (ii) $x \leq \neg f \neg f x$

Note that (ii) is equivalent to the property

 $fx \wedge y = 0$ iff $x \wedge fy = 0$

which means that f is a *self-conjugate operator*. Example: let G = (V, E) be a (possibly infinite) graph and \mathcal{I} a Boolean algebra of subsets of V (with set-theoretical operations) closed under the unary operation $\Diamond(X) = E^{-1}(X)$. Then, $\langle \mathcal{I}; \cup, \cap, -, \Diamond, \emptyset, V \rangle$ is a KTB-algebra. The structure $\mathfrak{G} = (V, E, \mathcal{I})$ is the usual KTB-frame, of course.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Quasi-p-morphisms and small varieties of KTB-algebras

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

• Finite subdirectly irreducibles are simple.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens Quasi-p-morphisms and small varieties of KTB-algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

- Finite subdirectly irreducibles are simple.
- $\mathcal{V} \models f^{n+1}x \leq f^n(x)$ implies \mathcal{V} is a discriminator variety.

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

- Finite subdirectly irreducibles are simple.
- $\mathcal{V} \models f^{n+1}x \leq f^n(x)$ implies \mathcal{V} is a discriminator variety.
- The equation above means graph-theoretically that the diameter (the longest shortest path) in each graph from the variety is not greater than *n*.

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

- Finite subdirectly irreducibles are simple.
- $\mathcal{V} \models f^{n+1}x \leq f^n(x)$ implies \mathcal{V} is a discriminator variety.
- The equation above means graph-theoretically that the diameter (the longest shortest path) in each graph from the variety is not greater than *n*.
- (V, E) in (V, E, I) is connected implies ⟨I; ∪, ∩, −, ◊, ∅, V⟩ is subdirectly irreducible (simple, if the diameter of (V, E) is finite).

KTB-algebras and KTB-frames

Some properties of KTB-frames and algebras:

- Finite subdirectly irreducibles are simple.
- $\mathcal{V} \models f^{n+1}x \leq f^n(x)$ implies \mathcal{V} is a discriminator variety.
- The equation above means graph-theoretically that the diameter (the longest shortest path) in each graph from the variety is not greater than *n*.
- (V, E) in (V, E, I) is connected implies ⟨I; ∪, ∩, −, ◊, ∅, V⟩ is subdirectly irreducible (simple, if the diameter of (V, E) is finite).

One conclusion (most important for this talk): if all graphs from \mathcal{V} are of finite diameter, then they are of a **bounded** finite diameter.

(日)

Varieties of KTB-algebras

Old hat: lattice NEXT(KTB) of normal extensions of KTB is dually isomorphic to the lattice Λ^{KTB} of varieties of KTB-algebras.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Quasi-p-morphisms and small varieties of KTB-algebras

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■

Varieties of KTB-algebras

Old hat: lattice NEXT(KTB) of normal extensions of KTB is dually isomorphic to the lattice Λ^{KTB} of varieties of KTB-algebras.

Theorem (Miyazaki 2004)

The bottom of Λ^{KTB} is a three element chain: trivial $\prec V(K_1) \prec V(K_2)$.

where $V(K_1)$ is the variety generated by the algebra of the complete graph on one element and $V(K_2)$ is the variety generated by the algebra of the complete graph on two elements.

(ロ) (同) (三) (三)

Varieties of KTB-algebras

Old hat: lattice NEXT(**KTB**) of normal extensions of **KTB** is dually isomorphic to the lattice Λ^{KTB} of varieties of KTB-algebras.

Theorem (Miyazaki 2004)

The bottom of Λ^{KTB} is a three element chain: trivial $\prec V(K_1) \prec V(K_2)$.

where $V(K_1)$ is the variety generated by the algebra of the complete graph on one element and $V(K_2)$ is the variety generated by the algebra of the complete graph on two elements. Miyazaki: What is the next level like?

(ロ) (同) (三) (三)

Varieties of KTB-algebras

Old hat: lattice NEXT(KTB) of normal extensions of KTB is dually isomorphic to the lattice Λ^{KTB} of varieties of KTB-algebras.

Theorem (Miyazaki 2004)

The bottom of Λ^{KTB} is a three element chain: trivial $\prec V(K_1) \prec V(K_2)$.

where $V(K_1)$ is the variety generated by the algebra of the complete graph on one element and $V(K_2)$ is the variety generated by the algebra of the complete graph on two elements. Miyazaki: What is the next level like?

Theorem (T.K., Stevens 2006)

There are at least \aleph_0 covers of $V(K_2)$ in Λ^{KTB} .

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Quasi-p-morphisms and small varieties of KTB-algebras

< □ > < □ > < □ > < Ξ > < Ξ >

Lame spiders

Figure: The graph S_n

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens Quasi-p-morphisms and small varieties of KTB-algebras

Lame spiders

Figure: The graph S_n

For each *n*, the variety $V(S_n)$ is a cover of $V(K_2)$ in Λ^{KTB} .

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Quasi-p-morphisms and small varieties of KTB-algebras

Lame spiders

Figure: The graph S_n

For each *n*, the variety $V(S_n)$ is a cover of $V(K_2)$ in Λ^{KTB} . So there should be an algebra of subsets of S_ω with the same property...

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Lame spiders

Figure: The graph S_n

For each *n*, the variety $V(S_n)$ is a cover of $V(K_2)$ in Λ^{KTB} . So there should be an algebra of subsets of S_ω with the same property... one would hope.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Lame spiders

Figure: The graph S_n

For each *n*, the variety $V(S_n)$ is a cover of $V(K_2)$ in Λ^{KTB} . So there should be an algebra of subsets of S_{ω} with the same property...one would hope. Alas, that cannot work.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Quasi-p-morphisms: defined

Results in this section are not limited to KTB

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens Quasi-p-morphisms and sma

Quasi-p-morphisms: defined

Results in this section are not limited to KTB. Let $\mathfrak{F} = (W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not\models \Diamond_+^{n+1} x \to \Diamond_+^n x$ for all $n \in \omega$, where $\Diamond_+ x = x \lor \Diamond x$.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens Quasi-p-morphisms and small varieties of KTB-algebras

(ロ) (同) (三) (三)

Quasi-p-morphisms: defined

Results in this section are not limited to KTB. Let $\mathfrak{F} = (W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not\models \Diamond_+^{n+1} x \to \Diamond_+^n x$ for all $n \in \omega$, where $\Diamond_+ x = x \lor \Diamond x$. Let $\mathfrak{G} = (U, S)$ be a finite frame.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens Quasi-p-morphisms and small varieties of KTB-algebras

(日)

Quasi-p-morphisms: defined

Results in this section are not limited to KTB. Let $\mathfrak{F} = (W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not\models \Diamond_+^{n+1} x \to \Diamond_+^n x$ for all $n \in \omega$, where $\Diamond_+ x = x \lor \Diamond x$. Let $\mathfrak{G} = (U, S)$ be a finite frame. Let further W_R (set of *regular* points) and W_S (set of *singular* points) constitute a bi-partition of W, and $f: W \to U$ be an onto map with the following properties:

Quasi-p-morphisms: defined

Results in this section are not limited to KTB. Let $\mathfrak{F} = (W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not\models \Diamond_+^{n+1} x \to \Diamond_+^n x$ for all $n \in \omega$, where $\Diamond_+ x = x \lor \Diamond x$. Let $\mathfrak{G} = (U, S)$ be a finite frame. Let further W_R (set of *regular* points) and W_S (set of *singular* points) constitute a bi-partition of W, and $f: W \to U$ be an onto map with the following properties:

• aRb implies f(a)Sf(b) for all $a, b \in W$.

Quasi-p-morphisms: defined

Results in this section are not limited to KTB

Let $\mathfrak{F} = (W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not\models \Diamond_+^{n+1} x \to \Diamond_+^n x$ for all $n \in \omega$, where $\Diamond_+ x = x \lor \Diamond x$. Let $\mathfrak{G} = (U, S)$ be a finite frame. Let further W_R (set of *regular* points) and W_S (set of *singular* points) constitute a bi-partition of W, and $f: W \to U$ be an onto map with the following properties:

- aRb implies f(a)Sf(b) for all $a, b \in W$.
- if f(a)Su and $a \in W_R$, then there is a $b \in W$ such that f(b) = u and aRb.

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.

Let $\mathfrak{F} = (W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not\models \Diamond_+^{n+1} x \to \Diamond_+^n x$ for all $n \in \omega$, where $\Diamond_+ x = x \lor \Diamond x$. Let $\mathfrak{G} = (U, S)$ be a finite frame. Let further W_R (set of *regular* points) and W_S (set of *singular* points) constitute a bi-partition of W, and $f: W \to U$ be an onto map with the following properties:

- aRb implies f(a)Sf(b) for all $a, b \in W$.
- if f(a)Su and $a \in W_R$, then there is a $b \in W$ such that f(b) = u and aRb.
- $\forall u \in U \exists (X_i^u)_{i \in \omega} \subseteq \mathcal{P}$ such that

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.

Let $\mathfrak{F} = (W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not\models \Diamond_+^{n+1} x \to \Diamond_+^n x$ for all $n \in \omega$, where $\Diamond_+ x = x \lor \Diamond x$. Let $\mathfrak{G} = (U, S)$ be a finite frame. Let further W_R (set of *regular* points) and W_S (set of *singular* points) constitute a bi-partition of W, and $f: W \to U$ be an onto map with the following properties:

- aRb implies f(a)Sf(b) for all $a, b \in W$.
- if f(a)Su and $a \in W_R$, then there is a $b \in W$ such that f(b) = u and aRb.
- $\forall u \in U \exists (X_i^u)_{i \in \omega} \subseteq \mathcal{P}$ such that
 - $X_i^u \cap X_j^u = \emptyset$ for $i \neq j$

Quasi-p-morphisms: defined

Results in this section are not limited to KTB

Let $\mathfrak{F} = (W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not\models \Diamond_+^{n+1} x \to \Diamond_+^n x$ for all $n \in \omega$, where $\Diamond_+ x = x \lor \Diamond x$. Let $\mathfrak{G} = (U, S)$ be a finite frame. Let further W_R (set of *regular* points) and W_S (set of *singular* points) constitute a bi-partition of W, and $f: W \to U$ be an onto map with the following properties:

- aRb implies f(a)Sf(b) for all $a, b \in W$.
- if f(a)Su and $a \in W_R$, then there is a $b \in W$ such that f(b) = u and aRb.
- $\forall u \in U \exists (X_i^u)_{i \in \omega} \subseteq \mathcal{P}$ such that

•
$$X_i^u \cap X_j^u = \emptyset$$
 for $i \neq j$

•
$$f^{-1}(u) = \bigcup_{i \in \omega} X_i^u$$

Quasi-p-morphisms: defined

Results in this section are not limited to KTB.

Let $\mathfrak{F} = (W, R, \mathcal{P})$ be any frame such that $\mathfrak{F} \not\models \Diamond_+^{n+1} x \to \Diamond_+^n x$ for all $n \in \omega$, where $\Diamond_+ x = x \lor \Diamond x$. Let $\mathfrak{G} = (U, S)$ be a finite frame. Let further W_R (set of *regular* points) and W_S (set of *singular* points) constitute a bi-partition of W, and $f: W \to U$ be an onto map with the following properties:

- aRb implies f(a)Sf(b) for all $a, b \in W$.
- if f(a)Su and $a \in W_R$, then there is a $b \in W$ such that f(b) = u and aRb.
- $\forall u \in U \exists (X_i^u)_{i \in \omega} \subseteq \mathcal{P}$ such that
 - $X_i^u \cap X_j^u = \emptyset$ for $i \neq j$
 - $f^{-1}(u) = \bigcup_{i \in \omega} X_i^u$

• $\forall a \in W_S \exists K \in \omega \forall n \in \omega$ the distance from *a* to $\bigcup_{u \in U} \bigcup_{i=0}^n X_i^u$ is not greater than *K*.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Quasi-p-morphisms: what good are they?

Such an f we call a *quasi-p-morphism*. Accordingly, \mathfrak{G} is a *quasi-p-morphic* image of \mathfrak{F} .

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens 📃 🔍

Quasi-p-morphisms and small varieties of KTB-algebras

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■

Quasi-p-morphisms: what good are they?

Such an f we call a *quasi-p-morphism*. Accordingly, \mathfrak{G} is a *quasi-p-morphic* image of \mathfrak{F} .

Theorem (T.K., Miyazaki, 2007)

Let \mathfrak{F} and \mathfrak{G} be frames, and \mathfrak{G} be finite. Let \mathfrak{F}^* and \mathfrak{G}^* be the respective dual algebras of \mathfrak{F} and \mathfrak{G} . Let $f : \mathfrak{F} \to \mathfrak{G}$ be a quasi-p-morphism. Then $\mathfrak{G}^* \in SHP(\mathfrak{F}^*)$.

(ロ) (同) (三) (三)

Quasi-p-morphisms: what good are they?

Such an f we call a *quasi-p-morphism*. Accordingly, \mathfrak{G} is a *quasi-p-morphic* image of \mathfrak{F} .

Theorem (T.K., Miyazaki, 2007)

Let \mathfrak{F} and \mathfrak{G} be frames, and \mathfrak{G} be finite. Let \mathfrak{F}^* and \mathfrak{G}^* be the respective dual algebras of \mathfrak{F} and \mathfrak{G} . Let $f : \mathfrak{F} \to \mathfrak{G}$ be a quasi-p-morphism. Then $\mathfrak{G}^* \in SHP(\mathfrak{F}^*)$.

Proof.

Let $U = \{1, ..., m\}$ (for notational convenience). Idea: for $\ell \in U$ put $Z_n^{\ell} = \bigcup_{i=0}^{\ell}$. Then let $Z^{\ell} = (Z_n^{\ell}: n \in \omega)$. This is an element of $(\mathfrak{F}^*)^{\omega}$. Consider the congruence $\Theta = Cg(\bigvee_{\ell=1}^m, 1)$ on $(\mathfrak{F}^*)^{\omega}$ and show that $(\mathfrak{F}^*)^{\omega}/\Theta$ has a subalgebra isomorphic to \mathfrak{G}^* .

Small varieties of KTB-algebras again

Finite saws

Figure: A finite saw

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Finite saws

Figure: A finite saw

Any such thing generates a cover of $V(K_2)$.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

An infinite saw

Figure: An infinite saw

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

An infinite saw

Figure: An infinite saw

That generates a cover of $V(K_2)$, too.

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

How does a saw cut?

A European carpenter saw cuts on the push stroke, like this:

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens Quasi-p-morphisms and small varieties of KTB-algebras

How does a saw cut?

A European carpenter saw cuts on the push stroke, like this:

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens Quasi-p-morphisms and small varieties of KTB-algebras

How does a saw cut?

A European carpenter saw cuts on the push stroke, like this:

But a Japanese carpenter saw cuts on the pull stroke, like that:

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens Quasi-p-morphisms and small varieties of KTB-algebras

(日)

How does a saw cut?

A European carpenter saw cuts on the push stroke, like this:

But a Japanese carpenter saw cuts on the pull stroke, like that:

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

A better sort of infinite saws

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define (N_Q, E_Q) to be the following countably infinite graph:

Tomasz Kowalski, Yutaka Miyazaki, Michael Stevens Quasi-p-morphisms and small varieties of KTB-algebras

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define (N_Q, E_Q) to be the following countably infinite graph:

• N_Q is the disjoint union of sets A_Q , B_Q and C.

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define (N_Q, E_Q) to be the following countably infinite graph:

• N_Q is the disjoint union of sets A_Q , B_Q and C.

•
$$C = \{c, d_1, e_1, e_2, f_1, f_2, f_3\}, A = \{a_i : i \in \omega\}, B = \{b_i : b \in \omega \setminus \{0\}\}.$$

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define (N_Q, E_Q) to be the following countably infinite graph:

• N_Q is the disjoint union of sets A_Q , B_Q and C.

•
$$C = \{c, d_1, e_1, e_2, f_1, f_2, f_3\}, A = \{a_i : i \in \omega\}, B = \{b_i : b \in \omega \setminus \{0\}\}.$$

• $d_1 E_Q c$, $e_1 E_Q c$, $f_1 E_Q c$.

(ロ) (同) (三) (三)

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define (N_Q, E_Q) to be the following countably infinite graph:

• N_Q is the disjoint union of sets A_Q , B_Q and C.

•
$$C = \{c, d_1, e_1, e_2, f_1, f_2, f_3\}, A = \{a_i : i \in \omega\}, B = \{b_i : b \in \omega \setminus \{0\}\}.$$

- $d_1 E_Q c$, $e_1 E_Q c$, $f_1 E_Q c$.
- $e_1 E_Q e_2$, $f_1 E_Q f_2$, $f_2 E_Q f_3$.

< □ > < 同 > < 三 > < 三 >

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define (N_Q, E_Q) to be the following countably infinite graph:

• N_Q is the disjoint union of sets A_Q , B_Q and C.

•
$$C = \{c, d_1, e_1, e_2, f_1, f_2, f_3\}, A = \{a_i : i \in \omega\}, B = \{b_i : b \in \omega \setminus \{0\}\}.$$

- $d_1 E_Q c$, $e_1 E_Q c$, $f_1 E_Q c$.
- $e_1 E_Q e_2$, $f_1 E_Q f_2$, $f_2 E_Q f_3$.
- $a_0E_Qa_1$, cE_Qa_i for all $a_i \in A_Q$.

< □ > < 同 > < 三 > < 三 >

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define (N_Q, E_Q) to be the following countably infinite graph:

• N_Q is the disjoint union of sets A_Q , B_Q and C.

•
$$C = \{c, d_1, e_1, e_2, f_1, f_2, f_3\}, A = \{a_i : i \in \omega\}, B = \{b_i : b \in \omega \setminus \{0\}\}.$$

- $d_1 E_Q c$, $e_1 E_Q c$, $f_1 E_Q c$.
- e₁E_Qe₂, f₁E_Qf₂, f₂E_Qf₃.
- $a_0E_Qa_1$, cE_Qa_i for all $a_i \in A_Q$.
- $a_i E_Q b_i$ for every i > 0.

(日)

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define (N_Q, E_Q) to be the following countably infinite graph:

- N_Q is the disjoint union of sets A_Q , B_Q and C.
- $C = \{c, d_1, e_1, e_2, f_1, f_2, f_3\}, A = \{a_i : i \in \omega\}, B = \{b_i : b \in \omega \setminus \{0\}\}.$
- $d_1 E_Q c$, $e_1 E_Q c$, $f_1 E_Q c$.
- $e_1 E_Q e_2$, $f_1 E_Q f_2$, $f_2 E_Q f_3$.
- $a_0E_Qa_1$, cE_Qa_i for all $a_i \in A_Q$.
- $a_i E_Q b_i$ for every i > 0.
- $a_{2k+1}E_Qb_{2k}$ iff $2k \notin Q$ and $a_{2k+1}E_Qb_{2k+2}$ iff $2k+2 \in Q$.

Uncountably many infinite saws

For a subset Q of even numbers, with $0 \notin Q$, define (N_Q, E_Q) to be the following countably infinite graph:

- N_Q is the disjoint union of sets A_Q , B_Q and C.
- $C = \{c, d_1, e_1, e_2, f_1, f_2, f_3\}, A = \{a_i : i \in \omega\}, B = \{b_i : b \in \omega \setminus \{0\}\}.$
- $d_1 E_Q c$, $e_1 E_Q c$, $f_1 E_Q c$.
- $e_1 E_Q e_2$, $f_1 E_Q f_2$, $f_2 E_Q f_3$.
- $a_0E_Qa_1$, cE_Qa_i for all $a_i \in A_Q$.
- $a_i E_Q b_i$ for every i > 0.
- $a_{2k+1}E_Qb_{2k}$ iff $2k \notin Q$ and $a_{2k+1}E_Qb_{2k+2}$ iff $2k+2 \in Q$.
- $a_{2k}E_Qb_{2k-1}$ iff $2k \notin Q$ and $a_{2k}E_Qb_{2k+1}$ iff $2k+2 \in Q$.

Uncountably many covers of $V(K_2)$

Let $\mathfrak{N}_Q = (N_Q, E_Q, \mathcal{I}_Q)$ be the frame on (N_Q, E_Q) with \mathcal{I}_Q the modal algebra generated by $\{f_3\}$. It is easy to see that \mathcal{I}_Q consists of precisely these subsets of N_Q whose intersection with A is either finite of cofinite in A and intersection with B is either finite of cofinite in B. Moreover, for distinct Q and Q', the dual algebras of \mathfrak{N}_Q and $\mathfrak{N}_{Q'}$ are non-isomorphic.

Uncountably many covers of $V(K_2)$

Let $\mathfrak{N}_Q = (N_Q, E_Q, \mathcal{I}_Q)$ be the frame on (N_Q, E_Q) with \mathcal{I}_Q the modal algebra generated by $\{f_3\}$. It is easy to see that \mathcal{I}_Q consists of precisely these subsets of N_Q whose intersection with A is either finite of cofinite in A and intersection with B is either finite of cofinite in B. Moreover, for distinct Q and Q', the dual algebras of \mathfrak{N}_Q and $\mathfrak{N}_{Q'}$ are non-isomorphic.

Theorem (T.K., Stevens)

Let $V(N_Q)$ be the variety generated by the dual algebra of \mathfrak{N}_Q . Then, $V(N_Q)$ is a cover of $V(K_2)$ in Λ^{KTB} . Thus, there are continuum covers of $V(K_2)$ in Λ^{KTB} .

An intimation of a proof

Proof.

Sketch: (1) show that any subset $X \subset N_Q$ such that $\Diamond X \setminus X \neq \neg X$, generates \mathcal{I}_Q . (2) show that any element x of any ultrapower of the dual algebra of \mathfrak{N}_Q such that $\Diamond x \wedge \neg x \neq \neg x$, generates an algebra containing a subalgebra isomorphic to the dual algebra of \mathfrak{N}_Q . (3) show for distinct Q and Q', the varieties $V(N_Q)$ and $V(N_{Q'})$ are also distinct. From (1), (2) and some fiddling with Jónsson's Lemma conclude that $V(N_Q)$ covers $V(K_2)$. From (3) conclude that there are continuum such covers.

Quasi-p-morphisms and small varieties of KTB-algebras

・ ロ ト ・ (引 ト ・ 三 ト