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Abstract. It is easy to see that a topological space is Alexandro� if and only if the Cantor-
Bendixson derivative operator on the Boolean algebra of its subsets has an adjoint. We address
the question whether Alexandro�ness can be detected by existence of an adjoint for the re-
striction of the dual operator to the Heyting algebra of open sets. The answer turns out to be
negative|the corresponding class of spaces is strictly larger than that of Alexandro� spaces; in
fact moreover spaces whose lattice of closed sets is Heyting, and spaces whose lattice of closed
sets is isomorphic to the lattice of open sets of (another) space also lie strictly in between.

1. The \classical" case

Recall that an Alexandro� space is a topological space homeomorphic to a space obtained

from a preorder pX;Àq by equipping X with the Alexandro� topology|the topology whose open

sets are all upsets w. r. t. À, i. e. sets U � X with

@xÀy x P Uñ y P U:

In that case, À coincides with the specialization preorder of the topology:

x À y ðñ x P C tyu ðñ C txu � C tyu

for any x; y P X, where C is the closure operator of the topology.

One can �nd many equivalent characterizations of Alexandro� spaces in the literature, the

most common being that any intersection of open sets is open, or every point possessing least

neighborhood. The one which is probably most interesting from the point of view of modal logic
is in terms of adjoints to unary operators. Recall that for maps f : X Ñ Y , g : Y Ñ X between

posets pX;¤Xq and pY;¤Y q, the following conditions are equivalent:

(1) for any x P X, y P Y one has

x ¤X gpyq ðñ fpxq ¤Y y;

(2) both f and g are monotone and satisfy

x ¤X gfpxq; fgpyq ¤Y y

for any x P X, y P Y .

Under these circumstances one says that pf; gq form an adjoint pair, with f left adjoint to g

and g right adjoint to f . Notation is f % g.

Recall that a map between complete posets (those admitting all suprema and in�ma) has a

right (resp. left) adjoint i� it preserves all suprema (resp. in�ma). More precisely, f : X Ñ Y has

a right adjoint i� for any y P Y the set

tx P X | fpxq ¤Y yu

has a supremum gpxq preserved by f ; similarly, g : Y Ñ X has a left adjoint i�

ty P Y | x ¤X gpyqu

has an in�mum fpxq preserved by g, for any x P X.
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One has the following

(1.1) Proposition. A topology on a set X is Alexandro� if and only if the corresponding

interior operator I : PpXq Ñ PpXq on the powerset of X (with the subset inclusion order)

has a left adjoint. An equivalent requirement is that the closure operator C : PpXq ÑPpXq

has a right adjoint.

Proof. Although this is a well known (folklore?) exercise, we reproduce the proof here. Suppose

the topology is Alexandro�, obtained from the preorder À on X. Then the corresponding interior

operator is given by

IÀpSq � tx P X | @xÀs s P Su

and the closure operator by

CÀpSq � tx P X | DxÀs s P Su ;

and it is straightforward to verify that there are adjunctions

CÁ % IÀ; CÀ % IÁ :

For the converse, �rst note that a map f between Boolean algebras with their canonical ordering

has a left (resp. right) adjoint i� the dual map  f has a right (resp. left) adjoint; this in

particular applies to our situation as the interior and closure operators are mutually dual. So

suppose that C has a right adjoint. Then it preserves all suprema; in particular, for any S P PpXq

one has

CS � C
¤
ttsu | s P Su �

¤
tC tsu | s P Su �

 
x P X | DxPCtsu s P S

(
� CÀpSq;

where À is the specialization preorder corresponding to our topology. �

2. Switching to the derivative

In case one is interested in semantics of intuitionistic rather than classical modal logic, then

the natural algebras to look at would be not the powersets PpXq but the Heyting algebras OpXq of

open sets for a topology. Now there is no meaningful way to restrict the above adjunction condition

to open sets, as the interior operator restricts to the identity there. Observe however that in the

above proposition we might equivalently pick instead of the interior and closure operators the

Cantor-Bendixson derivative operator δ and its dual  δ . Recall that for a subset S � X of

a topological space X, δS is the set of limit points of S|those points x P X with the property

that any neighborhood of x meets Sz txu. Thus the closure operator is de�nable through δ via

CS � S Y δS for any S � X.

The dual operator τ �  δ , although thoroughly studied by several authors (for just one nice

example, [2]), does not seem to have commonly recognized name. This operator assigns to a set

S the set τS of those points x of X which are surrounded by S|i. e. there is a neighborhood

U Q x of x with Uz txu � S. Dually to the above one has IS � S X τS for any S P PpXq.

Then,

(2.1) Proposition. A topology on X is Alexandro� i� the Cantor-Bendixson derivative δ

has a right adjoint.

Proof. For the Alexandro� topology corresponding to a preorder À, the Cantor-Bendixson deriv-

ative is given by

δÀpSq � tx P X | DxÀs s � x & s P Su ;

and the antiderivative by

τÀpSq � tx P X | @xÀs s � xñ s P Su :

Thus just as above it is easy to check that one has

δÀ % τÁ and δÁ % τÀ :
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Conversely, suppose that δ has a right adjoint �τ. Then one has

CS � T ðñ S � T & δS � T

ðñ S � T & S � �τ T;

so C has a right adjoint given by T ÞÑ T X �τ T . Hence by 1.1 the topology is Alexandro�. �

Given that, we might ask whether Alexandro�ness can be captured by only requiring existence

of adjoint for the trace of τ on open sets. Now τ indeed restricts to opens, in the sense that τU is

open for any open U (equivalently, δC is closed for any closed C). This is because by de�nition

x P τU happens i� there is a neighborhood V Q x with V z txu � U . But openness of U is the

same as U � τU , so we have V z txu � τU and txu � τU , hence V � τU .

We thus have the restricted operator τOpXq : OpXq Ñ OpXq. Several authors (see, for example,

[1]) have noticed that in fact this restricted operator does not depend on X, i. e. can be de�ned

purely in terms of the complete Heyting algebra OpXq. Indeed, as shown in [1], τU can be

characterized as the largest among those V � U in OpXq for which the lattice rU; V s is Boolean.

Alternatively, one also has

τU �
©
tW P OpXq | W Ñ U � Uu

in OpXq. It is clear that these constructions make sense in any complete Heyting algebra H, and

are known to yield the same result there. Let us reproduce here this result for completeness. To

formulate it, recall that an element d of a lattice is called dense if d^x � 0 implies x � 0 for any

x in the lattice. In a Heyting algebra, this happens if and only if  d � 0.

(2.2) Proposition. For any element a of a complete Heyting algebra H, the set of those

b P H for which the lattice ra^ b; bs is Boolean has a largest element. This element is equal

to

τHpaq :�
©
td ¥ a | d is a dense element of the lattice ra; 1s|equivalently, dÑ a � au :

Proof. Evidently

τHpaq � τra;1sp0ra;1sq;

moreover for any b one evidently has

tb ¥ d ¥ a^ b | d is dense in ra^ b; bsu � tb^ d | d is dense in ra; 1su ;

hence one has

τra^b;bsp0ra^b;bsq � b^ τHpaq:

In particular, one has

b ¤ τHpaq ðñ τra^b;bsp0ra^b;bsq � b:

On the other hand, a Heyting algebra H is Boolean if and only if τHp0Hq � 1H , i. e. 1H is

the only dense element of H. Indeed, all elements of the form a_ a are dense as  pa_ aq �

 a^  a � 0.

Thus we obtain

b ¤ τHpaq ðñ ra^ b; bs is Boolean:

�

We then make the following

(2.3) Definition. A topological space X is called pseudoalexandro� if the above operator τOpXq

has a left adjoint } : OpXq Ñ OpXq.
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3. Characterization

Note that because of the above pseudoalexandro�ness of a space only depends on the algebra

of its open sets; in particular, a space is pseudoalexandro� if and only if its T0-reection is. In the

following theorem we thus restrict attention to T0 spaces; later we will easily handle the general

case.

(3.1) Theorem. A T0-space X is pseudoalexandro� if and only if in any open set U of X,

the subset of points of U which are closed in the induced topology on U is discrete.

Proof. Suppose τOpXq has a left adjoint }. Then necessarily

}V �
©
tU | V ¤ τUu

�
©
tU | rU ^ V; V s is Booleanu

�
©
tU ¤ V | rU; V s is Booleanu :

Moreover so de�ned } will indeed be left adjoint to τOpXq if and only if one has

V ¤ τ}V

for all V , since

}τU ¤ U

evidently always holds. It follows that τOpXq has a left adjoint if and only if for all V the interval

r}V; V s is Boolean, with } de�ned as above. Equivalently, for any family Ui ¤ V with rUi; V s

Boolean for all i P I, the interval �©
iPI

Ui; V

�

must be Boolean too. Another equivalent condition is that for any V there is a smallest U ¤ V

with rU; V s boolean.

Now for any open U one has

τU � U Y tx | x is an isolated point of XzUu :

Moreover if τOpXq has a left adjoint }, then one has

x R }V ðñ }V � Xz txu

ðñ }V � IpXz txuq � XzC txu

ðñ V � τpXzC txuq

ðñ rV X pXzC txuq; V s is Boolean

ðñ OpV X C txuq is Boolean:

Here all the equivalences are obvious except probably the last, which is the consequence of the

fact that for any U � V the lattice OpV zUq is isomorphic to the interval rU; V s. Taking here

U � V zC txu gives what we need as V zC txu � V X pXzC txuq and V zpV zC txuq � V X C txu.

Now the lattice of opens of a T0 space is Boolean if and only if the space is discrete. Moreover,

any subspace of a T0 space is T0. It follows that for any V P OpXq and any x P X, the lattice

OpV XC txuq is Boolean if and only if any x1 P C txu has a neighborhood whose intersection with

V is tx1u. In more detail, this condition reads

@x1PV

�
@OpXqQV 1Qx1 x P V 1

�
ñ

�
DOpXqQV 1Qx1 V X V 1 �

 
x1
(�

:

But x P V 1 and V X V 1 � tx1u together imply x1 � x, so one obtains

}V � tx P V | V X C txu � txuu ;

i. e. }V is the set of nonclosed points of V .
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Now the adjunction condition V � τ}V , which, since U � τU for all U , is equivalent to

V z}V � τ}V , reads

@xPV pV X C txu � txuqñ pDV 1Qx @x�yPV 1 V X C tyu � tyuq ;

i. e. any closed point of an open set has a neighborhood consisting of nonclosed points of this

open set. Together with openness of }V this gives

@xPV DV 1Qx@x�yPV 1 V X C tyu � tyu ;

i. e. any point of an open V has a neighborhood consisting of nonclosed points of V . In other

words, the set of closed points of any open V is discrete in the induced topology.

Moreover the condition }τU � U , or equivalently τUzU � τUz}τU means in detail

@x R U pDV Q x V z txu � Uqñ px is a closed point of τUq :

It is easy to see that this condition is equivalent to requiring that the set of isolated points of

any closed subset is T1. But the latter set is actually always discrete, so the condition is trivially

satis�ed. �

Now to the general case. We introduce some further notions for that.

(3.2) Definition. A point of a topological space is cluster-closed if its closure is antidiscrete.

(3.3) Definition. Call a topological space 0-pseudoalexandro� if its subspace of cluster-closed

points is a topological sum of antidiscrete spaces.

We then have

(3.4) Corollary. A topological space is pseudoalexandro� if and only if all of its open sub-

spaces are 0-pseudoalexandro�.

Proof. The point is that a point is cluster-closed i� its image in the T0-reection is closed, and a

subspace is a topological sum of antidiscrete spaces i� its image in the T0-reection is discrete. �

Here is another feature of (T0) pseudoalexandro� spaces stressing their \near-alexandro�"

behavior.

(3.5) Proposition. In a T0 pseudoalexandro� space one has

τpV q � τ¤pV q

for any open set V , where ¤ is the specialization order.

Proof. We have seen in the course of proving 3.1 that for any open set V of a T0 pseudoalexandro�

space X the left adjoint } to τOpXq is given by

}pV q � tx P V | V X C txu � txuu � tx P V | DyPV y   xu :

But since all open sets are upsets with respect to the specialization order, the latter set is the

same as

tx P X | DyPV y   xu � δ¥pV q:

And τOpXq, which must be right adjoint to this operator, will then coincide with the restriction

of the right adjoint to δ¥ to OpXq, i. e. with τ¤. �

The author does not know whether converse is true.
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4. Some intermediate classes

Clearly any Alexandro� space is pseudoalexandro�. Indeed, as we saw in 2.1, in this case τÀ
has a left adjoint δÁ, and the latter operator restricts to Á-closed sets, which is the same as

À-open sets.

However, not only do not the classes of Alexandro� and pseudoalexandro� spaces coincide|

there are in fact some distinguishable classes of spaces in between.

(4.1) Definition. A bispace is a bitopological space in which open sets of one of its topologies

coincide with closed sets of the other topology.

Obviously one has

(4.2) Proposition. The notion of bispace is equivalent to that of Alexandro� space, in the

following sense. Any preorder X produces a bispace by considering Alexandro� topologies

of X and X�, and conversely, topologies of any bispace are Alexandro�, corresponding to

some preorder and its dual.

Proof. It su�ces to note that for a bispace, any intersection of closed sets is closed, and any union

of opens open, for both topologies. �

(4.3) Definition. A topological space X is a Janus space if the lattice OpXq of its open sets is

isomorphic to the lattice of closed sets of some topological space.

For example, any Alexandro� space, i. e. any bispace, is a Janus space. Also note that any

space whose lattice of opens is self-dual is a Janus space. On the other hand, one has

(4.4) Example. LetX be the interval p0; 1q equipped with the intersection of the Alexandro� and

Euclidean topologies. Thus the open sets are pa; 1q for 0 ¤ a ¤ 1, so that OpXq is order-isomorphic

to r0; 1s. This is self-dual, so X is a Janus space. However it is obviously not Alexandro�.

(4.5) Definition. A topological space X is a bi-Heyting space if OpXq is a bi-Heyting algebra.

For example, any Janus space is obviously bi-Heyting. We do not know whether converse is

true.

Moreover one has

(4.6) Proposition. For any complete bi-Heyting algebra H, the operator τH has a right

adjoint.

Proof. By 2.2 one has

a ¤ τHpbq ðñ ra^ b; as is Boolean

ðñ rb; a_ bs is Boolean

ðñ τH�paq ¤ b;

thus τH� is left adjoint to τH . �

In particular, we have

(4.7) Corollary. Any bi-Heyting space is pseudoalexandro�.

�

However, not every pseudoalexandro� space is bi-Heyting:

(4.8) Example. On the one point compacti�cation X � NYt�u of the set N of natural numbers,

consider intersection of its topology with the Alexandro� topology of the natural ordering of N,

with � incomparable with the rest (rather than being the largest element). Thus the open sets of

the resulting space X are Un � tn; n� 1; :::u, n ¥ 0, U 1
n � UnYt�u, with U 1

0 � X, and the empty
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set. One has τ? � ?, τX � X � τU0, whereas for any n ¡ 0 one has τU 1
n � U 1

n�1 � τUn.

This operator has a left adjoint } given by }? � ? and }Un � Un�1 � }U 1
n for all n ¥ 0.

Pictorially, OpXq with } on it looks like an \upside-down Jacob's ladder":

X
????

���� _

}

��

U0
????

�
} ��????

U 1
1

��� ???_

}

��

U1
????

�
} ��????

U 1
2

��� ???_

}

��

U2
????

�
} ��????

U 1
3

��� ???_

}

��

U3
????

�
} ��????

U 1
4

��� ???

U4
????

. . .

?
�

}

mm

ThusX is pseudoalexandro�. It is however not bi-Heyting|for example, OpXq does not possess

X � U0. Indeed one has U0 Y U 1
n � X for all n but

U0 Y
© 

U 1
n | n ¥ 0

(
� U0 � X;

since © 
U 1
n | n ¥ 0

(
� I

£ 
U 1
n | n ¥ 0

(
� I t�u � ?:

Thus the set

tU P OpXq | U Y U0 � Xu

does not possess smallest element, i. e. X � U0 does not exist.

We �nish with

(4.9) Proposition. A space is a bi-Heyting TD space i� it is a T0 Alexandro� space.

Proof. Obviously any poset is bi-Heyting and TD in its Alexandro� topology. Conversely, a space

X is TD i� for any x P X the set

Cx :� C txu z txu

is closed. If X is moreover bi-Heyting, then there is an open set

Ux :� pXzCxq� pXzC txuq

which is smallest among those opens U for which

U Y pXzC txuq � XzCx

|or, equivalently,

pXzCxqzpXzC txuq � U:

But

pXzCxqzpXzC txuq � C txu zCx � C txu zpC txu z txuq � txu ;

so that Ux is the smallest neighborhood of x. And it is well known that a space is Alexandro� i�

each of its points has smallest neighborhood. �
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Note that the space from 4.8 above is in fact also TD, so it is not possible to weaken \bi-Heyting"

to \pseudoalexandro�" in the last proposition.

To summarize, we have arrived at the following picture:

selfdual

�

�� �"
========================

========================

Alexandro�
+3
Janus

+3
�ks bi-Heyting

+3
?ks pseudoalexandro�

�ks

T0 &Alexandro� ks +3 TD & Janus ks +3 TD & bi-Heyting
+3
TD & pseudoalexandro�.

�ks
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