Notes on Complexity of Monoidal T-norm Based Logic and its Extensions

Marta Bílková Rostislav Horčík

Institute of Computer Science
Academy of Sciences of the Czech Republic

ALGEBRAIC AND TOPOLOGICAL METHODS IN
 NON-CLASSICAL LOGICS III
 Oxford 2007

ML and MTL

- Monoidal Logic (ML) is Full Lambek calculus with exchange and weakening ($\mathrm{FL}_{\mathrm{ew}}$). Also known as IMALLW (multiplicative additive fragment of Intuitionistic Linear Logic with weakening).
- Monoidal T-norm Based Logic (MTL) is a schematic extension of ML by the following axiom schema:

$$
(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)
$$

- $\mathrm{C}_{n} M L$ (resp. $\mathrm{C}_{n} M T L$) is an extension of ML (resp. MTL) by the following axiom schema:

$$
\varphi^{n-1} \rightarrow \varphi^{n}
$$

ML-algebras and MTL-algebras

Definition

An ML-algebra is an algebra $\mathbf{A}=(A, *, \rightarrow, \wedge, \vee, \mathbf{0}, \mathbf{1})$ where the following conditions are satisfied:

- $(A, *, \rightarrow, \wedge, \vee, \mathbf{1})$ is a commutative integral residuated lattice,
- \mathbf{O} is a bottom element.

Definition

An MTL-algebra is an ML-algebra $\mathbf{A}=(A, *, \rightarrow, \wedge, \vee, \mathbf{0}, \mathbf{1})$ such that - $(x \rightarrow y) \vee(y \rightarrow x)=\mathbf{1}$ for all $x, y \in A$.

In other words, an MTL-algebra is a representable ML-algebra.

Provability

- Monoidal logic ML is in PSPACE (it can be seen from its sequent calculus)

Provability

- Monoidal logic ML is in PSPACE (it can be seen from its sequent calculus)
- Lower bound (hardness)?

Provability

- Monoidal logic ML is in PSPACE (it can be seen from its sequent calculus)
- Lower bound (hardness)?
- IMALL (ML without weakening) is known to be PSPACE-hard, hence PSPACE-complete (Lincoln, Mitchell, Scedrov, Shankar 94)

Provability with finite theories

- Provability with finite theories in ML is decidable (Blok, van Alten 02)

Provability with finite theories

- Provability with finite theories in ML is decidable (Blok, van Alten 02)
- The same is true for $\mathrm{C}_{\mathrm{n}} \mathrm{ML}$ (Blok, van Alten 02)

Provability with finite theories

- Provability with finite theories in ML is decidable (Blok, van Alten 02)
- The same is true for $\mathrm{C}_{\mathrm{n}} \mathrm{ML}$ (Blok, van Alten 02)
- What is their complexity?

Provability with finite theories

- Provability with finite theories in ML is decidable (Blok, van Alten 02)
- The same is true for $\mathrm{C}_{\mathrm{n}} \mathrm{ML}$ (Blok, van Alten 02)
- What is their complexity?
- IMALL (ML without weakening) is undecidable (as full ILL)

Motivation

- Hypersequent calculus for MTL is not suitable for proof search.

Motivation

- Hypersequent calculus for MTL is not suitable for proof search.
- On the other hand, ML has a nice sequent calculus.

Motivation

- Hypersequent calculus for MTL is not suitable for proof search.
- On the other hand, ML has a nice sequent calculus.
- Is it possible somehow to translate provability between MTL and ML?

Main result

Let φ be a formula in the language of MTL and $S=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ a set of all subformulas of φ.

Main result

Let φ be a formula in the language of MTL and $S=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ a set of all subformulas of φ. Any possible linear ordering of elements of S can be coded in a finite theory,

Main result

Let φ be a formula in the language of MTL and $S=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ a set of all subformulas of φ. Any possible linear ordering of elements of S can be coded in a finite theory, e.g.

$$
\psi_{1} \leq \psi_{2} \leq \cdots \leq \psi_{n}
$$

can be coded as follows:

$$
T=\left\{\psi_{1} \rightarrow \psi_{2}, \psi_{2} \rightarrow \psi_{3}, \ldots, \psi_{n-1} \rightarrow \psi_{n}\right\}
$$

Main result

Let φ be a formula in the language of MTL and $S=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ a set of all subformulas of φ. Any possible linear ordering of elements of S can be coded in a finite theory, e.g.

$$
\psi_{1} \leq \psi_{2} \leq \cdots \leq \psi_{n}
$$

can be coded as follows:

$$
T=\left\{\psi_{1} \rightarrow \psi_{2}, \psi_{2} \rightarrow \psi_{3}, \ldots, \psi_{n-1} \rightarrow \psi_{n}\right\}
$$

Let \mathcal{O} be the set of theories coding all possible linear orderings of elements of S.

Main result

Let φ be a formula in the language of MTL and $S=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ a set of all subformulas of φ. Any possible linear ordering of elements of S can be coded in a finite theory, e.g.

$$
\psi_{1} \leq \psi_{2} \leq \cdots \leq \psi_{n}
$$

can be coded as follows:

$$
T=\left\{\psi_{1} \rightarrow \psi_{2}, \psi_{2} \rightarrow \psi_{3}, \ldots, \psi_{n-1} \rightarrow \psi_{n}\right\}
$$

Let \mathcal{O} be the set of theories coding all possible linear orderings of elements of S.

Theorem
$\vdash_{\mathrm{MTL}} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{ML}} \varphi$.

Main result

Let φ be a formula in the language of MTL and $S=\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ a set of all subformulas of φ. Any possible linear ordering of elements of S can be coded in a finite theory, e.g.

$$
\psi_{1} \leq \psi_{2} \leq \cdots \leq \psi_{n}
$$

can be coded as follows:

$$
T=\left\{\psi_{1} \rightarrow \psi_{2}, \psi_{2} \rightarrow \psi_{3}, \ldots, \psi_{n-1} \rightarrow \psi_{n}\right\}
$$

Let \mathcal{O} be the set of theories coding all possible linear orderings of elements of S.

Theorem
$\vdash_{\mathrm{C}_{n} M T L} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{C}_{n} M L} \varphi$.

Sketch of the proof

- The right-to-left direction is easy since MTL is complete w.r.t. the class of all MTL-chains.
- Suppose that there is $T \in \mathcal{O}$ such that $T \nvdash \mathrm{~mL} \varphi$.

Sketch of the proof

- The right-to-left direction is easy since MTL is complete w.r.t. the class of all MTL-chains.
- Suppose that there is $T \in \mathcal{O}$ such that $T \nvdash \mathrm{~mL} \varphi$.
- Since ML has FEP, there is a finite ML-algebra \mathbf{A} such that $T \not \vDash_{\mathbf{A}} \varphi$.
- There is an A-evaluation e such that $e(T) \subseteq\{1\}$ and $e(\varphi)<1$.
- Thus the set $e(S)$ is totally ordered, i.e.

$$
e(S)=\left\{1>a_{1}>\cdots>a_{n}>0\right\}
$$

- Let \mathbf{M} be the submonoid of \mathbf{A} generated by $e(S)$.
- Let \mathbf{M} be the submonoid of \mathbf{A} generated by $e(S)$.
- M can be viewed as an epimorphic image of a free commutative monoid \mathbb{N}^{n}. Denote this epimorphism by h.
- Let \mathbf{M} be the submonoid of \mathbf{A} generated by $e(S)$.
- M can be viewed as an epimorphic image of a free commutative monoid \mathbb{N}^{n}. Denote this epimorphism by h.
- The partial order \leq on \mathbf{M} inherited from \mathbf{A} induces a quasi-order on \mathbb{N}^{n} defined by

$$
x \lesssim y \text { iff } h(x) \leq h(y)
$$

- Let \mathbf{M} be the submonoid of \mathbf{A} generated by $e(S)$.
- M can be viewed as an epimorphic image of a free commutative monoid \mathbb{N}^{n}. Denote this epimorphism by h.
- The partial order \leq on \mathbf{M} inherited from \mathbf{A} induces a quasi-order on \mathbb{N}^{n} defined by

$$
x \lesssim y \text { iff } h(x) \leq h(y)
$$

- $\mathbf{M} \cong \mathbb{N}^{n} / \sim$ where \sim is the equivalence corresponding to \lesssim.
- Let \mathbf{M} be the submonoid of \mathbf{A} generated by $e(S)$.
- M can be viewed as an epimorphic image of a free commutative monoid \mathbb{N}^{n}. Denote this epimorphism by h.
- The partial order \leq on \mathbf{M} inherited from \mathbf{A} induces a quasi-order on \mathbb{N}^{n} defined by

$$
x \lesssim y \text { iff } h(x) \leq h(y)
$$

- $\mathbf{M} \cong \mathbb{N}^{n} / \sim$ where \sim is the equivalence corresponding to \lesssim.
- Note that the quasi-order \lesssim need not be total.

2 generators

2 generators

2 generators

2 generators

3 generators

3 generators

3 generators

3 generators

Let \leq_{ℓ} be the component-wise partial order on \mathbb{N}^{n} and $\leq_{\text {lex }}$ the lexicographic total order on \mathbb{N}^{n}.

Let \leq_{ℓ} be the component-wise partial order on \mathbb{N}^{n} and $\leq_{\text {lex }}$ the lexicographic total order on \mathbb{N}^{n}.

Lemma
Let $x, y \in \mathbb{N}^{n}$ and

$$
\mathbf{R}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

Then the relation $\leq_{\mathbf{R}}$ defined by

$$
x \leq_{\mathbf{R}} y \text { iff } \mathbf{R} \cdot x \geq_{\ell} \mathbf{R} \cdot y
$$

is a partial order monotone w.r.t. +.
Moreover, if $x \leq_{\mathbf{R}} y$ then $x \lesssim y$, i.e. $\leq_{\mathbf{R}}$ is a sub-quasi-order of \lesssim.

Definition

We define a relation $\lesssim<$ by the following steps:

Definition

We define a relation \lesssim ' by the following steps:

- Extend \lesssim in such a way that if $y \not \mathbb{Z} x$ and $x \mathbb{Z} y$ then break ties according to $\leq_{\mathbf{R}_{\text {lex }}}$, where

$$
x \leq_{\mathbf{R}_{\mathrm{lex}}} y \text { iff } \mathbf{R} \cdot x \geq_{\operatorname{lex}} \mathbf{R} \cdot y
$$

Definition

We define a relation \lesssim ' by the following steps:

- Extend \lesssim in such a way that if $y \not Z x$ and $x \not Z y$ then break ties according to $\leq_{\mathbf{R}_{\text {lex }}}$, where

$$
x \leq_{\mathbf{R}_{\mathrm{lex}}} y \text { iff } \mathbf{R} \cdot x \geq_{\operatorname{lex}} \mathbf{R} \cdot y .
$$

- Make the monotone closure.

Definition

We define a relation \lesssim ' by the following steps:

- Extend \lesssim in such a way that if $y \mathbb{Z} x$ and $x \notin y$ then break ties according to $\leq_{\mathbf{R}_{\text {lex }}}$, where

$$
x \leq_{\mathbf{R}_{\mathrm{lex}}} y \text { iff } \mathbf{R} \cdot x \geq_{\operatorname{lex}} \mathbf{R} \cdot y .
$$

- Make the monotone closure.
- Make the transitive closure.

Definition

We define a relation \lesssim ' by the following steps:

- Extend \lesssim in such a way that if $y \mathbb{Z} x$ and $x \mathbb{Z} y$ then break ties according to $\leq_{\mathbf{R}_{\text {lex }}}$, where

$$
x \leq_{\mathbf{R}_{\mathrm{lex}}} y \text { iff } \mathbf{R} \cdot x \geq_{\operatorname{lex}} \mathbf{R} \cdot y .
$$

- Make the monotone closure.
- Make the transitive closure.

Lemma

The relation ${ }^{\prime}$ ' is a monotone total quasi-order extending \lesssim.

Definition

We define a relation \lesssim ' by the following steps:

- Extend \lesssim in such a way that if $y \mathbb{Z} x$ and $x \mathbb{Z} y$ then break ties according to $\leq_{\mathbf{R}_{\text {lex }}}$, where

$$
x \leq_{\mathbf{R}_{\mathrm{lex}}} y \text { iff } \mathbf{R} \cdot x \geq_{\operatorname{lex}} \mathbf{R} \cdot y .
$$

- Make the monotone closure.
- Make the transitive closure.

Lemma

The relation ${ }^{\prime}$ ' is a monotone total quasi-order extending \lesssim.

Lemma

Let \sim^{\prime} be the equivalence corresponding to Σ^{\prime}. Then $\mathbb{N}^{n} / \sim^{\prime}$ is an MTL-algebra into which the partial subalgebra e (S) of \mathbf{A} can be embedded.

Questions for audience

- Is there any bound on counter-models in ML?
- Is it known whether ML is PSPACE complete?

MTL and ML

- $\vdash_{\mathrm{MTL}} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{ML}} \varphi$.

MTL and ML

- $\vdash_{\mathrm{MTL}} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{ML}} \varphi$.
- $T \vdash_{\mathrm{ML}} \varphi$ iff $\left.\exists n_{1} \ldots n_{k} \vdash_{\mathrm{ML}} \alpha_{1}^{n_{1}} \rightarrow\left(\ldots \alpha_{k}^{n_{k}} \rightarrow \varphi\right) \ldots\right)$

MTL and ML

- $\vdash_{\mathrm{MTL}} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{ML}} \varphi$.
- $T \vdash_{\mathrm{ML}} \varphi$ iff $\left.\exists n_{1} \ldots n_{k} \vdash_{\mathrm{ML}} \alpha_{1}^{n_{1}} \rightarrow\left(\ldots \alpha_{k}^{n_{k}} \rightarrow \varphi\right) \ldots\right)$
- iff $\emptyset \Rightarrow \alpha_{1}, \ldots, \emptyset \Rightarrow \alpha_{k} \vdash_{\text {GML }} \emptyset \Rightarrow \varphi$ by a directed proof

MTL and ML

- $\vdash_{\mathrm{MTL}} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{ML}} \varphi$.
- $T \vdash_{\mathrm{ML}} \varphi$ iff $\left.\exists n_{1} \ldots n_{k} \vdash_{\mathrm{ML}} \alpha_{1}^{n_{1}} \rightarrow\left(\ldots \alpha_{k}^{n_{k}} \rightarrow \varphi\right) \ldots\right)$
- iff $\emptyset \Rightarrow \alpha_{1}, \ldots, \emptyset \Rightarrow \alpha_{k} \vdash_{\text {GML }} \emptyset \Rightarrow \varphi$ by a directed proof
- iff $\vdash_{\text {GILLW }}!\alpha_{1}, \ldots,!\alpha_{k} \Rightarrow \varphi$ by a cut-free proof

MTL and ML

- $\vdash_{\mathrm{MTL}} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{ML}} \varphi$.
- $T \vdash_{\mathrm{ML}} \varphi$ iff $\left.\exists n_{1} \ldots n_{k} \vdash_{\mathrm{ML}} \alpha_{1}^{n_{1}} \rightarrow\left(\ldots \alpha_{k}^{n_{k}} \rightarrow \varphi\right) \ldots\right)$
- iff $\emptyset \Rightarrow \alpha_{1}, \ldots, \emptyset \Rightarrow \alpha_{k} \vdash^{\text {GML }} \emptyset \Rightarrow \varphi$ by a directed proof
- iff $\vdash_{\text {GILLW }}!\alpha_{1}, \ldots,!\alpha_{k} \Rightarrow \varphi$ by a cut-free proof
- a standard argument used e.g. in (Lincoln, Mitchell, Scedrov, Shankar 94)
- What is complexity of ILLW?
- We need less than full GILLW:

GML!

GML! = GML + !-left rule:

$$
\frac{\Gamma, \varphi,!\varphi \Rightarrow \delta}{\Gamma,!\varphi \Rightarrow \delta}!-\mid
$$

GML!

GML! = GML + !-left rule:

$$
\frac{\Gamma, \varphi,!\varphi \Rightarrow \delta}{\Gamma,!\varphi \Rightarrow \delta}!-\mid
$$

Contraction rule for ! φ admissible

$$
\frac{\Gamma,!\varphi,!\varphi \Rightarrow \delta}{\Gamma,!\varphi \Rightarrow \delta}!\text {-contr }
$$

Cut rule can be eliminated
How to create proof search in GML! and what is its complexity?

$\mathrm{C}_{n} \mathrm{MTL}$ and $\mathrm{C}_{n} \mathrm{ML}$

- $\vdash_{\mathrm{C}_{n} M T L} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{C}_{n} \mathrm{ML}} \varphi$.

$\mathrm{C}_{n} \mathrm{MTL}$ and $\mathrm{C}_{n} \mathrm{ML}$

- $\vdash_{\mathrm{C}_{n} M T L} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{C}_{n} M L} \varphi$.
- $T \vdash_{\mathrm{C}_{n} \mathrm{ML}} \varphi$ iff $\left.\vdash_{\mathrm{C}_{n} \mathrm{ML}} \alpha_{1}^{n-1} \rightarrow\left(\ldots \alpha_{k}^{n-1} \rightarrow \varphi\right) \ldots\right)$

$\mathrm{C}_{n} \mathrm{MTL}$ and $\mathrm{C}_{n} \mathrm{ML}$

- $\vdash_{\mathrm{C}_{n} M T L} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{C}_{n} M L} \varphi$.
- $T \vdash_{\mathrm{C}_{n} \mathrm{ML}} \varphi$ iff $\left.\vdash_{\mathrm{C}_{n} \mathrm{ML}} \alpha_{1}^{n-1} \rightarrow\left(\ldots \alpha_{k}^{n-1} \rightarrow \varphi\right) \ldots\right)$
- iff $\vdash \mathbf{G C}_{\mathbf{n}} \mathbf{M L} \alpha_{1}^{n-1}, \ldots, \alpha_{k}^{n-1} \Rightarrow \varphi$ by a cut free proof

$\mathrm{C}_{n} \mathrm{MTL}$ and $\mathrm{C}_{n} \mathrm{ML}$

- $\vdash_{\mathrm{C}_{n} M T L} \varphi$ iff for all $T \in \mathcal{O}$ we have $T \vdash_{\mathrm{C}_{n} M L} \varphi$.
- $T \vdash_{\mathrm{C}_{n} \mathrm{ML}} \varphi$ iff $\left.\vdash_{\mathrm{C}_{n} \mathrm{ML}} \alpha_{1}^{n-1} \rightarrow\left(\ldots \alpha_{k}^{n-1} \rightarrow \varphi\right) \ldots\right)$
- iff $\vdash \mathbf{G C}_{\mathbf{n}} \mathbf{M L} \alpha_{1}^{n-1}, \ldots, \alpha_{k}^{n-1} \Rightarrow \varphi$ by a cut free proof
- Complexity of proof search in $\mathbf{G C}_{\mathbf{n}} \mathbf{M L}$?

