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Effect algebras

The Kolmogorov system gave the axiomatical base of
probability theory to be a rigorous part of mathematics

Its basic assumption is that the set of probabilistically
interesting events can be modelled by a σ -algebra of
subsets of a set

However it was recognized that in a new physics, quantum
mechanics, the Heisenberg uncertainty principle holds
asserting that the momentum of an elementary particle
and its position can not be measured simultaneously
with an arbitrarily prescribed accuracy.



Effect algebras

This shows that the Kolmogorov model is not appliable for
this process, or that quantum mechanical events do not
satisfy the axioms of Boolean algebras

Hence a new theory, nowadays a theory of quantum
structures was found to describe quantum mechanical
events, starting by a paper of Birkhoff and von Neumann

Today a similar phenomena as those in quantum
mechanics can be observed in other scientific branches,
like social sciences, psychology, economy etc.

We have a system (described as a set) tested by a family
of tests (or hypotheses on the tested system) and the
result of such a test is an effect, a function dominated by
some test. Combining natural equivalences of effects, we
obtain an effect algebra



Effect algebras

Effect algebras, introduced by D. Foulis and M. K. Bennett
in 1994, have been recognized to be the appropriate
algebraic tool for considerations in quantum mechanics.

An effect algebra is a system E = (E ;+,0,1) where 0 and 1
are two distinguished elements of E , + is a partial binary
operation on E satisfying the conditions:

(EA1) a+b = b +a whenever a+b exists;
(EA2) a+(b +c) = (a+b)+c if one of the sides is
defined;
(EA3) for every a ∈ E there exists a unique a′ ∈ E with
a+a′ = 1;
(EA4) if a+1 is defined then a = 0.



Effect algebras

Given an effect algebra E = (E ;+,0,1), the relation ≤ on E
defined by

a≤ b iff b = a+c for some c ∈ E (1)

is a partial order on E with 0 and 1 a least or a greatest
element of E , respectively. If (E ;≤) is a lattice then E is said to
be a lattice-ordered effect algebra or a lattice effect algebra
in brief.
Orthomodular lattices and MV-algebras serve as natural
examples of lattice effect algebras, namely:



Effect algebras

(1) If (L;∨,∧,⊥ ,0,1) is an orthomodular lattice then defining

a+b := a∨b iff a≤ b⊥,

(L;+,0,1) turns out to be a lattice effect algebra
(2) Given an MV-algebra A = (A;⊕,¬,0), defining

a+b := a⊕b iff a≤ ¬b,

(A;+,0,1) is a lattice effect algebra, where a′ = ¬a.

Effect algebras can be equivalently defined as so-called
D-posets (Kôpka, Chovanec): one can define on every effect
algebra a partial operation ”− ” (called the difference) as
follows:

a−b = c iff a = b +c.



Effect algebras

Two elements a,b of an effect algebra E are said to commute
(aCb), if there are c,d ∈ E such that c ≤ a,b ≤ d and
d −a = b−c. In a lattice ordered effect algebra, aCb iff
(a∨b)−b = a− (a∧b). The relation C has the following basic
properties:

aCa, aC0, aC1
aCb iff bCa
aCb iff aCb′

if aCb and aCc then aC(b +c) whenever b +c
exists.

By a block of E is meant a maximal subset B of pairwise
commuting elements of E . Z. Riečanová has shown that every
lattice effect algebra is a unioun of its blocks, which are in fact
MV-algebras.



Basic algebras

Although effect algebras are useful in axiomatization of
unsharp quantum logic, their disadvantage is that they are
partial algebras, thus for their investigation one can not use
very well developped tools known for total algebras.
This essential disadvantage of effect algebras has been
successfully overcomed as follows:
A lattice with sectional antitone involutions is a system
L = (L;∨,∧, (a)a∈L,0,1), where (L;∨,∧,0,1) is a bounded
lattice such that every principal order-filter [a,1] (which is called
a section) possesses an antitone involution x 7→ xa.
The family (a)a∈L of sectional antitone involutions, which are
partial unary operations on L, can be equivalently replaced by a
single binary operation defined by

x → y := (x ∨y)y . (2)

This allows one to treat lattices with sectional antitone
involutions as total algebras (L;∨,∧,→,0,1), or even
(L;→,0,1), that form a variety.



Basic algebras

Lemma
Let L = (L;∨,∧,(a)a∈L,0,1) be a lattice with sectional antitone
involutions. Then the assigned algebra A (L ) = (L;⊕,¬,0),
where x⊕y := (x0∨y)y and ¬x := x0, satisfies the identities
(BA1) x⊕0 = x ;
(BA2) ¬¬x = x ;
(BA3) x⊕1 = 1⊕x = 1;
(BA4) ¬(¬x⊕y)⊕y = ¬(¬y ⊕x)⊕x ;
(BA5) ¬(¬(¬(x⊕y)⊕y)⊕z)⊕ (x⊕z) = 1.

By a basic algebra we mean an algebra A = (A;⊕,¬,0) of
type (2,1,0) satisfying the identities (BA1)–(BA5) (where
1 := ¬0).



Basic algebras

Conversely, given a basic algebra A = (A;⊕,¬,0), relation ≤
defined by

x ≤ y iff ¬x⊕y = 1

is a lattice order on A with 0 and 1 a least and a greatest
element of A, respectively.
Observe also that the mapping

x 7→ xa := ¬x⊕a

is an antitone involution on the section [a,1].

Lemma
Let A = (A;⊕,¬,0) be a basic algebra with the induced lattice
`(A ) = (A;∨,∧,0,1), and define for a ∈ A, x ∈ [a,1],
xa := ¬x⊕a. Then the structure L (A ) = (A;∨,∧,(a)a∈A,0,1) is
a bounded lattice with sectional antitone involutions.

Moreover, the correspondence is 1-1: L (A (L )) = L and
A (L (A )) = A



Basic algebras

Next step is to relate basic algebras to lattice effect algebras:

Lemma
A basic algebra A is a lattice effect algebra iff it satisfies the
identity

(x ∧¬y)⊕ [(¬(x⊕y)∧z)⊕y ] = (x⊕y)⊕ (¬(x⊕y)∧z). (3)

Hence the class EBA of lattice effect algebras forms a
subvariety of the variety BA of basic algebras.



The bottom of L (DEBA)

The variety EBA of effect basic algebras arithmetical and
regular.
This yields its congruence distributivity and, by the
Baker-Pixley theorem, each subvariety generated by a finite
effect algebra is finitely based, i.e. it can be presented by a
finite number of identities. Moreover, using Jónsson lemma, all
subdirectly irreducible algebras of this variety are contained
among its subalgebras and quotient algebras.
By a block of a basic algebra A is meant a maximal subset
B ⊆ A of pairwise commuting elements of A, i.e. x⊕y = y ⊕x
for all x ,y ∈ B. Remark that a block of a basic algebra need
not be its subalgebra.



The bottom of L (DEBA)

Lemma
For a basic algebra A the following are equivalent:

(i) A is a lattice effect algebra;
(ii) every block of A is a subalgebra which is an MV-algebra.

For finite basic algebras the above condition (ii) can be even
simplified:

Lemma
Every finite commutative basic algebra is an MV-algebra.

Last two statements now yield:

Lemma
For a finite basic algebra A the following are equivalent:

(i) A is a lattice effect algebra;
(ii) every block of A is its subalgebra.



The bottom of L (DEBA)

Denote further DEBA the variety of lattice effect basic algebras
satisfying the distributive lattice identity. In order to describe the
bottom of the lattice L (DEBA) of all subvarieties of DEBA, we
ask for small SI members of DEBA.
It is well known: given a finite chain
Cn+1 = {0 = an < an−1 < · · ·< a1 < a0 = 1}, one can define on
Cn+1 in a unique way sectional antitone involutions and hence a
structure of a basic algebra as follows:

aak
j := ak−j

for k ≥ j .
The corresponding basic algebras Cn+1 = (Cn+1;⊕,¬,0) are
known to be simple MV-algebras.



The bottom of L (DEBA)

The least SI member of DEBA which is not contained in the
variety MV of MV-algebras looks as follows:
denote H = (H;⊕,¬,0), where
H = {0,1,a,b},a⊕a = b⊕b = 1 and ¬a = a,¬b = b. In other
words, the underlying lattice of H is
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The bottom of L (DEBA)

H is simple and the lattice L (V (H )) of subvarieties of the
variety V (H ) generated by H is visualized by following
diagram:

u
u
u
u

T = Trivial variety

V (C1) = Boolean algebras

V (C2)

V (H )

Fig. 2

It is also evident that MV ∩V (H ) = V (C2). Hence a natural
question arises:

(P1) Are there any other SI members in the variety DEBA
distinct from H and not belonging to MV?
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The variety V ∗

To solve the above problem, we describe the join
V ∗ = V (H )∨MV in the lattice L (DEBA). Since the variety
MV is generated by [0,1], the problem (P1) can be also
reformulated as

(P2) Is it true that DEBA = V ([0,1]×H )?

As usual in MV-algebras, denote for any basic algebra A by

a�b := ¬(¬a⊕¬b) and a→ b := ¬a⊕b.



Basic properties

Lemma
Every basic algebra A satisfies the identities
(1) x ≤ y ⇒ x�z ≤ y �z;
(2) x ≤ y ⇒ y → z ≤ x → z.

Moreover, if A is a lattice effect algebra, then
(3) ((x → y)� (y → x))� ((x → y)� (y → x))≤ (z → x)→

(z → y) whenever z ≥ x ≥ y;
(4) x ≤ y ⇒ x�x ≤ x�y;
(5) x� (x�x) = (x�x)�x.



Basic properties

Lemma
The variety V ∗ satisfies the identities
(6) (x → y)� (x → y)≤ (y → z)→ (x → z);
(7) (x → y)� (x → y)≤ ¬y →¬x;
(8) x� (x → y)≤ y;
(9) (x�y)� (y ∨z)≤ ((x�y)�y)∨ ((x�y)�z) for x ≤ y.



Congruence kernels

Congruence regularity of EBA implies that we need to describe
congruence kernels.
First we characterize congruence kernels in V ∗:

Lemma
Let V be a subvariety of EBA satisfying the identity (6). Let
A ∈ V and 1 ∈ F ⊆ A. Then F is a congruence kernel on A iff

(i) ∀x ,y ∈ F : x�y ∈ F ;

(ii) F is closed under modus ponens, i.e. x ,x → y ∈ F imply
y ∈ F .

We call subsets I ⊆ A satisfying these properties filters of A .
Denote by F (A ) the set of all filters of A .
As a corollary we obtain:

Lemma
Let A ∈ V ∗,F ⊆ A. Then F is a congruence kernel on A iff F is
a filter of A .



Principal filters

We are ready to describe principal filters of algebras in the
variety V ∗:

Lemma
Let V be a subvariety of EBA satisfying the identities (6) and
(8). If A ∈ V and a ∈ A, then

F (a) = {x ∈ A;x ≥ n�a = a�·· ·�a︸ ︷︷ ︸ for some n ∈ N}
n-times

is a principal filter of A generated by a.



Main theorem

Theorem
The variety V ∗ is as a subvariety of DEBA characterized by the
identities (6), (8) and (9), i.e.
(6) (x → y)� (x → y)≤ (y → z)→ (x → z);
(8) x� (x → y)≤ y;
(9) (x�y)� (y ∨z)≤ ((x�y)�y)∨ ((x�y)�z) for x ≤ y.

As a direct corollary we obtain a partial answer to the problem
(P2):

Theorem
We have DEBA = V ([0,1]×H ) iff (6), (8) and (9) hold in DEBA.



General scheme of the proof

Since V ∗ is congruence distributive and V ∗ = MV ∨V (H ), we
conclude
(V ∗)SI = (MV )SI ∪ (V (H ))SI = (MV )SI ∪{H }.
Denote further by V∗ the subvariety of DEBA defined by the
identities (6),(8) and (9). In order to prove V∗ = V ∗, it suffices to
show
(V∗)SI = (MV )SI ∪{H }.



Extension of filters

First we show that given A ∈ V∗ and a block B of A (which is a
support of a subalgebra B of A ), then every filter of B can be
extended to a filter of A . For a filter F on B denote by F (F ) a
filter of A generated by F . We state

Lemma
Let A ∈ V∗. Then F (F ) = {x ∈ A;a≤ x for some a ∈ F}.

Lemma
Let A ∈ V∗, B be a block of A and F a filter of B. Then
F (F )∩B = F .



Monoliths

Lemma
Let A ∈ V∗ be a SI member and denote {1} 6= M the monolith
of F (A ). Then every block B of A for which B∩M 6= {1} is a
chain.

Lemma
Every finite SI A ∈ V∗ is simple.

Lemma
Let A be a finite SI member of V∗, and let x ,y ∈ A. Then xCy iff
x ∦ y.



SI members

Finite case can be checked relatively easily:

Lemma
Every finite SI member A ∈ V∗ is either a chain (i.e. an
MV-algebra) or A = H .

The hardest step in proving our main theorem is to show that:

Lemma
Every infinite SI algebra A ∈ V∗ is an MV-chain.



Sketch of the proof

Denote as before by {1} 6= M the monolith of the lattice of all
filters of A . We distinguish two cases:

[I.] Assume that aCb for all a,b ∈M.
Then M is contained in some block B of A and B∩M 6= {1}, M
is a chain.
We discuss two more subcases of I:
[Ia.] Suppose that there is x ∈ A such that x does not commute
with a for some a ∈M.
We shave shown that this case can be violated.
Hence the following holds:
[Ib.] xCa for all a ∈M and all x ∈ A.
In this case it is an infinite MV-algebra, hence SI MV-chain.

[II.] There exist x ,y ∈M such that x and y do not commute (i.e.
x ‖ y).
We have shown that in this case A has to be finite (i.e., by our
assumptions can be excluded).
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