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Abstract

We characterize finitely generated projective MV -algebra and give
also sufficient conditions to be a finitely generated projective MV -
algebra.

1 Introduction and preliminaries

It is known that the variety MV of all MV -algebras is not locally finite and
that, remarkably, it is generated by all simple finite MV -algebras.

Recall that an algebra A = (A;⊕, ·,¬, 0, 1), is said to be an MV -algebra
iff it satisfies the following equations:

1. (x⊕ y)⊕ z = x⊕ (y ⊕ z);

2. x⊕ y = y ⊕ x;

3. x⊕ 0 = x;

4. x⊕ 1 = 1;
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5. ¬0 = 1;

6. ¬1 = 0;

7. x¯ y = ¬(¬x⊕ ¬y);

8. ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

Every MV -algebra has an underlying ordered structure defined by

x ≤ y iff ¬x⊕ y = 1.

(A;≤, 0, 1) is a bounded distributive lattice. Moreover, the following property
holds in any MV -algebra:

xy ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.

The unit interval of real numbers [0, 1] endowed with the following operations:
x ⊕ y = min(1, x + y), x ¯ y = max(0, x + y − 1),¬x = 1 − x, becomes an
MV -algebra. It is well known that the MV -algebra S = ([0, 1],⊕,¯,¬, 0, 1)
generate the varietyMV of all MV -algebras, i. e. V(S) = MV. Let Q denote
the set of rational numbers, for (0 6=)n ∈ ω we set

Sn = (Sn;⊕,¯,¬, 0, 1),

where

Sn =

{
0,

1

n
, . . . ,

n− 1

n
, 1

}
.

Let FVn(m) be m-generated free MV -algebra in the variety

Vn = V({S1, ..., Sn}).

Let g
(n)
1 , ..., g

(n)
m ∈ FVn(m) be free generators of FVn(m).

On Z+ we define the function vm(x) as follows: vm(1) = 2m, vm(2) =
3m− 2m, ..., vm(n) = (n + 1)m− (vmn1 + ...vm(nk−1)), where n1(= 1), ..., nk−1

are all the divisors of n distinct from n(= nk). Then by [?] (Lemma 22)

FVn(m) ∼= S
vm(1)
1 × ...× Svm(n)

n .
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Let FMV(m) be m-generated free MV -algebra in the variety MV. Let
g1, ..., gm ∈ FMV(m) be free generators of FMV(m).

In

A. Di Nola , R. Grigolia, G. Panti, Finitely generated free MV -
algebras and their automorphism groups, Studia Logica, vol.61, N1, 65-
78(1998).

A. Di Nola and R. Grigolia, Projective MV -Algebras and Their Au-
tomorphism Groups, J. of Mult.-Valued Logic & Soft Computing, Vol.
9(2003), pp. 291-317

a characterization of finitely generated free MV -algebras as subalgebras of
an inverse limit of a chain of order type ω∗ of free algebras FVn(m) is given.

Notice, that R. McNaughton

McNaughton R, A theorem about infinite-valued sentential logics. J.S.L.,
16(1951), 113.

have described a set of special functions f : [0, 1]m → [0, 1], endowed with
MV -operations, that represents the m-generated free MV -algebra. More
precisely, McNaughton has proved that a function has an MV polynomial
representation q(x1, ..., xm) such that f = q iff f satisfies the following con-
ditions:

(i) f is continuous,
(ii) there exists a finite number of affine linear distinct polynomials `1, ..., `n,

each having the form

`j = bj + nj1x1 + ... + njmxm

where all b′s and n′s are integers such that for every (x1, ..., xm) ∈ [0, 1]m

there is j, 1 ≤ j ≤ n such that

f(x1, , xm) = `j(x1, , xm).

It is worth to stress that several descriptions of the free MV -algebras are
known.

D. Mundici, A constructive proof of McNaughton’s Theorem in infinite-
valued logics, J. Symbolic Logic, 59, (1994), 596-602.
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G. Panti, A geometric proof of the completeness of the ÃLukasiewcz cal-
culus, J. Symbolic Logic, 60, (1995), 563-578.

G. Jakubik, Free MV -algebras, Czechoslovak Mathematical Jour-
nal, Vol. 53, No. 2, pp. 311-317, 2003

It is well known that MV -algebras are algebraic models of infinitely-
valued ÃLukasiewicz logic L∞. As well known the structure of non-equivalent
formulas of L∞ forms an ω-generated MV -algebra, which is named Linden-
baum algebra. If we restrict the structure of non-equivalent formulas with m
propositional variables, then we will have the m-generated free MV -algebra.

Recall that an algebra A ∈ K is said to be a free algebra in a variety K,
if there exists a set A0 ⊂ A such that A0 generates A and every mapping f
from A0 to any algebra B ∈ K is extended to a homomorphism h from A to
B. In this case A0 is said to be the set of free generators of A. If the set of
free generators is finite then A is said to be a finitely generated free algebra .

Recall also that an algebra A ∈ K is called projective, if for any B,C ∈ K,
any epimorphism (that is an onto homomorphism ) β : B → C and any
homomorphism γ : A → C, there exists a homomorphism α : A → B such
that βα = γ. Notice that in varieties projective algebras are characterized as
retracts of free algebras. An algebra A is said to be a retract of the algebra B,
if there are homomorphisms ε : A → B and h : B → A such that hε = IdA.

A subalgebra A of FK(m) is projective if there exists an endomorphism
h : FK(m) → FK(m) such that h(FK(m)) = A and h(x) = x for every x ∈ A.

2 On Projective MV -algebras

Lemma 1. If A(m) is an m-generated projective MV -algebra, then it is a
retract of the m-generated free MV -algebra FMV(m).

Proof. Since A(m) is m-generated, there exists homomorphism onto h :
FMV(m) → A(m), and we have identity mapping IdA(m) : A(m) → A(m). So,
since A(m) is projective, there exists a homomorphism δ : A(m) → FMV(m)
such that hδ = IdA(m). By this we conclude the proof.

Lemma 2. Let V be a variety of algebras and A(m) an m-generated pro-
jective subalgebra of the m-generated free algebra FV(m) with generators
a1, ..., am ∈ A(m) (⊂ FV(m)). Then the one generated subalgebra Ai(m)
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of A(m), generated by ai ∈ A(m) for i ∈ {1, ..., m}, is a projective algebra in
a variety V.

Proof. Since A(m) is m-generated subalgebra of FV(m), we have that there
exist homomorphisms h:FMV(m) → A(m) and ε : A(m) → FV(m) such that
h(gi) = ai and hε(ai) = ai for i ∈ {1, ..., m}.

There exists a homomorphism hi : FV(1) → Ai(m) such that h(g) = ai.
Since FV(m) is projective, we have that there exists homomorphism h′ :
FV(m) → FV(1) such that hih

′ = h. Let δ = h′ε : Ai(m) → FV(1). Then
h′δ = hih

′ε = IdAi(m). So, Ai(m) is projective.

According to Lemma 2 to prove that not every m-generated subalgebra of
FMV(m) is projective, it is enough to show that there exists a one-generated
subalgebra of the one-generated free algebra FMV(1) which is not projective.
Indeed, let A be a subalgebra of FMV(1) generated by 2g, where g is a free
generator of FMV(1).

Recall that if we have a variety of algebras V and V1 is its subvariety,
then a homomorphism τ : A → A1, where A ∈ V and A1 ∈ V1, is said to
be V1-universal for A if for any algebra B ∈ V1 and any homomorphism
h : A → B there exists a homomorphism ξ : A1 → B such that ξτ = h.

Let us note that

• FV1(n) is V1-morphic image of FV(n).

Let τ : FMV(1) → FV4(1) be V4-universal for FV4(1). Then τ(A) = A4

is a subalgebra of of FV4(1). Notice, that if A is a projective subalgebra of
FMV(1) in MV, then A4 is a projective subalgebra of FV4(1) in V4.

FV4(1) ∼= S2
1×S2×S2

3×S2
4 , g(4) = (0, 1, 1/2, 1/3, 2/3, 1/4, 3/4) and 2g(4) =

(0, 1, 1, 2/3, 1, 1/2, 1), A4
∼= S2

1 × S3 × S4. From here we see that A4 is not
a retract of FV4(1), i. e. there are no homomorphisms, say h : FV4(1) → A4

and ε : A4 → FV4(1) such that hε = IdA4 . So, A is not a retract of FMV(1).
Therefore, according to Lemma 2, A is not a projective MV -algebra.

Let K be any variety of algebras. In

A.Di Nola and R. Grigolia, Projective MV -Algebras and Their Au-
tomorphism Groups, J. of Mult.-Valued Logic & Soft Computing, Vol.
9(2003), pp. 291-317

is proved the following
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Theorem 3. (Theorem 20). Let FK(m) be the m-generated free algebra of a
variety K and g1, ..., gm be its free generators. Then the m generated subal-
gebra A of FK(m) with the generators a1, ..., am ∈ A is projective if and only
if there exist polynomials P1(x1, ..., xm), ..., Pm(x1, ..., xm) such that

Pi(g1, ..., gm) = ai

and

Pi(P1(x1, ..., xm), ..., Pm(x1, ..., xm)) = Pi(x1, ..., xm),

i = 1, ..., m.

We say that an MV -algebra polynomial Q(x1, ...xm) over an MV -algebra
A is antitone (isotone) if xi ≤ yi, for every i = 1, ...,m implies Q(x1, ...xm) ≥
Q(y1, ..., ym)) (Q(x1, ...xm) ≤ Q(y1, ..., ym))) for every (x1, ...xm), (y1, ..., ym) ∈
Am.

Theorem 4. Let Q(x1, ..., xm) be an antitone MV -algebra polynomial. Then
the m-generated subalgebras of FMV(m) generated by

{gi ∧Q(g1, ..., gm)}i=1,...,m

{gi ∨Q(g1, ..., gm)}i=1,...,m

{(gi ∧ ¬(gi)) ∧Q(g1, ..., gm)}i=1,...,m

{(gi ∨ ¬(gi)) ∨Q(g1, ..., gm)}i=1,...,m,

respectively, are projective.

Proof. Set

ai = Pi(g1, ..., gm) = gi ∧Q(g1, ..., gm).

Then

Pi(P1(g1, ..., gm), ..., Pm(g1, ..., gm)) =

= P1(gi ∧Q(g1, ..., gm), ..., gi ∧Q(g1, ..., gm), ..., gm ∧Q(g1, ..., gm) =
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= gi∧Q(g1, ..., gm)∧Q(g1∧Q(g1, ..., gm), ..., gi∧Q(g1, ..., gm), ..., gm∧Q(g1, ..., gm)).

Since for every j = 1, ..., m gj ∧ Q(g1, ..., gm) ≤ gj and Q(g1, ..., gm) is
antitone, then we get that

Q(g1, ..., gm) ≤ Q(Q(g1, ..., gm), ..., gi ∧Q(g1, ..., gm), ..., gm ∧Q(g1, ..., gm))

hence

Pi(P1(g1, ..., gm), ..., Pm(g1, ..., gm)) = gi ∧Q(g1, ..., gm) = Pi(g1, ..., gm).

So, by Theorem 3, we get that A(a1, ..., am), the subalgebra of FMV(m),
generated by {a1, ..., am}, is projective.

The remaining cases can be proved in an analogous way.

Theorem 5. Let Q(x1, ..., xm) be an isotone MV -algebra polynomial. Then
the m-generated subalgebras of FMV(m) generated by

{¬gi ∧Q(g1, ..., gm)}i=1,...,m

{¬gi ∨Q(g1, ..., gm)}i=1,...,m

{(gi ∧ ¬(gi)) ∧Q(g1, ..., gm)}i=1,...,m

{(gi ∨ ¬(gi)) ∨Q(g1, ..., gm)}i=1,...,m,

respectively, are projective.

Proof. Analogous to the proof of Theorem 4.

As an example of projective algebras described by Theorems 3 and 4we
refer to the 2-generated subalgebra of FMV(2) which is generated by {(g1 ∧
(¬g1)

2 ⊕ (¬g2)
2), (g2 ∧ (¬g1)

2 ⊕ (¬g2)
2)}.

We recall that to any 1-variable McNaughton function f is associated a
partition of the unit interval [0, 1], {0 = a0, a1, ..., an = 1} in such a way that
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a0 < a1 < ... < an and the points {(a0, f(a0)), (a1, f(a1)), ..., (an, f(an))} are
the knots of f and the function f is linear over each interval [ai−1, ai], with
i = 1, ..., n. We denote by `i the linear piece of f defined over the interval
[ai−1, ai]. Sometimes we call `i the i-th piece of f. Let Proj+ denote the set
of 1-variable McNaughton functions f satisfying the following conditions:

(1) f ◦ f = f ;

(2) f(0) = 0.

Lemma 6. Let f be a McNaughton function such that f ∈ Proj+ then `2 is
decreasing.

Proof. Assume `2 increasing, that is for every x ∈]a1, a2], x < f(x). From
the continuity of f there is k ∈]a1, a2] such that f(k) = a2. Hence f(f(k)) =
f(a2). Since we assumed `2 increasing we get a2 < f(a2). Finally we have:

a2 = f(k) = f(f(k)) = f(a2) > a2,

which is absurd. Hence `2 is decreasing.

Lemma 7. Let f be a McNaughton function such that f ∈ Proj+. Assume
i > 2, if `i is increasing then for every x ∈ [ai−1, ai] f(x) 6= x.

Proof. Assume 2 < i, ai < f(ai) and f(ai−1) < ai−1. Then by continuity of
`i there exists k ∈]ai−1, ai] such that f(k) = k. For h such that ai−1 < h < k
and f(h) = ai−1, since `i is increasing we get

ai−1 = f(h) < h < k

and then
f(f(h)) < f(h),

in contrast with f ◦ f = f .

Lemma 8. Let f be a McNaughton function such that f ∈ Proj+. Assume
i > 2, if `i is decreasing then for every x ∈ [ai−1, ai] f(x) 6= x.

Proof. Let i > 2 and `i be decreasing. Then suppose there exists k ∈ [ai−1, ai]
such that f(k) = k. Also we have ai−1 < f(ai−1), f(ai) < ai. Hence we can
find h ∈]ai−1, k[ such that f(h) = ai. So we get

f(f(h)) = f(ai) < ai = f(h)

in contrast with the assumption that f ∈ Proj+.
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Lemma 9. Let f be a McNaughton function such that f ∈ Proj+ and for
every x ∈ [a0, b[, f(x) = 0. Then f(x) = 0 for every x ∈ [0, 1].

Proof. Suppose there is k ∈ [0, 1] such that f(k) 6= 0. Then we can assume
that for every x ∈ [a0, a1] f(x) = 0. Hence `2 is increasing on the interval
[a1, a2]. Then there is h ∈]a1, a2[ such that f(h) = a1 and 0 = f(a1) < f(h).
Also we have 0 = f(a1) = f(f(h)) = f(h), absurd.

Proposition 10. Let f be a McNaughton function such that f ∈ Proj+.
Then, exactly one of the following holds:

(1) f(x) = 0, for every x ∈ [0, 1];

(2) for every x ∈ [a0, a1], f(x) = x.

Proof. Trivially the zero function belongs to Proj+. So we assume f be
non-zero function in Proj+. By Lemma 9 , for every x ∈]0, a1], 0 < f(x).
Assume a1 < f(a1), then there is h ∈]0, a1] such that f(h) = a1. So we have
also a1 = f(h) = f(f(h)) = f(a1), which is absurd. Hence the linear piece
`1 of f is non-zero and cannot be up the graph of the identity function. So,
`1 has derivative equal to 1. Hence for every x ∈ [0, a1] f(x) = x.

Theorem 11. Let f be a McNaughton function of one variable the following
are equivalent:

(1) f ∈ Proj+;

(2) Max{f(x), x ∈ [0, 1]} = f(a1) and for f non-zero function, for every
x ∈ [0, a1], f(x) = x.

Proof. Assume (1) holds. Then if f is the zero function hence (2) trivially
holds. If f is non-zero, by Proposition 10, for every x ∈ [0, a1], f(x) = x.
Moreover, by Lemmas 6,7,8 for every x ∈]a1, 1], f(x) < x. Hence (2) still
holds. Vice-versa, assume (2). If f is the zero function trivially we get (1).
Let f be a non-zero function satisfying (2). Then for each x ∈ [0, 1] there is
h ∈ [0, a1] such that f(x) = h. So, f(f(x)) = f(h) = h. Hence f ◦ f = f ,
and (1) holds.

It is easy to check that the following corollary holds:

Corollary 12. Let f, g ∈ Proj+ then:
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(1) f ∨ g ∈ Proj+

(2) f ∧ g ∈ Proj+

(3) id(x) ∈ Proj+ and id(x) = max(Proj+)

Theorem 13. Let A be a one-generated subalgebra of FMV(1). Then the
following are equivalent:

(1) A is projective;

(2) A is generated by some f ∈ Proj+;

Proof. The theorem is trivial when A = {f0, f1}. So assume A be a projective
subalgebra of FMV(1) generated by a non-zero function f and A 6= {f0, f1}.
If f is such that f(0) = 1 then we can consider the generator f ∗ of A. So
we have that f ∗(0) = 0. Since f ∗ is a McNaughton function, then there
is an MV -polynomial P (x) : [0, 1] → [0, 1] such that for every x ∈ [0, 1]
P (x) = f ∗(x). By Theorem 3 P (P (x)) = P (x) and then for every x ∈ [0, 1]
f ∗(f ∗(x)) = f ∗(x). Hence f ∗ ∈ Proj+.

Vice versa, let A be a subalgebra of FMV(1) generated by the function
f and f ∈ Proj+. Since f is an element of Free(1) then there is an MV -
polynomial of one variable Q(x) : [0, 1] → [0, 1] such that for every x ∈ [0, 1]
f(x) = P (x). Since f ∈ Proj+, by Theorem 6 P (P (x)) = P (x), for every
x ∈ [0, 1]. Then, by Theorem 3, A is projective.

Now we generalize 1-generated case on m-generated. We recall that
FMV(m) is generated by the McNaughton functions

gi : [0, 1]m → [0, 1], where gi(x1, ..., xm) = xi, i = 1, ..., m.

Let A(f1, ..., fm) be the subalgebra of FMV(m) generated by f1, ..., fm,
where fi(0, ..., 0) = 0 for every i = 1, ..., m. Assume A(f1, ..., fm) be projec-
tive. Then by Theorem 3 there are m MV -polynomials Pi : [0, 1]m → [0, 1],
i = 1, ..., m such that:

Pi(g1(x1, ..., xm), ..., gm(x1, ..., xm)) = fi(x1, ..., xm), i = 1, ..., m (I)

and
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Pi(P1(x1, ..., xm), ..., Pm(x1, ..., xm)) = Pi(x1, ..., xm), i = 1, ..., m (II)

Hence, from (I) we get

Pi(x1, ..., xm) = fi(x1, ..., xm), i = 1, ..., m.

Thus we can identify Pi with fi, i=1,...,m. Then (II) can be settled in
the following form:

fi(f1(x1, ..., xm), ..., fm(x1, ..., xm)) = fi(x1, ..., xm), i = 1, ..., m. (III)

Let us consider the case when fi(0, ..., 0) = 0, i = 1, ..., m. Define the
subset Ii(fi) of [0, 1]m, i = 1, ...,m, as follows:

Ii(fi) = {(x1, ..., xm) ∈ [0, 1]m | fi(x1, ..., xm) = xi, i = 1, ..., m.}

Then the set Ii(fi) (i = 1, ..., m) is nonempty, indeed (0, ..., 0) ∈ Ii(fi).
We observe that the points Q ∈ Ii(fi) are points in which the value of fi

coincides with gi(Q), i.e. over such points Q the graph of fi intersects the
graph of gi.

In the special case of A(g1, ..., gm) we get:

I1(g1) = ... = Im(gm) = [0, 1]m.

Coming back to the case of A(f1, ..., fm) set

ΣA(f1,...,fm) = {((f1(Q), ..., fm(Q))}Q∈[0,1]m .

Then with the above notations we have:

Proposition 14. Let A(f1, ..., fm) be a subalgebra of FMV(m) generated by
f1, ..., fm. Assume that fi(0, ..., 0) = 0 for i = 1, ..., m. Then the following
are equivalent:

(j) A(f1, ..., fm) is projective;

(jj) ΣA(f1,...,fm) ⊆
⋂m

i=1 Ii(fi).
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Proof. Assume (j) holds, then by (III), for every Q ∈ [0, 1]m,

fi(fi(Q), ..., fm(Q)) = fi(Q) i = 1, ..., m.

Then the point K = (f1(Q), ..., fm(Q)) ∈ [0, 1]m is such that:

K ∈
m⋂

i=1

Ii(fi).

Hence,

ΣA(f1,...,fm) ⊆
m⋂

i=1

Ii(fi).

Viceversa, assume that

ΣA(f1,...,fm) ⊆
m⋂

i=1

Ii(fi).

then

fi(f1(Q), ..., fm(Q)) = fi(Q) i = 1, ...,m,

by (III) and Theorem 3, A(f1, ..., fm) turns out to be projective.

Remark
We observe that for any pair of functions h1, h2 such that h1(0, 0) = 0,

h2(0, 0) = 0 we get I1(h1) ∩ I2(h2) 6= ∅. Hence we can define a mapping

σ : [0, 1]2 → [0, 1]2

defined by

σ(Q) = (h1(Q), h2(Q))

then we get the projectivity of the subalgebra A(h1, h2) of FMV(2), gen-
erated by h1 and h2, when

σ([0, 1]2) ⊆ I1(h1) ∩ I2(h2).

that is when
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σ ◦ σ = σ

.
Now we give a theorem which is valid in every variety of algebras.

Theorem 15. Let A be a subalgebra of m-generated free algebra FV(m) in
a variety V generated by a1, ..., am ∈ A ⊂ FV(m) such that the subalgebra
Ai = [ai]A ⊂ A, generated by ai, i = 1, ..., m, is projective. Then A is a
projective algebra in V.

Proof. Let us consider the case when m = 2, since the one can be generalized
for the case m > 2. So, we have (identity) embeddings δi : Ai → A, τ : A →
FV(2), i. e. δi(a) = a (i = 1, 2), τ(b) = b for every a ∈ Ai ⊂ A ⊂ FV(2) and
b ∈ A ⊂ FV(2).

So, according to Theorem 3 and since FV(1) is isomorphic to the subal-
gebra generated by the free generator gi ∈ FV (i = 1, 2), there exist poly-
nomials P ′

1(x1) and P ′
2(x2) such that P ′

1(g1) = a1 and P ′
2(g2) = a2 such that

P ′
1(P

′
1(g1)) = P ′

1(g1) and P ′
2(P

′
2(g2)) = P ′

2(g2). Let P1(x1, x2) = P ′
1(x1) and

P2(x1, x2) = P ′
2(x2). Then P1(P1(g1, g2), P2(g1, g2)) = P1(g1, g2) (= P ′

1(g1))
and P2(P1(g1, g2), P2(g1, g2)) = P2(g1, g2) (= P ′

2(g2)). So, according to Theo-
rem 3, the subalgebra A of FV(2) generated by a1 and a2 is projective.
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