On Projective $M V$-algebras

Antonio Di Nola and Revaz Grigolia
Department of Mathematics and Informatics
University of Salerno
e-mail: adinola@unisa.it
Institute of Computer Sciences
Tbilisi State University
e-mail: grigolia@yahoo.com

August 3, 2007

Abstract

We characterize finitely generated projective $M V$-algebra and give also sufficient conditions to be a finitely generated projective $M V$ algebra.

1 Introduction and preliminaries

It is known that the variety $\mathbb{M V}$ of all $M V$-algebras is not locally finite and that, remarkably, it is generated by all simple finite $M V$-algebras.

Recall that an algebra $A=(A ; \oplus, \cdot, \neg, 0,1)$, is said to be an $M V$-algebra iff it satisfies the following equations:

1. $(x \oplus y) \oplus z=x \oplus(y \oplus z)$;
2. $x \oplus y=y \oplus x$;
3. $x \oplus 0=x$;
4. $x \oplus 1=1$;
5. $\neg 0=1$;
6. $\neg 1=0$;
7. $x \odot y=\neg(\neg x \oplus \neg y)$;
8. $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$.

Every $M V$-algebra has an underlying ordered structure defined by

$$
x \leq y \text { iff } \neg x \oplus y=1
$$

$(A ; \leq, 0,1)$ is a bounded distributive lattice. Moreover, the following property holds in any $M V$-algebra:

$$
x y \leq x \wedge y \leq x \vee y \leq x \oplus y
$$

The unit interval of real numbers $[0,1]$ endowed with the following operations: $x \oplus y=\min (1, x+y), x \odot y=\max (0, x+y-1), \neg x=1-x$, becomes an $M V$-algebra. It is well known that the $M V$-algebra $S=([0,1], \oplus, \odot, \neg, 0,1)$ generate the variety $\mathbb{M V}$ of all $M V$-algebras, i. e. $\mathcal{V}(S)=\mathbb{M} \mathbb{V}$. Let Q denote the set of rational numbers, for $(0 \neq) n \in \omega$ we set

$$
S_{n}=\left(S_{n} ; \oplus, \odot, \neg, 0,1\right),
$$

where

$$
S_{n}=\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\} .
$$

Let $F_{\mathbb{V}_{n}}(m)$ be m-generated free $M V$-algebra in the variety

$$
\mathbb{V}_{n}=\mathcal{V}\left(\left\{S_{1}, \ldots, S_{n}\right\}\right)
$$

Let $g_{1}^{(n)}, \ldots, g_{m}^{(n)} \in F_{\mathbb{V}_{n}}(m)$ be free generators of $F_{\mathbb{V}_{n}}(m)$.
On Z^{+}we define the function $v_{m}(x)$ as follows: $v_{m}(1)=2^{m}, v_{m}(2)=$ $3^{m}-2^{m}, \ldots, v_{m}(n)=(n+1)^{m}-\left(v_{m} n_{1}+\ldots v_{m}\left(n_{k-1}\right)\right)$, where $n_{1}(=1), \ldots, n_{k-1}$ are all the divisors of n distinct from $n\left(=n_{k}\right)$. Then by [?] (Lemma 22)

$$
F_{\mathbb{V}_{n}}(m) \cong S_{1}^{v_{m}(1)} \times \ldots \times S_{n}^{v_{m}(n)}
$$

Let $F_{\mathbb{M V}}(m)$ be m-generated free $M V$-algebra in the variety $\mathbb{M V}$. Let $g_{1}, \ldots, g_{m} \in F_{\mathrm{MV}}(m)$ be free generators of $F_{\mathrm{MV}}(m)$.

In
A. Di Nola , R. Grigolia, G. Panti, Finitely generated free MValgebras and their automorphism groups, Studia Logica, vol.61, N1, 6578(1998).
A. Di Nola and R. Grigolia, Projective $M V$-Algebras and Their Automorphism Groups, J. of Mult.-Valued Logic \& Soft Computing, Vol. 9(2003), pp. 291-317
a characterization of finitely generated free $M V$-algebras as subalgebras of an inverse limit of a chain of order type $\omega *$ of free algebras $F_{\mathbb{V}_{n}}(m)$ is given.

Notice, that R. McNaughton
McNaughton R, A theorem about infinite-valued sentential logics. J.S.L., 16(1951), 113.
have described a set of special functions $f:[0,1]^{m} \rightarrow[0,1]$, endowed with $M V$-operations, that represents the m-generated free $M V$-algebra. More precisely, McNaughton has proved that a function has an $M V$ polynomial representation $q\left(x_{1}, \ldots, x_{m}\right)$ such that $f=q$ iff f satisfies the following conditions:
(i) f is continuous,
(ii) there exists a finite number of affine linear distinct polynomials $\ell_{1}, \ldots, \ell_{n}$, each having the form

$$
\ell_{j}=b_{j}+n_{j_{1}} x_{1}+\ldots+n_{j_{m}} x_{m}
$$

where all b^{\prime} s and n^{\prime} 's are integers such that for every $\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}$ there is $j, 1 \leq j \leq n$ such that

$$
f\left(x_{1},, x_{m}\right)=\ell_{j}\left(x_{1},, x_{m}\right)
$$

It is worth to stress that several descriptions of the free $M V$-algebras are known.
D. Mundici, A constructive proof of McNaughton's Theorem in infinitevalued logics, J. Symbolic Logic, 59, (1994), 596-602.
G. Panti, A geometric proof of the completeness of the Eukasiewcz calculus, J. Symbolic Logic, 60, (1995), 563-578.
G. Jakubik, Free MV-algebras, Czechoslovak Mathematical Journal, Vol. 53, No. 2, pp. 311-317, 2003

It is well known that $M V$-algebras are algebraic models of infinitelyvalued Łukasiewicz logic L_{∞}. As well known the structure of non-equivalent formulas of L_{∞} forms an ω-generated $M V$-algebra, which is named Lindenbaum algebra. If we restrict the structure of non-equivalent formulas with m propositional variables, then we will have the m-generated free $M V$-algebra.

Recall that an algebra $A \in \mathbf{K}$ is said to be a free algebra in a variety \mathbf{K}, if there exists a set $A_{0} \subset A$ such that A_{0} generates A and every mapping f from A_{0} to any algebra $B \in \mathbf{K}$ is extended to a homomorphism h from A to B. In this case A_{0} is said to be the set of free generators of A. If the set of free generators is finite then A is said to be a finitely generated free algebra .

Recall also that an algebra $A \in \mathbf{K}$ is called projective, if for any $B, C \in \mathbf{K}$, any epimorphism (that is an onto homomorphism) $\beta: B \rightarrow C$ and any homomorphism $\gamma: A \rightarrow C$, there exists a homomorphism $\alpha: A \rightarrow B$ such that $\beta \alpha=\gamma$. Notice that in varieties projective algebras are characterized as retracts of free algebras. An algebra A is said to be a retract of the algebra B, if there are homomorphisms $\varepsilon: A \rightarrow B$ and $h: B \rightarrow A$ such that $h \varepsilon=I d_{A}$.

A subalgebra A of $F_{\mathbb{K}}(m)$ is projective if there exists an endomorphism $h: F_{\mathbb{K}}(m) \rightarrow F_{\mathbb{K}}(m)$ such that $h\left(F_{\mathbb{K}}(m)\right)=A$ and $h(x)=x$ for every $x \in A$.

2 On Projective $M V$-algebras

Lemma 1. If $A(m)$ is an m-generated projective $M V$-algebra, then it is a retract of the m-generated free $M V$-algebra $F_{\mathbb{M V}}(m)$.

Proof. Since $A(m)$ is m-generated, there exists homomorphism onto h : $F_{\text {MV }}(m) \rightarrow A(m)$, and we have identity mapping $I d_{A(m)}: A(m) \rightarrow A(m)$. So, since $A(m)$ is projective, there exists a homomorphism $\delta: A(m) \rightarrow F_{\text {MV }}(m)$ such that $h \delta=I d_{A(m)}$. By this we conclude the proof.

Lemma 2. Let \mathbb{V} be a variety of algebras and $A(m)$ an m-generated projective subalgebra of the m-generated free algebra $F_{\mathbb{V}}(m)$ with generators $a_{1}, \ldots, a_{m} \in A(m)\left(\subset F_{\mathbb{V}}(m)\right)$. Then the one generated subalgebra $A_{i}(m)$
of $A(m)$, generated by $a_{i} \in A(m)$ for $i \in\{1, \ldots, m\}$, is a projective algebra in a variety \mathbb{V}.

Proof. Since $A(m)$ is m-generated subalgebra of $F_{\mathbb{V}}(m)$, we have that there exist homomorphisms h: $F_{\mathrm{MV}}(m) \rightarrow A(m)$ and $\varepsilon: A(m) \rightarrow F_{\mathbb{V}}(m)$ such that $h\left(g_{i}\right)=a_{i}$ and $h \varepsilon\left(a_{i}\right)=a_{i}$ for $i \in\{1, \ldots, m\}$.

There exists a homomorphism $h_{i}: F_{\mathbb{V}}(1) \rightarrow A_{i}(m)$ such that $\left.h_{(} g\right)=a_{i}$. Since $F_{\mathbb{V}}(m)$ is projective, we have that there exists homomorphism h^{\prime} : $F_{\mathbb{V}}(m) \rightarrow F_{\mathbb{V}}(1)$ such that $h_{i} h^{\prime}=h$. Let $\delta=h^{\prime} \varepsilon: A_{i}(m) \rightarrow F_{\mathbb{V}}(1)$. Then $h^{\prime} \delta=h_{i} h^{\prime} \varepsilon=I d_{A_{i}(m)}$. So, $A_{i}(m)$ is projective.

According to Lemma 2 to prove that not every m-generated subalgebra of $F_{\mathrm{MV}}(m)$ is projective, it is enough to show that there exists a one-generated subalgebra of the one-generated free algebra $F_{\text {MI }}(1)$ which is not projective. Indeed, let A be a subalgebra of $F_{\mathrm{MV}}(1)$ generated by $2 g$, where g is a free generator of $F_{\mathrm{MV}}(1)$.

Recall that if we have a variety of algebras \mathbb{V} and \mathbb{V}_{1} is its subvariety, then a homomorphism $\tau: A \rightarrow A_{1}$, where $A \in \mathbb{V}$ and $A_{1} \in \mathbb{V}_{1}$, is said to be \mathbb{V}_{1}-universal for A if for any algebra $B \in \mathbb{V}_{1}$ and any homomorphism $h: A \rightarrow B$ there exists a homomorphism $\xi: A_{1} \rightarrow B$ such that $\xi \tau=h$.

Let us note that

- $F_{\mathbb{V}_{1}}(n)$ is $\mathbf{V}_{\mathbf{1}}$-morphic image of $F_{\mathbb{V}}(n)$.

Let $\tau: F_{\mathbb{M V}}(1) \rightarrow F_{\mathbb{V}_{4}}(1)$ be \mathbb{V}_{4}-universal for $F_{\mathbb{V}_{4}}(1)$. Then $\tau(A)=A_{4}$ is a subalgebra of of $F_{\mathbb{V}_{4}}(1)$. Notice, that if A is a projective subalgebra of $F_{\mathrm{MV}}(1)$ in $\mathbb{M V}$, then A_{4} is a projective subalgebra of $F_{\mathbb{V}_{4}}(1)$ in \mathbb{V}_{4}.
$F_{\mathbb{V}_{4}}(1) \cong S_{1}^{2} \times S_{2} \times S_{3}^{2} \times S_{4}^{2}, g^{(4)}=(0,1,1 / 2,1 / 3,2 / 3,1 / 4,3 / 4)$ and $2 g^{(4)}=$ $(0,1,1,2 / 3,1,1 / 2,1), A_{4} \cong S_{1}^{2} \times S_{3} \times S_{4}$. From here we see that A_{4} is not a retract of $F_{\mathbb{V}_{4}}(1)$, i. e. there are no homomorphisms, say $h: F_{\mathbb{V}_{4}}(1) \rightarrow A_{4}$ and $\varepsilon: A_{4} \rightarrow F_{\mathbb{V}_{4}}(1)$ such that $h \varepsilon=I d_{A_{4}}$. So, A is not a retract of $F_{\mathbb{M V}}(1)$. Therefore, according to Lemma 2, A is not a projective $M V$-algebra.

Let \mathbb{K} be any variety of algebras. In
A.Di Nola and R. Grigolia, Projective MV-Algebras and Their Automorphism Groups, J. of Mult.-Valued Logic \& Soft Computing, Vol. 9(2003), pp. 291-317
is proved the following

Theorem 3. (Theorem 20). Let $F_{\mathbb{K}}(m)$ be the m-generated free algebra of a variety \mathbb{K} and g_{1}, \ldots, g_{m} be its free generators. Then the m generated subalgebra A of $F_{\mathbb{K}}(m)$ with the generators $a_{1}, \ldots, a_{m} \in A$ is projective if and only if there exist polynomials $P_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, P_{m}\left(x_{1}, \ldots, x_{m}\right)$ such that

$$
P_{i}\left(g_{1}, \ldots, g_{m}\right)=a_{i}
$$

and

$$
P_{i}\left(P_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, P_{m}\left(x_{1}, \ldots, x_{m}\right)\right)=P_{i}\left(x_{1}, \ldots, x_{m}\right)
$$

$i=1, \ldots, m$.
We say that an $M V$-algebra polynomial $Q\left(x_{1}, \ldots x_{m}\right)$ over an $M V$-algebra A is antitone (isotone) if $x_{i} \leq y_{i}$, for every $i=1, \ldots, m$ implies $Q\left(x 1, \ldots x_{m}\right) \geq$ $\left.\left.Q\left(y_{1}, \ldots, y_{m}\right)\right)\left(Q\left(x_{1}, \ldots x_{m}\right) \leq Q\left(y_{1}, \ldots, y_{m}\right)\right)\right)$ for every $\left(x_{1}, \ldots x_{m}\right),\left(y_{1}, \ldots, y_{m}\right) \in$ A^{m}.

Theorem 4. Let $Q\left(x_{1}, \ldots, x_{m}\right)$ be an antitone $M V$-algebra polynomial. Then the m-generated subalgebras of $F_{\mathrm{MV}}(m)$ generated by

$$
\begin{gathered}
\left\{g_{i} \wedge Q\left(g_{1}, \ldots, g_{m}\right)\right\}_{i=1, \ldots, m} \\
\left\{g_{i} \vee Q\left(g_{1}, \ldots, g_{m}\right)\right\}_{i=1, \ldots, m} \\
\left\{\left(g_{i} \wedge \neg\left(g_{i}\right)\right) \wedge Q\left(g_{1}, \ldots, g_{m}\right)\right\}_{i=1, \ldots, m} \\
\left\{\left(g_{i} \vee \neg\left(g_{i}\right)\right) \vee Q\left(g_{1}, \ldots, g_{m}\right)\right\}_{i=1, \ldots, m},
\end{gathered}
$$

respectively, are projective.
Proof. Set

$$
a_{i}=P_{i}\left(g_{1}, \ldots, g_{m}\right)=g_{i} \wedge Q\left(g_{1}, \ldots, g_{m}\right)
$$

Then

$$
\begin{gathered}
P_{i}\left(P_{1}\left(g_{1}, \ldots, g_{m}\right), \ldots, P_{m}\left(g_{1}, \ldots, g_{m}\right)\right)= \\
=P_{1}\left(g_{i} \wedge Q\left(g_{1}, \ldots, g_{m}\right), \ldots, g_{i} \wedge Q\left(g_{1}, \ldots, g_{m}\right), \ldots, g_{m} \wedge Q\left(g_{1}, \ldots, g_{m}\right)=\right.
\end{gathered}
$$

$$
=g_{i} \wedge Q\left(g_{1}, \ldots, g_{m}\right) \wedge Q\left(g_{1} \wedge Q\left(g_{1}, \ldots, g_{m}\right), \ldots, g_{i} \wedge Q\left(g_{1}, \ldots, g_{m}\right), \ldots, g_{m} \wedge Q\left(g_{1}, \ldots, g_{m}\right)\right)
$$

Since for every $j=1, \ldots, m g_{j} \wedge Q\left(g_{1}, \ldots, g_{m}\right) \leq g_{j}$ and $Q\left(g_{1}, \ldots, g_{m}\right)$ is antitone, then we get that

$$
Q\left(g_{1}, \ldots, g_{m}\right) \leq Q\left(Q\left(g_{1}, \ldots, g_{m}\right), \ldots, g_{i} \wedge Q\left(g_{1}, \ldots, g_{m}\right), \ldots, g_{m} \wedge Q\left(g_{1}, \ldots, g_{m}\right)\right)
$$

hence

$$
P_{i}\left(P_{1}\left(g_{1}, \ldots, g_{m}\right), \ldots, P_{m}\left(g_{1}, \ldots, g_{m}\right)\right)=g_{i} \wedge Q\left(g_{1}, \ldots, g_{m}\right)=P_{i}\left(g_{1}, \ldots, g_{m}\right)
$$

So, by Theorem 3, we get that $A\left(a_{1}, \ldots, a_{m}\right)$, the subalgebra of $F_{\mathbb{M V}}(m)$, generated by $\left\{a_{1}, \ldots, a_{m}\right\}$, is projective.

The remaining cases can be proved in an analogous way.

Theorem 5. Let $Q\left(x_{1}, \ldots, x_{m}\right)$ be an isotone $M V$-algebra polynomial. Then the m-generated subalgebras of $F_{\mathrm{MV}}(m)$ generated by

$$
\begin{gathered}
\left\{\neg g_{i} \wedge Q\left(g_{1}, \ldots, g_{m}\right)\right\}_{i=1, \ldots, m} \\
\left\{\neg g_{i} \vee Q\left(g_{1}, \ldots, g_{m}\right)\right\}_{i=1, \ldots, m} \\
\left\{\left(g_{i} \wedge \neg\left(g_{i}\right)\right) \wedge Q\left(g_{1}, \ldots, g_{m}\right)\right\}_{i=1, \ldots, m} \\
\left\{\left(g_{i} \vee \neg\left(g_{i}\right)\right) \vee Q\left(g_{1}, \ldots, g_{m}\right)\right\}_{i=1, \ldots, m},
\end{gathered}
$$

respectively, are projective.
Proof. Analogous to the proof of Theorem 4.
As an example of projective algebras described by Theorems 3 and 4we refer to the 2-generated subalgebra of $F_{\mathrm{MV}}(2)$ which is generated by $\left\{\left(g_{1} \wedge\right.\right.$ $\left.\left.\left(\neg g_{1}\right)^{2} \oplus\left(\neg g_{2}\right)^{2}\right),\left(g_{2} \wedge\left(\neg g_{1}\right)^{2} \oplus\left(\neg g_{2}\right)^{2}\right)\right\}$.

We recall that to any 1 -variable McNaughton function f is associated a partition of the unit interval $[0,1],\left\{0=a_{0}, a_{1}, \ldots, a_{n}=1\right\}$ in such a way that
$a_{0}<a_{1}<\ldots<a_{n}$ and the points $\left\{\left(a_{0}, f\left(a_{0}\right)\right),\left(a_{1}, f\left(a_{1}\right)\right), \ldots,\left(a_{n}, f\left(a_{n}\right)\right)\right\}$ are the knots of f and the function f is linear over each interval [a_{i-1}, a_{i}], with $i=1, \ldots, n$. We denote by ℓ_{i} the linear piece of f defined over the interval $\left[a_{i-1}, a_{i}\right]$. Sometimes we call ℓ_{i} the i-th piece of f. Let Proj ${ }^{+}$denote the set of 1 -variable McNaughton functions f satisfying the following conditions:
(1) $f \circ f=f$;
(2) $f(0)=0$.

Lemma 6. Let f be a McNaughton function such that $f \in \operatorname{Proj}^{+}$then ℓ_{2} is decreasing.

Proof. Assume ℓ_{2} increasing, that is for every $\left.\left.x \in\right] a_{1}, a_{2}\right], x<f(x)$. From the continuity of f there is $\left.k \in] a_{1}, a_{2}\right]$ such that $f(k)=a_{2}$. Hence $f(f(k))=$ $f\left(a_{2}\right)$. Since we assumed ℓ_{2} increasing we get $a_{2}<f\left(a_{2}\right)$. Finally we have:

$$
a_{2}=f(k)=f(f(k))=f\left(a_{2}\right)>a_{2},
$$

which is absurd. Hence ℓ_{2} is decreasing.
Lemma 7. Let f be a McNaughton function such that $f \in$ Proj $^{+}$. Assume $i>2$, if ℓ_{i} is increasing then for every $x \in\left[a_{i-1}, a_{i}\right] f(x) \neq x$.

Proof. Assume $2<i, a_{i}<f\left(a_{i}\right)$ and $f\left(a_{i-1}\right)<a_{i-1}$. Then by continuity of ℓ_{i} there exists $\left.\left.k \in\right] a_{i-1}, a_{i}\right]$ such that $f(k)=k$. For h such that $a_{i-1}<h<k$ and $f(h)=a_{i-1}$, since ℓ_{i} is increasing we get

$$
a_{i-1}=f(h)<h<k
$$

and then

$$
f(f(h))<f(h)
$$

in contrast with $f \circ f=f$.
Lemma 8. Let f be a McNaughton function such that $f \in$ Proj $^{+}$. Assume $i>2$, if ℓ_{i} is decreasing then for every $x \in\left[a_{i-1}, a_{i}\right] f(x) \neq x$.
Proof. Let $i>2$ and ℓ_{i} be decreasing. Then suppose there exists $k \in\left[a_{i-1}, a_{i}\right]$ such that $f(k)=k$. Also we have $a_{i-1}<f\left(a_{i-1}\right), f\left(a_{i}\right)<a_{i}$. Hence we can find $h \in] a_{i-1}, k\left[\right.$ such that $f(h)=a_{i}$. So we get

$$
f(f(h))=f\left(a_{i}\right)<a_{i}=f(h)
$$

in contrast with the assumption that $f \in \operatorname{Proj}^{+}$.

Lemma 9. Let f be a McNaughton function such that $f \in$ Proj $^{+}$and for every $x \in\left[a_{0}, b[, f(x)=0\right.$. Then $f(x)=0$ for every $x \in[0,1]$.

Proof. Suppose there is $k \in[0,1]$ such that $f(k) \neq 0$. Then we can assume that for every $x \in\left[a_{0}, a_{1}\right] f(x)=0$. Hence ℓ_{2} is increasing on the interval $\left[a_{1}, a_{2}\right]$. Then there is $\left.h \in\right] a_{1}, a_{2}\left[\right.$ such that $f(h)=a_{1}$ and $0=f\left(a_{1}\right)<f(h)$. Also we have $0=f\left(a_{1}\right)=f(f(h))=f(h)$, absurd.

Proposition 10. Let f be a McNaughton function such that $f \in \operatorname{Proj}^{+}$. Then, exactly one of the following holds:
(1) $f(x)=0$, for every $x \in[0,1]$;
(2) for every $x \in\left[a_{0}, a_{1}\right], f(x)=x$.

Proof. Trivially the zero function belongs to Proj ${ }^{+}$. So we assume f be non-zero function in Proj^{+}. By Lemma 9 , for every $\left.\left.x \in\right] 0, a_{1}\right], 0<f(x)$. Assume $a_{1}<f\left(a_{1}\right)$, then there is $\left.\left.h \in\right] 0, a_{1}\right]$ such that $f(h)=a_{1}$. So we have also $a_{1}=f(h)=f(f(h))=f\left(a_{1}\right)$, which is absurd. Hence the linear piece ℓ_{1} of f is non-zero and cannot be up the graph of the identity function. So, ℓ_{1} has derivative equal to 1 . Hence for every $x \in\left[0, a_{1}\right] f(x)=x$.

Theorem 11. Let f be a McNaughton function of one variable the following are equivalent:
(1) $f \in$ Proj$^{+}$;
(2) $\operatorname{Max}\{f(x), x \in[0,1]\}=f\left(a_{1}\right)$ and for f non-zero function, for every $x \in\left[0, a_{1}\right], f(x)=x$.

Proof. Assume (1) holds. Then if f is the zero function hence (2) trivially holds. If f is non-zero, by Proposition 10 , for every $x \in\left[0, a_{1}\right], f(x)=x$. Moreover, by Lemmas $6,7,8$ for every $\left.x \in] a_{1}, 1\right], f(x)<x$. Hence (2) still holds. Vice-versa, assume (2). If f is the zero function trivially we get (1). Let f be a non-zero function satisfying (2). Then for each $x \in[0,1]$ there is $h \in\left[0, a_{1}\right]$ such that $f(x)=h$. So, $f(f(x))=f(h)=h$. Hence $f \circ f=f$, and (1) holds.

It is easy to check that the following corollary holds:
Corollary 12. Let $f, g \in \operatorname{Proj}^{+}$then:

$$
\begin{aligned}
& \text { (1) } f \vee g \in \operatorname{Proj}^{+} \\
& \text {(2) } f \wedge g \in \operatorname{Proj}^{+} \\
& \text {(3) } i d(x) \in \operatorname{Proj}^{+} \text {and } i d(x)=\max \left(\operatorname{Proj}^{+}\right)
\end{aligned}
$$

Theorem 13. Let A be a one-generated subalgebra of $F_{\mathbb{M V}}(1)$. Then the following are equivalent:
(1) A is projective;
(2) A is generated by some $f \in \operatorname{Proj}^{+}$;

Proof. The theorem is trivial when $A=\left\{f_{0}, f_{1}\right\}$. So assume A be a projective subalgebra of $F_{\mathrm{MV}}(1)$ generated by a non-zero function f and $A \neq\left\{f_{0}, f_{1}\right\}$. If f is such that $f(0)=1$ then we can consider the generator f^{*} of A. So we have that $f^{*}(0)=0$. Since f^{*} is a McNaughton function, then there is an $M V$-polynomial $P(x):[0,1] \rightarrow[0,1]$ such that for every $x \in[0,1]$ $P(x)=f^{*}(x)$. By Theorem $3 P(P(x))=P(x)$ and then for every $x \in[0,1]$ $f^{*}\left(f^{*}(x)\right)=f^{*}(x)$. Hence $f^{*} \in \operatorname{Proj}^{+}$.

Vice versa, let A be a subalgebra of $F_{\text {MIV }}(1)$ generated by the function f and $f \in$ Proj$^{+}$. Since f is an element of Free(1) then there is an $M V$ polynomial of one variable $Q(x):[0,1] \rightarrow[0,1]$ such that for every $x \in[0,1]$ $f(x)=P(x)$. Since $f \in \operatorname{Proj}^{+}$, by Theorem $6 P(P(x))=P(x)$, for every $x \in[0,1]$. Then, by Theorem 3, A is projective.

Now we generalize 1-generated case on m-generated. We recall that $F_{\mathrm{MV}}(m)$ is generated by the McNaughton functions

$$
g_{i}:[0,1]^{m} \rightarrow[0,1], \text { where } g_{i}\left(x_{1}, \ldots, x_{m}\right)=x_{i}, \quad i=1, \ldots, m
$$

Let $A\left(f_{1}, \ldots, f_{m}\right)$ be the subalgebra of $F_{\text {MV }}(m)$ generated by f_{1}, \ldots, f_{m}, where $f_{i}(0, \ldots, 0)=0$ for every $i=1, \ldots, m$. Assume $A\left(f_{1}, \ldots, f_{m}\right)$ be projective. Then by Theorem 3 there are $m M V$-polynomials $P_{i}:[0,1]^{m} \rightarrow[0,1]$, $i=1, \ldots, m$ such that:

$$
\begin{equation*}
P_{i}\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{m}\right)\right)=f_{i}\left(x_{1}, \ldots, x_{m}\right), \quad i=1, \ldots, m \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{i}\left(P_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, P_{m}\left(x_{1}, \ldots, x_{m}\right)\right)=P_{i}\left(x_{1}, \ldots, x_{m}\right), \quad i=1, \ldots, m \tag{II}
\end{equation*}
$$

Hence, from (I) we get

$$
P_{i}\left(x_{1}, \ldots, x_{m}\right)=f_{i}\left(x_{1}, \ldots, x_{m}\right), \quad i=1, \ldots, m
$$

Thus we can identify P_{i} with $f_{i}, \mathrm{i}=1, \ldots, \mathrm{~m}$. Then ($I I$) can be settled in the following form:

$$
\begin{equation*}
f_{i}\left(f_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{m}\right)\right)=f_{i}\left(x_{1}, \ldots, x_{m}\right), \quad i=1, \ldots, m \tag{III}
\end{equation*}
$$

Let us consider the case when $f_{i}(0, \ldots, 0)=0, i=1, \ldots, m$. Define the subset $I_{i}\left(f_{i}\right)$ of $[0,1]^{m}, i=1, \ldots, m$, as follows:

$$
I_{i}\left(f_{i}\right)=\left\{\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m} \mid f_{i}\left(x_{1}, \ldots, x_{m}\right)=x_{i}, \quad i=1, \ldots, m .\right\}
$$

Then the set $I_{i}\left(f_{i}\right)(i=1, \ldots, m)$ is nonempty, indeed $(0, \ldots, 0) \in I_{i}\left(f_{i}\right)$. We observe that the points $Q \in I_{i}\left(f_{i}\right)$ are points in which the value of f_{i} coincides with $g_{i}(Q)$, i.e. over such points Q the graph of f_{i} intersects the graph of g_{i}.

In the special case of $A\left(g_{1}, \ldots, g_{m}\right)$ we get:

$$
I_{1}\left(g_{1}\right)=\ldots=I_{m}\left(g_{m}\right)=[0,1]^{m}
$$

Coming back to the case of $A\left(f_{1}, \ldots, f_{m}\right)$ set

$$
\Sigma_{A\left(f_{1}, \ldots, f_{m}\right)}=\left\{\left(\left(f_{1}(Q), \ldots, f_{m}(Q)\right)\right\}_{Q \in[0,1]^{m}}\right.
$$

Then with the above notations we have:
Proposition 14. Let $A\left(f_{1}, \ldots, f_{m}\right)$ be a subalgebra of $F_{\mathbb{M V}}(m)$ generated by f_{1}, \ldots, f_{m}. Assume that $f_{i}(0, \ldots, 0)=0$ for $i=1, \ldots, m$. Then the following are equivalent:
(j) $A\left(f_{1}, \ldots, f_{m}\right)$ is projective;
$(j j) \Sigma_{A\left(f_{1}, \ldots, f_{m}\right)} \subseteq \bigcap_{i=1}^{m} I_{i}\left(f_{i}\right)$.

Proof. Assume (j) holds, then by (III), for every $Q \in[0,1]^{m}$,

$$
f_{i}\left(f_{i}(Q), \ldots, f_{m}(Q)\right)=f_{i}(Q) \quad i=1, \ldots, m
$$

Then the point $K=\left(f_{1}(Q), \ldots, f_{m}(Q)\right) \in[0,1]^{m}$ is such that:

$$
K \in \bigcap_{i=1}^{m} I_{i}\left(f_{i}\right)
$$

Hence,

$$
\Sigma_{A\left(f_{1}, \ldots, f_{m}\right)} \subseteq \bigcap_{i=1}^{m} I_{i}\left(f_{i}\right)
$$

Viceversa, assume that

$$
\Sigma_{A\left(f_{1}, \ldots, f_{m}\right)} \subseteq \bigcap_{i=1}^{m} I_{i}\left(f_{i}\right) .
$$

then

$$
f_{i}\left(f_{1}(Q), \ldots, f_{m}(Q)\right)=f_{i}(Q) \quad i=1, \ldots, m
$$

by (III) and Theorem $3, A\left(f_{1}, \ldots, f_{m}\right)$ turns out to be projective.

Remark

We observe that for any pair of functions h_{1}, h_{2} such that $h_{1}(0,0)=0$, $h_{2}(0,0)=0$ we get $I_{1}\left(h_{1}\right) \cap I_{2}\left(h_{2}\right) \neq \emptyset$. Hence we can define a mapping

$$
\sigma:[0,1]^{2} \rightarrow[0,1]^{2}
$$

defined by

$$
\sigma(Q)=\left(h_{1}(Q), h_{2}(Q)\right)
$$

then we get the projectivity of the subalgebra $A\left(h_{1}, h_{2}\right)$ of $F_{\operatorname{MV}}(2)$, generated by h_{1} and h_{2}, when

$$
\sigma\left([0,1]^{2}\right) \subseteq I_{1}\left(h_{1}\right) \cap I_{2}\left(h_{2}\right)
$$

that is when

$$
\sigma \circ \sigma=\sigma
$$

Now we give a theorem which is valid in every variety of algebras.
Theorem 15. Let A be a subalgebra of m-generated free algebra $F_{\mathbb{V}}(m)$ in a variety \mathbb{V} generated by $a_{1}, \ldots, a_{m} \in A \subset F_{\mathbb{V}}(m)$ such that the subalgebra $A_{i}=\left[a_{i}\right]_{A} \subset A$, generated by $a_{i}, i=1, \ldots, m$, is projective. Then A is a projective algebra in \mathbb{V}.

Proof. Let us consider the case when $m=2$, since the one can be generalized for the case $m>2$. So, we have (identity) embeddings $\delta_{i}: A_{i} \rightarrow A, \tau: A \rightarrow$ $F_{\mathbb{V}}(2)$, i. e. $\delta_{i}(a)=a(i=1,2), \tau(b)=b$ for every $a \in A_{i} \subset A \subset F_{\mathbb{V}}(2)$ and $b \in A \subset F_{\mathbb{V}}(2)$.

So, according to Theorem 3 and since $F_{\mathbb{V}}(1)$ is isomorphic to the subalgebra generated by the free generator $g_{i} \in F_{\mathrm{V}}(i=1,2)$, there exist polynomials $P_{1}^{\prime}\left(x_{1}\right)$ and $P_{2}^{\prime}\left(x_{2}\right)$ such that $P_{1}^{\prime}\left(g_{1}\right)=a_{1}$ and $P_{2}^{\prime}\left(g_{2}\right)=a_{2}$ such that $P_{1}^{\prime}\left(P_{1}^{\prime}\left(g_{1}\right)\right)=P_{1}^{\prime}\left(g_{1}\right)$ and $P_{2}^{\prime}\left(P_{2}^{\prime}\left(g_{2}\right)\right)=P_{2}^{\prime}\left(g_{2}\right)$. Let $P_{1}\left(x_{1}, x_{2}\right)=P_{1}^{\prime}\left(x_{1}\right)$ and $P_{2}\left(x_{1}, x_{2}\right)=P_{2}^{\prime}\left(x_{2}\right)$. Then $P_{1}\left(P_{1}\left(g_{1}, g_{2}\right), P_{2}\left(g_{1}, g_{2}\right)\right)=P_{1}\left(g_{1}, g_{2}\right)\left(=P_{1}^{\prime}\left(g_{1}\right)\right)$ and $P_{2}\left(P_{1}\left(g_{1}, g_{2}\right), P_{2}\left(g_{1}, g_{2}\right)\right)=P_{2}\left(g_{1}, g_{2}\right)\left(=P_{2}^{\prime}\left(g_{2}\right)\right)$. So, according to Theorem 3, the subalgebra A of $F_{\mathbb{V}}(2)$ generated by a_{1} and a_{2} is projective.

