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Motivation

Theory of algebraization of logics
[Lindenbaum & Tarski, Blok & Pigozzi, Czelakowski, Nemeti et al]

Representation of logics in algebraic setting (theory restricted
to propositional based logics)

Many-sorted and non-truth-functional logics

In practice, propositional based logics are not enough for
reasoning about complex systems

Generalization of the notion of algebraizable logic

Many-sorted behavioral logic
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Algebraization

L

unisorted

ksStrong representation +3
Equational logic

unisorted
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Logic

Definition

A structural propositional logic is a pair L = 〈Σ,`〉, where Σ is a
propositional signature and `⊆ P(LΣ(X))× LΣ(X) is a
consequence relation satisfying the following conditions, for every
T1 ∪ T2 ∪ {ϕ} ⊆ LΣ(X):

Reflexivity: if ϕ ∈ T1 then T1 ` ϕ
Cut: if T1 ` ϕ for all ϕ ∈ T2, and T2 ` ψ then T1 ` ψ

Weakening: if T1 ` ϕ and T1 ⊆ T2 then T2 ` ϕ
Structurality: if T1 ` ϕ then σ[T1] ` σ(ϕ)
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Algebraizable logic

L
Θ(x)

.. EqnΣ
K

∆(x1,x2)

mm

T ` ϕ iff Θ[T ] �EqnΣ
K

Θ(ϕ)

{∆(δi, εi) : i ∈ I} ` ∆(ϕ1, ϕ2) iff {δi ≈ εi : i ∈ I} �EqnΣ
K
ϕ1 ≈ ϕ2

ϕ a` ∆[Θ(ϕ)] ϕ1 ≈ ϕ2 =||=EqnΣ
K

Θ[∆(ϕ1, ϕ2)]
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Leibniz operator

Definition (Leibniz operator)

Let L = 〈Σ,`〉 be a structural propositional logic. Then the
Leibniz operator on the formula algebra can be given by:

Ω : ThL → CongrLΣ

T 7→ largest congruence compatible with T.
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Characterization theorems

finitely algebraizable
monotone

injective

continuous
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finitely equivalential
monotone

continuous

��

algebraizable
monotone

injective

commutes with inverse substitutions
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equivalential
monotone

commutes with inverse substitutions
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weakly algebraizable
monotone

injective
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monotone
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Limitations

First-order logic

Its algebraization gives rise to cylindric algebras (Henkin,
Monk, Tarski 1971)

Strange, since cylindric algebras are unisorted and first-order
logic clearly is not

Limitation applicable to other many-sorted logics

Even at the propositional level there are some “relatively”
well-behaved logics that are not algebraizable
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Paraconsistent logic C1 of da Costa

C1 (da Costa 1963) given by a structural Hilbert-style
axiomatization

Mortensen, Lewin-Mikenberg-Schwarze: C1 is not
algebraizable

da Costa, Carnielli-Alcantara have proposed an ”algebraic
counterpart” called da Costa algebras (paraconsistent
algebras)

Caleiro et al: alternative approach using two-sorted algebras
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Many-sorted signatures

Definition (Many-sorted signature)

A many-sorted signature is a pair Σ = 〈S, F 〉 where S is a set (of sorts)
and F = {Fws}w∈S∗,s∈S is an indexed family of sets (of operations).

Example (FOL)

ΣFOL = 〈S, F 〉 such that

S = {φ, t}

Fφφ = {∀x : x ∈ X} ∪ {¬}

Fφφφ = {⇒,∧,∨}

Ftnφ = {P : P n-ary predicate symbol}

Ftnt = {f : f n-ary function symbol}
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Many-sorted logics

We will only consider many-sorted signatures with a distinguished sort φ

(of formulas). We will call formulas to the elements of TΣ,φ(X).

Definition (Many-sorted logics)

A many-sorted logic is a pair L = 〈Σ,`〉 where Σ is a many-sorted
signature and `⊆ P(TΣ,φ(X))× (TΣ,φ(X)) is a structural
consequence relation over the set of formulas.
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How to generalize?

L

unisorted

ksStrong representation +3
Equational logic

unisorted

L
many-sorted

ksStrong representation +3

Behavioral logic
many-sorted

same signature

L
many-sorted

non-congruent connectives

ksStrong representation +3

Behavioral logic
many-sorted

extended signature
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Extended signature

From a many-sorted signature Σ = 〈S, F 〉 we can consider an
extended signature Σo = 〈So, F o〉, such that:

So = S
⊎
{v}

F o = {F o
ws}w∈(So)∗,s∈So is defined as follows:

F o
ws = Fws if ws ∈ S∗;

o : φ→ v ∈ F o.
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Behavioral logic

Consider given a subsignature Γ of Σ.

Γ-behavioral equivalence:

Given a Σo-algebra A, two elements a1, a2 ∈ As are Γ-behavioral equivalent,
a1 ≡Γ a2, if for every formula ϕ ∈ TΓ(x : s) and every tuple b1, . . . , bn:

oA(ϕA(a1, b1, . . . , bn)) = oA(ϕA(a2, b1, . . . , bn)).

Many-sorted behavioral equational logic BEqnΣ
K,Γ:

{ti ≈ t′i : i ∈ I} �BEqnΣ
K,Γ

t ≈ t′

iff
for every A ∈ K and homomorphism h : TΣo (X) → A,

h(t)≡Γh(t′) whenever h(ti)≡Γh(t′i) for every i ∈ I
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Behavioral logic

Consider given a subsignature Γ of Σ.

Γ-behavioral equivalence:

Given a Σo-algebra A, two elements a1, a2 ∈ As are Γ-behavioral equivalent,
a1 ≡Γ a2, if for every formula ϕ ∈ TΓ(x : s) and every tuple b1, . . . , bn:

oA(ϕA(a1, b1, . . . , bn)) = oA(ϕA(a2, b1, . . . , bn)).

Many-sorted behavioral equational logic BEqnΣ
K,Γ:

{ti ≈ t′i : i ∈ I} �BEqnΣ
K,Γ

t ≈ t′

iff
for every A ∈ K and homomorphism h : TΣo (X) → A,
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Behavioral algebraization

L
Θ(x)

.. BEqnΣ
K,Γ

∆(x1,x2)

mm

T ` ϕ iff Θ[T ] �BEqnΣ
K,Γ

Θ(ϕ)

{∆(δi, εi) : i ∈ I} ` ∆(ϕ1, ϕ2) iff {δi ≈ εi : i ∈ I} �BEqnΣ
K,Γ

ϕ1 ≈ ϕ2

ϕ a` ∆[Θ(ϕ)] ϕ1 ≈ ϕ2 =||=BEqnΣ
K,Γ

Θ[∆(ϕ1 ≈ ϕ2)]
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Behavioral Leibniz operator

Definition (Behavioral Leibniz operator)

Let L = 〈Σ,`〉 be a structural many-sorted logic and Γ a subsignature of Σ.
The Γ-behavioral Leibniz operator on the term algebra,

Ωbhv
Γ : ThL → CongΣ

Γ (TΣ(X))

T 7→ largest Γ-congruence compatible with T

.
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Characterization theorems (Behaviorally)
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Leibniz Hierarchy
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Signature of C1

Signature ΣC1 = 〈{φ}, F 〉 such that:

Fεφ = {t, f}, Fφφ = {¬} and Fφφφ = {∧,∨,⇒}.

Subsignature Γ = 〈{φ}, FΓ〉 of ΣC1 such that:

FΓ
φφ = ∅ and FΓ

ws = Fws for every ws 6= φφ.
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Hilbert-style axiomatization

Axioms:

ξ1 ⇒ (ξ2 ⇒ ξ1)

(ξ1 ⇒ (ξ2 ⇒ ξ3))⇒ ((ξ1 ⇒ ξ2)⇒ (ξ1 ⇒ ξ3))

(ξ1 ∧ ξ2)⇒ ξ1

(ξ1 ∧ ξ2)⇒ ξ2

ξ1 ⇒ (ξ2 ⇒ (ξ1 ∧ ξ2))

ξ1 ⇒ (ξ1 ∨ ξ2)

ξ2 ⇒ (ξ1 ∨ ξ2)

(ξ1 ⇒ ξ3)⇒ ((ξ2 ⇒ ξ3)⇒ ((ξ1 ∨ ξ2)⇒ ξ3))

¬¬ξ1 ⇒ ξ1

ξ1 ∨ ¬ξ1

ξ◦1 ⇒ (ξ1 ⇒ (¬ξ1 ⇒ ξ2))

(ξ◦1 ∧ ξ◦2)⇒ (ξ1 ∧ ξ2)◦

(ξ◦1 ∧ ξ◦2)⇒ (ξ1 ∨ ξ2)◦

(ξ◦1 ∧ ξ◦2)⇒ (ξ1 ⇒ ξ2)◦

t⇔ (ξ1 ⇒ ξ1)

f⇔ (ξ◦1 ∧ (ξ1 ∧ ¬ξ1))

Rule:

ξ1 ξ1⇒ξ2
ξ2

where ϕ◦ is an abbreviation of ¬(ϕ ∧ (¬ϕ)).
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Extended signature

Signature ΣC1 :

φ¬,∨,∧,⇒ 99

Extended signature Σo
C1 :

v

φ¬,∨,∧,⇒ 99

o

OO
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C1 of da Costa

Theorem

C1 is Γ-behaviorally algebraizable with Θ(x) = {x ≈ t},
∆(x1, x2) = {x1 ⇒ x2, x2 ⇒ x1} and the equivalent Γ-hidden
quasivariety semantics is the class of two-sorted algebras
introduced by Caleiro et al.

Da Costa algebras can be recovered using behavioral reasoning
over the hidden sort.
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Conclusions

Generalization of the notion of algebraizable logic

Strong representation of many-sorted logics in behavioral
logics

Characterization results using the Leibniz operator

Covering many-sorted logics as well as some non-algebraizable
logics (according to the old notion)
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Further work

Other interesting examples, such as first order logic with
many-sorted terms, including exogenous probabilistic and
quantum logics

Development of the full landscape of behavioral
algebraization, including weakly-algebraizable, and related
work, such as k-deductive systems

Application of this theory to logics algebraizable according to
the old notion
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