Behavioral algebraization

Ricardo Gonçalves and Carlos Caleiro

> CLC - SQIG Lisbon, Portugal

TANCL'07 Oxford - August 6-9, 2007

A D

Outline

Motivation

Algebraization

- Logics
- Algebraization
- AAL
- Limitations

- Many-sorted logics
- Behavioral algebraization
- Behavioral AAL

4) The example of \mathcal{C}_1

Motivation

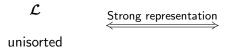
Theory of algebraization of logics

[Lindenbaum & Tarski, Blok & Pigozzi, Czelakowski, Nemeti et al]

- Representation of logics in algebraic setting (theory restricted to propositional based logics)
- Many-sorted and non-truth-functional logics
 - In practice, propositional based logics are not enough for reasoning about complex systems
- Generalization of the notion of algebraizable logic
 - Many-sorted behavioral logic

Algebraization Generalizing to many-sorted logics The example of C₁ Conclusions and further work Logics Algebraization AAL Limitations

Algebraization



Equational logic

unisorted

< 日 > < 同 > < 三 > < 三 >

æ

Logics Algebraization AAL Limitations

Logic

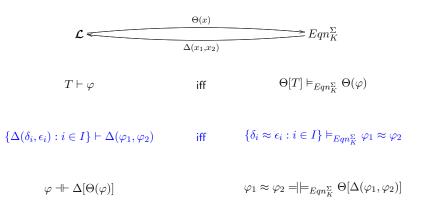
Definition

A structural propositional logic is a pair $\mathcal{L} = \langle \Sigma, \vdash \rangle$, where Σ is a propositional signature and $\vdash \subseteq \mathcal{P}(L_{\Sigma}(X)) \times L_{\Sigma}(X)$ is a consequence relation satisfying the following conditions, for every $T_1 \cup T_2 \cup \{\varphi\} \subseteq L_{\Sigma}(X)$:

Reflexivity: if $\varphi \in T_1$ then $T_1 \vdash \varphi$ **Cut:** if $T_1 \vdash \varphi$ for all $\varphi \in T_2$, and $T_2 \vdash \psi$ then $T_1 \vdash \psi$ **Weakening:** if $T_1 \vdash \varphi$ and $T_1 \subseteq T_2$ then $T_2 \vdash \varphi$ **Structurality:** if $T_1 \vdash \varphi$ then $\sigma[T_1] \vdash \sigma(\varphi)$

Logics Algebraization AAL Limitations

Algebraizable logic



(日) (同) (日) (日) (日)

э

Logics Algebraization AAL Limitations

Leibniz operator

Definition (Leibniz operator)

Let $\mathcal{L} = \langle \Sigma, \vdash \rangle$ be a structural propositional logic. Then the *Leibniz operator* on the formula algebra can be given by:

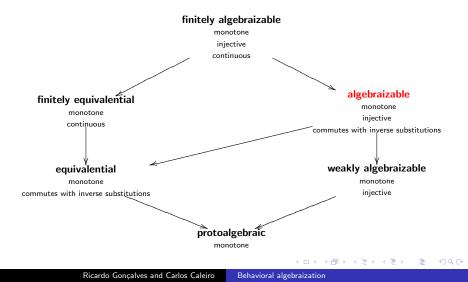
$$\Omega: Th_{\mathcal{L}} \to \mathsf{Congr}_{\mathbf{L}_{\Sigma}}$$

 $T \mapsto$ largest congruence compatible with T.

・ (日本)

Motivation Algebraization Generalizing to many-sorted logics The example of C_1 Conclusions and further work Logics Algebraization AAL Limitations

Characterization theorems



Logics Algebraization AAL Limitations

Limitations

- First-order logic
 - Its algebraization gives rise to cylindric algebras (Henkin, Monk, Tarski 1971)
 - Strange, since cylindric algebras are unisorted and first-order logic clearly is not
- Limitation applicable to other many-sorted logics
- Even at the propositional level there are some "relatively" well-behaved logics that are not algebraizable

Logics Algebraization AAL Limitations

Paraconsistent logic C_1 of da Costa

- C_1 (da Costa 1963) given by a structural Hilbert-style axiomatization
- Mortensen, Lewin-Mikenberg-Schwarze: C₁ is not algebraizable
- da Costa, Carnielli-Alcantara have proposed an "algebraic counterpart" called da Costa algebras (paraconsistent algebras)
- Caleiro et al: alternative approach using two-sorted algebras

Many-sorted logics Behavioral algebraization Behavioral AAL

Many-sorted signatures

Definition (Many-sorted signature)

A many-sorted signature is a pair $\Sigma = \langle S, F \rangle$ where S is a set (of sorts) and $F = \{F_{ws}\}_{w \in S^*, s \in S}$ is an indexed family of sets (of operations).

Example (FOL)

$$\Sigma_{FOL} = \langle S, F \rangle$$
 such that

•
$$S = \{\phi, t\}$$

•
$$F_{\phi\phi} = \{ \forall_x : x \in X \} \cup \{ \neg \}$$

•
$$F_{\phi\phi\phi} = \{\Rightarrow, \land, \lor\}$$

•
$$F_{t^n\phi} = \{P : P \ n \text{-ary predicate symbol}\}$$

• $F_{t^nt} = \{f: f \ n\text{-ary function symbol}\}$

Many-sorted logics Behavioral algebraization Behavioral AAL

・ (日本)

Many-sorted logics

We will only consider many-sorted signatures with a distinguished sort ϕ (of formulas). We will call *formulas* to the elements of $T_{\Sigma,\phi}(X)$.

Definition (Many-sorted logics)

A many-sorted logic is a pair $\mathcal{L} = \langle \Sigma, \vdash \rangle$ where Σ is a many-sorted signature and $\vdash \subseteq \mathcal{P}(T_{\Sigma,\phi}(X)) \times (T_{\Sigma,\phi}(X))$ is a structural consequence relation over the set of formulas.

Many-sorted logics Behavioral algebraization Behavioral AAL

How to generalize?

L

unisorted

Strong representation

Equational logic

unisorted

< 日 > < 同 > < 三 > < 三 >

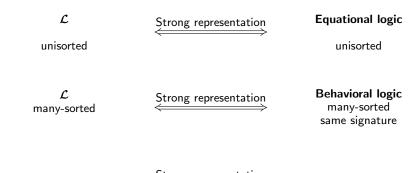
э

Strong representation

Strong representation

Many-sorted logics Behavioral algebraization Behavioral AAL

How to generalize?



Many-sorted logics Behavioral algebraization Behavioral AAL

How to generalize?



Many-sorted logics Behavioral algebraization Behavioral AAL

(日)

3.5

Extended signature

From a many-sorted signature $\Sigma = \langle S, F \rangle$ we can consider an extended signature $\Sigma^o = \langle S^o, F^o \rangle$, such that:

•
$$S^o = S \biguplus \{v\}$$

•
$$F^o = \{F^o{}_{ws}\}_{w \in (S^o)^*, s \in S^o}$$
 is defined as follows:

•
$$F^{o}_{ws} = F_{ws}$$
 if $ws \in S^*$;

•
$$o: \phi \to v \in F^o$$
.

Many-sorted logics Behavioral algebraization Behavioral AAL

< 日 > < 同 > < 三 > < 三 >

Behavioral logic

Consider given a subsignature Γ of $\Sigma.$

 Γ -behavioral equivalence:

Given a Σ^{o} -algebra A, two elements $a_1, a_2 \in A_s$ are Γ -behavioral equivalent, $a_1 \equiv_{\Gamma} a_2$, if for every formula $\varphi \in T_{\Gamma}(x:s)$ and every tuple b_1, \ldots, b_n :

 $o_A(\varphi_A(a_1,b_1,\ldots,b_n)) = o_A(\varphi_A(a_2,b_1,\ldots,b_n)).$

Many-sorted logics Behavioral algebraization Behavioral AAL

Image: A image: A

Behavioral logic

Consider given a subsignature Γ of Σ .

 Γ -behavioral equivalence:

Given a Σ^{o} -algebra A, two elements $a_1, a_2 \in A_s$ are Γ -behavioral equivalent, $a_1 \equiv_{\Gamma} a_2$, if for every formula $\varphi \in T_{\Gamma}(x:s)$ and every tuple b_1, \ldots, b_n :

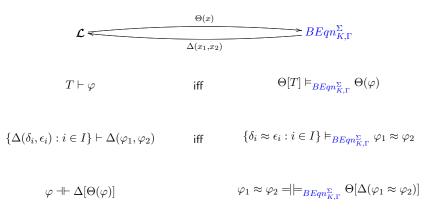
$$o_A(\varphi_A(a_1,b_1,\ldots,b_n)) = o_A(\varphi_A(a_2,b_1,\ldots,b_n)).$$

Many-sorted behavioral equational logic $BEqn_{K,\Gamma}^{\Sigma}$:

$$\begin{split} \{t_i \approx t_i': i \in I\} \vDash_{B Eqn_{K,\Gamma}^\Sigma} t \approx t' \\ & \text{iff} \\ \text{for every } A \in K \text{ and homomorphism } h: T_{\Sigma^o}(X) \to A, \\ h(t) \equiv_{\Gamma} h(t') \text{ whenever } h(t_i) \equiv_{\Gamma} h(t_i') \text{ for every } i \in I \end{split}$$

Many-sorted logics Behavioral algebraization Behavioral AAL

Behavioral algebraization



< 日 > < 同 > < 三 > < 三 >

э

Many-sorted logics Behavioral algebraization Behavioral AAL

Behavioral Leibniz operator

Definition (Behavioral Leibniz operator)

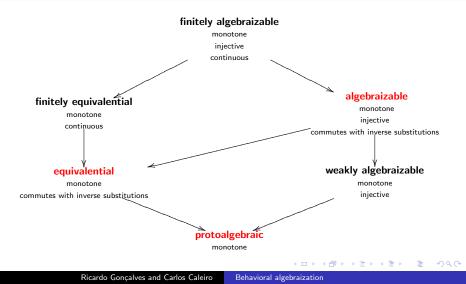
Let $\mathcal{L} = \langle \Sigma, \vdash \rangle$ be a structural many-sorted logic and Γ a subsignature of Σ . The Γ -behavioral Leibniz operator on the term algebra,

$$\Omega_{\Gamma}^{bhv}: Th_{\mathcal{L}} \to Cong_{\Gamma}^{\Sigma}(\mathbf{T}_{\Sigma}(\mathbf{X}))$$

 $T\mapsto \textit{largest}\ \Gamma\text{-congruence}\ \textit{compatible}\ \textit{with}\ T$

Many-sorted logics Behavioral algebraization Behavioral AAL

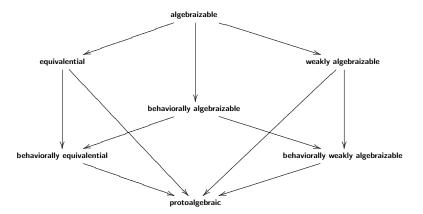
Characterization theorems (Behaviorally)



Many-sorted logics Behavioral algebraization Behavioral AAL

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Leibniz Hierarchy



Signature of C_1

• Signature
$$\Sigma_{\mathcal{C}_1} = \langle \{\phi\}, F \rangle$$
 such that:

$$F_{\epsilon\phi} = \{\mathbf{t}, \mathbf{f}\}, F_{\phi\phi} = \{\neg\} \text{ and } F_{\phi\phi\phi} = \{\land, \lor, \Rightarrow\}.$$

• Subsignature
$$\Gamma = \langle \{\phi\}, F^{\Gamma}
angle$$
 of $\Sigma_{\mathcal{C}_1}$ such that:

$$F_{\phi\phi}^{\Gamma} = \emptyset$$
 and $F_{ws}^{\Gamma} = F_{ws}$ for every $ws \neq \phi\phi$.

<ロ> <同> <同> < 同> < 同>

æ

Motivation Algebraization Generalizing to many-sorted logics **The example of** C_1 Conclusions and further work

Hilbert-style axiomatization

Axioms:

•
$$\xi_1 \Rightarrow (\xi_2 \Rightarrow \xi_1)$$

• $(\xi_1 \Rightarrow (\xi_2 \Rightarrow \xi_3)) \Rightarrow ((\xi_1 \Rightarrow \xi_2) \Rightarrow (\xi_1 \Rightarrow \xi_3))$
• $(\xi_1 \land \xi_2) \Rightarrow \xi_1$
• $(\xi_1 \land \xi_2) \Rightarrow \xi_2$
• $\xi_1 \Rightarrow (\xi_2 \Rightarrow (\xi_1 \land \xi_2))$
• $\xi_1 \Rightarrow (\xi_1 \lor \xi_2)$
• $\xi_2 \Rightarrow (\xi_1 \lor \xi_2)$
• $(\xi_1 \Rightarrow \xi_3) \Rightarrow ((\xi_2 \Rightarrow \xi_3) \Rightarrow ((\xi_1 \lor \xi_2) \Rightarrow \xi_3))$

- $\neg \neg \xi_1 \Rightarrow \xi_1$
- $\xi_1 \vee \neg \xi_1$
- $\bullet \ \xi_1^\circ \Rightarrow (\xi_1 \Rightarrow (\neg \xi_1 \Rightarrow \xi_2))$
- $(\xi_1^\circ \wedge \xi_2^\circ) \Rightarrow (\xi_1 \wedge \xi_2)^\circ$
- $(\xi_1^\circ \wedge \xi_2^\circ) \Rightarrow (\xi_1 \vee \xi_2)^\circ$
- $(\xi_1^\circ \wedge \xi_2^\circ) \Rightarrow (\xi_1 \Rightarrow \xi_2)^\circ$
- $\mathbf{t} \Leftrightarrow (\xi_1 \Rightarrow \xi_1)$
- $\mathbf{f} \Leftrightarrow (\xi_1^{\circ} \land (\xi_1 \land \neg \xi_1))$

э

Rule:

•
$$\frac{\xi_1 \quad \xi_1 \Rightarrow \xi_2}{\xi_2}$$

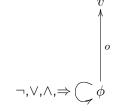
where φ° is an abbreviation of $\neg(\varphi \land (\neg \varphi))$.

Motivation Algebraization Generalizing to many-sorted logics **The example of** C_1 Conclusions and further work

Extended signature

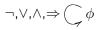
Extended signature $\Sigma_{C_1}^o$:

Signature Σ_{C_1} :



(日) (同) (三) (三)

э



\mathcal{C}_1 of da Costa

Theorem

 C_1 is Γ -behaviorally algebraizable with $\Theta(x) = \{x \approx t\}$, $\Delta(x_1, x_2) = \{x_1 \Rightarrow x_2, x_2 \Rightarrow x_1\}$ and the equivalent Γ -hidden quasivariety semantics is the class of two-sorted algebras introduced by Caleiro et al.

Da Costa algebras can be recovered using behavioral reasoning over the hidden sort.

< 🗇 🕨 < 🖻 🕨

Motivation Algebraization Generalizing to many-sorted logics The example of C_1 Conclusions and further work

Conclusions

- Generalization of the notion of algebraizable logic
- Strong representation of many-sorted logics in behavioral logics
- Characterization results using the Leibniz operator
- Covering many-sorted logics as well as some non-algebraizable logics (according to the old notion)

Further work

- Other interesting examples, such as first order logic with many-sorted terms, including exogenous probabilistic and quantum logics
- Development of the full landscape of behavioral algebraization, including weakly-algebraizable, and related work, such as *k*-deductive systems
- Application of this theory to logics algebraizable according to the old notion