Ordered Cover Systems for Residuated Logics

Rob Goldblatt

Victoria University of Wellington

TANCL'07, Oxford, August 2007

Generalise the Kripke-Joyal intuitionistic semantics to non-distributive logics.

Ordered Cover Systems

Based on structures

 $\langle S,\preccurlyeq, \triangleright\rangle$

- \preccurlyeq is a pre-order on S.
 - $x \preccurlyeq y$ read "y refines x"
- b is a binary "cover relation"

from subsets $C \subseteq S$ to elements $x \in S$.

• $C \triangleright x$ is read "C covers x"

• also write $x \triangleleft C$ for $C \triangleright x$ "x is covered by C".

axioms to follow...

Increasing Subsets

Definitions

• A set $X \subseteq S$ is increasing if

 $x \in X$ and $x \preccurlyeq y$ implies $y \in X$.

• $\uparrow X = \{y : \exists x \in X (x \preccurlyeq y)\}$ the up-set generated by X

•
$$\uparrow x = \{y : x \preccurlyeq y\}$$

• Y refines X if $Y \subseteq \uparrow X$, i.e. $(\forall y \in Y)(\exists x \in X)x \preccurlyeq y$

Example

For any topological space, take

- S = set of open sets.
- $x \preccurlyeq y$ iff $x \supseteq y$, "y refines x"
- $C \triangleright x$ iff $\bigcup C = x$.
- $\uparrow x = \{ \text{open } y : y \subseteq x \}.$

Local Truth

A property holds locally if it holds of an open neighbourhood of each point.

"Pointless" example:

• A function is locally constant if its domain is covered by open sets, on each of which the function is constant.

Hence:

Abstract the relevant properties of open covers

Grothendieck pretopology

• $C \triangleright x$ implies $C \subseteq \uparrow x$.

implies distributivity of \wedge over \vee !

Axioms

• Identity: $x \triangleleft \{x\}.$

• Transitivity: if $x \triangleleft C$ and for all $y \in C$, $y \triangleleft C_y$, then $x \triangleleft \bigcup_{y \in C} C_y$.

Refinement:

f $x \preccurlyeq y$, then every *x*-cover *C* can be refined to a *y*-cover *B*: $B \subseteq \uparrow C$.

```
Topological case: B = \{y \cap z : z \in C\}.
```

Grothendieck pretopology

• $C \triangleright x$ implies $C \subseteq \uparrow x$.

implies distributivity of \wedge over \vee !

Axioms

- Identity: $x \triangleleft \{x\}.$
- Transitivity: if $x \triangleleft C$ and for all $y \in C$, $y \triangleleft C_y$, then $x \triangleleft \bigcup_{y \in C} C_y$.

Refinement: if x ≼ y, then every x-cover C can be refined to a y-cover B: B ⊆ ↑C.

Topological case: $B = \{y \cap z : z \in C\}.$

Kripke-Joyal Semantics

Truth-sets/Satisfaction: $\|\varphi\| = \{x : x \models \varphi\}$

$$\begin{array}{ll} x \models \varphi \land \psi & \text{iff} \quad x \models \varphi \ \text{ and } x \models \psi. \\ x \models \varphi \lor \psi & \text{iff} \quad \text{there is an } x\text{-cover} \ C \subseteq \|\varphi\| \cup \|\psi\|, \\ & \text{i.e. for all } z \in C, z \models \varphi \ \text{or } z \models \psi. \end{array}$$

So $x \models \varphi \lor \psi$ iff the Boolean disjunction is locally satisfied at x.

Truth is increasing:

 $x \models \varphi$ and $x \preccurlyeq y$ implies $y \models \varphi$, i.e. $\|\varphi\|$ is an up-set.

Local truth implies truth:

 $\|\varphi\|$ is cover-closed, i.e.

 $\text{ if } x \triangleleft C \subseteq \|\varphi\| \text{, then } x \models \varphi.$

Kripke-Joyal Semantics

Truth-sets/Satisfaction: $\|\varphi\| = \{x : x \models \varphi\}$

$$\begin{array}{lll} x \models \varphi \land \psi & \text{iff} & x \models \varphi & \text{and} & x \models \psi. \\ x \models \varphi \lor \psi & \text{iff} & \text{there is an } x\text{-cover} & C \subseteq \|\varphi\| \cup \|\psi\|, \\ & \text{i.e. for all } z \in C, z \models \varphi \text{ or } z \models \psi. \end{array}$$

So $x \models \varphi \lor \psi$ iff the Boolean disjunction is locally satisfied at x.

Truth is increasing:

 $x \models \varphi$ and $x \preccurlyeq y$ implies $y \models \varphi$, i.e. $\|\varphi\|$ is an up-set.

Local truth implies truth:

 $\|\varphi\|$ is cover-closed, i.e.

if $x \triangleleft C \subseteq \|\varphi\|$, then $x \models \varphi$.

Kripke-Joyal Semantics

Truth-sets/Satisfaction: $\|\varphi\| = \{x : x \models \varphi\}$

$$\begin{array}{lll} x \models \varphi \land \psi & \text{iff} & x \models \varphi & \text{and} & x \models \psi. \\ x \models \varphi \lor \psi & \text{iff} & \text{there is an } x\text{-cover} & C \subseteq \|\varphi\| \cup \|\psi\|, \\ & \text{i.e. for all } z \in C, z \models \varphi \text{ or } z \models \psi. \end{array}$$

So $x \models \varphi \lor \psi$ iff the Boolean disjunction is locally satisfied at x.

Truth is increasing:

 $x \models \varphi$ and $x \preccurlyeq y$ implies $y \models \varphi$, i.e. $\|\varphi\|$ is an up-set.

Local truth implies truth:

```
\|\varphi\| is cover-closed, i.e.
```

 $\text{ if } x \triangleleft C \subseteq \|\varphi\| \text{, then } x \models \varphi.$

TANCL'07

Model Structures

$$\mathfrak{S} = \langle S, \preccurlyeq, \triangleright, \cdot, \varepsilon \rangle$$

 \cdot is associative and \preccurlyeq -monotonic, with identity ε

• Existence: there exists an x-cover $C \subseteq \uparrow x$; • Transitivity: • Refinement: • Stability: if $C \triangleright x$ and $B \triangleright y$, then $C \cdot B \triangleright x \cdot y$, TANCL'07

Model Structures

$$\mathfrak{S} = \langle S, \preccurlyeq, \triangleright, \cdot, \varepsilon \rangle$$

 \cdot is associative and \preccurlyeq -monotonic, with identity ε

Cover axioms:

- Existence: there exists an *x*-cover $C \subseteq \uparrow x$;
- Transitivity: if $x \triangleleft C$ and for all $y \in C$, $y \triangleleft C_y$, then $x \triangleleft \bigcup_{u \in C} C_y$.

• Refinement:

if $x \preccurlyeq y$, then every *x*-cover can be refined to a *y*-cover.

• Stability: if $C \triangleright x$ and $B \triangleright y$, then $C \cdot B \triangleright x \cdot y$,

where $C \cdot B = \{c \cdot b : c \in C \text{ and } b \in B\}.$

• Ono / Došen frames: $\langle S, \preccurlyeq, \cdot, \varepsilon \rangle$ without \triangleright .

• Sambin pretopology: $\langle S, \triangleright, \cdot, \varepsilon \rangle$ without \preccurlyeq .

The operator $j_{\scriptscriptstyle \rm P}$

Definition

$$z \in j_{\triangleright}X$$
 iff there is a $C \triangleright z$ with $C \subseteq X$

iff z locally belongs to X.

Results

- jX is increasing whenever X is.
- $X \subseteq Y$ implies $jX \subseteq jY$
- $X \subseteq jX$
- j(jX) = jX

```
• jX \bullet jY \subseteq j(X \bullet Y), where X \bullet Y = \uparrow (X \cdot Y)
```

Scholium: the up-sets form a quantale under \bullet , with j a quantic nucleus

TANCL'07

The operator $j_{\scriptscriptstyle P}$

Definition

iff z locally belongs to X.

Results

- jX is increasing whenever X is.
- $X \subseteq Y$ implies $jX \subseteq jY$
- $X \subseteq jX$
- j(jX) = jX

• $jX \bullet jY \subseteq j(X \bullet Y)$, where $X \bullet Y = \uparrow (X \cdot Y)$

Scholium: the up-sets form a quantale under \bullet , with j a quantic nucleus

The operator $j_{\scriptscriptstyle P}$

Definition

$$z \in j_{\triangleright}X$$
 iff there is a $C \triangleright z$ with $C \subseteq X$

iff z locally belongs to X.

Results

• jX is increasing whenever X is.

•
$$X \subseteq Y$$
 implies $jX \subseteq jY$

- $X \subseteq jX$
- j(jX) = jX

• $jX \bullet jY \subseteq j(X \bullet Y)$, where $X \bullet Y = \uparrow (X \cdot Y)$

Scholium: the up-sets form a quantale under \bullet , with j a quantic nucleus

"Facts"

Definitions

- X is cover-closed iff $jX \subseteq X$
 - iff $\exists C(x \triangleleft C \subseteq X) \text{ implies } x \in X.$

iff "local membership implies membership"

(cf. "local truth implies truth")

X is a fact if it is *increasing* and *cover-closed*, i.e. $X = \uparrow X = jX$.

Lemma

 $j \uparrow X$ is the smallest fact containing X.

"Facts"

Definitions

- X is cover-closed iff $jX \subseteq X$
 - iff $\exists C(x \triangleleft C \subseteq X) \text{ implies } x \in X.$

iff "local membership implies membership"

(cf. "local truth implies truth")

X is a fact if it is *increasing* and *cover-closed*, i.e. $X = \uparrow X = jX$.

Lemma

 $j \uparrow X$ is the smallest fact containing X.

The Algebra of Facts

Theorem

The set $L(\mathfrak{S})$ of facts of a model structure \mathfrak{S} is a residuated completely lattice ordered monoid, hence a model of the full Lambek calculus, in which

$$\begin{array}{l} \bigcap \mathcal{F} = \bigcap \mathcal{F} \\ \bigsqcup \mathcal{F} = j(\bigcup \mathcal{F}) \\ X \otimes Y = j(X \bullet Y) = j \uparrow (X \cdot Y) \\ X \Rightarrow_l Y = \{z \in S : z \cdot X \subseteq Y\} \\ X \Rightarrow_r Y = \{z \in S : X \cdot z \subseteq Y\} \\ T = S \\ F = j \emptyset = \{x : \emptyset \triangleright x\} \\ \mathbf{1} = j \uparrow \varepsilon \end{array}$$

Scholium: $L(\mathfrak{S})$ is the quantale of *j*-fixpoints

TANCL'07

The Algebra of Facts

Theorem

The set $L(\mathfrak{S})$ of facts of a model structure \mathfrak{S} is a residuated completely lattice ordered monoid, hence a model of the full Lambek calculus, in which

$$\begin{array}{l} \bigcap \mathcal{F} = \bigcap \mathcal{F} \\ \bigsqcup \mathcal{F} = j(\bigcup \mathcal{F}) \\ X \otimes Y = j(X \bullet Y) = j \uparrow (X \cdot Y) \\ X \Rightarrow_l Y = \{z \in S : z \cdot X \subseteq Y\} \\ X \Rightarrow_r Y = \{z \in S : X \cdot z \subseteq Y\} \\ T = S \\ F = j \emptyset = \{x : \emptyset \triangleright x\} \\ \mathbf{1} = j \uparrow \varepsilon \end{array}$$

Scholium: $L(\mathfrak{S})$ is the quantale of *j*-fixpoints

TANCL'07

Strong model structures:

Definition

• $X \bullet Y$ is cover-closed if X and Y are. Hence

$$X \otimes Y = X \bullet Y = \uparrow (X \cdot Y)$$

• $\uparrow \varepsilon$ is cover-closed. Hence $\mathbf{1} = \uparrow \varepsilon$

Representation

Theorem

For any residuated lattice-ordered monoid *L* there is a strong model structure \mathfrak{S}_L and an isomorphic embedding

$$L \longrightarrow L(\mathfrak{S}_L)$$

preserving all joins and meets that exist in L.

Proof.

- Embed *L* into its *MacNeille completion* \overline{L} .
- Define a strong \mathfrak{S}_L based on \overline{L} with $\overline{L} \cong L(\mathfrak{S}_L)$.
- Definition of \mathfrak{S} similar to topological cover systems.

Representation

Theorem

For any residuated lattice-ordered monoid *L* there is a strong model structure \mathfrak{S}_L and an isomorphic embedding

$$L \longrightarrow L(\mathfrak{S}_L)$$

preserving all joins and meets that exist in L.

Proof.

- Embed *L* into its *MacNeille completion* \overline{L} .
- Define a strong \mathfrak{S}_L based on \overline{L} with $\overline{L} \cong L(\mathfrak{S}_L)$.
- Definition of \mathfrak{S} similar to topological cover systems.

Satisfaction

- $x \models \bigwedge \Phi$ iff $x \models \varphi$ for all $\varphi \in \Phi$.
- $x \models \bigvee \Phi$ iff there exists $C \triangleright x$ such that for all $z \in C$,

 $z \models \varphi$ for some $\varphi \in \Phi$.

 $x \models \varphi \& \psi$ iff there exist y, z with $y \cdot z \preccurlyeq x, y \models \varphi$ and $z \models \psi$.

- $x \models \varphi \rightarrow_l \psi$ iff $y \models \varphi$ implies $x \cdot y \models \psi$.
- $x\models \varphi \to_r \psi \quad \text{iff} \quad y\models \varphi \text{ implies } y\cdot x\models \psi.$

 $x \models \mathsf{T}$

 $x \models \mathsf{F}$ iff $\emptyset \triangleright x$

 $x \models \mathbf{1}$ iff $\varepsilon \preccurlyeq x$

TANCL'07

Modelling Negation

Definition

Negation pair on a poset L = a Galois connection:

$$L \xrightarrow{-r} L$$

$$a \le -_l b$$
 iff $b \le -_r a$

Equivalently:

- Antitone: $a \le b$ implies $-l b \le -l a$ and $-r b \le -r a$
- Double Negation Introduction:

►
$$a \leq -l - r a$$

►
$$a \leq -_r -_l a$$

Orthogonality relation \perp on \mathfrak{S}

Axioms:

```
• Refinement preserves orthogonality:
if x \perp y, x \preccurlyeq x' and y \preccurlyeq y', then x' \perp y'.
```

```
• Locally orthogonal implies orthogonal:

z \triangleleft C \perp X implies z \perp X

X \perp C \triangleright z implies X \perp z
```

Orthogonality relation \perp on \mathfrak{S}

Axioms:

```
• Refinement preserves orthogonality:
if x \perp y, x \preccurlyeq x' and y \preccurlyeq y', then x' \perp y'.
```

• Locally orthogonal implies orthogonal: $z \triangleleft C \perp X$ implies $z \perp X$ $X \perp C \triangleright z$ implies $X \perp z$

Theorem

If X is a fact, then so are

$$-_{l} X = \{z : z \perp X\}$$
$$-_{r} X = \{z : X \perp z\}$$

and these define a negation pair on the lattice $L(\mathfrak{S})$ of facts of \mathfrak{S} .

Theorem (Representation)

A negation pair on a lattice L is representable as the negation pair on $L(\mathfrak{S}_L)$ induced by an orthogonality relation on \mathfrak{S}_L .

Theorem

If X is a fact, then so are

$$-_{l} X = \{z : z \perp X\}$$
$$-_{r} X = \{z : X \perp z\}$$

and these define a negation pair on the lattice $L(\mathfrak{S})$ of facts of \mathfrak{S} .

Theorem (Representation)

A negation pair on a lattice *L* is representable as the negation pair on $L(\mathfrak{S}_L)$ induced by an orthogonality relation on \mathfrak{S}_L .

Negation from a fixed fact

Fix a fact 0 in S, and define

$$x \perp y$$
 iff $x \cdot y \in 0$.

Then we get residuated negation:

$$\{z : z \perp X\} = X \Rightarrow_l 0$$
$$\{z : X \perp z\} = X \Rightarrow_r 0.$$

Lemma

In this case, $z \perp X$ implies $z \perp jX$.

This implies

 $-_l -_r X = -_l -_r j X, \quad -_r -_l X = -_r -_l j X.$

Negation from a fixed fact

Fix a fact 0 in S, and define

$$x \perp y$$
 iff $x \cdot y \in 0$.

Then we get residuated negation:

$$\{z : z \perp X\} = X \Rightarrow_l 0$$
$$\{z : X \perp z\} = X \Rightarrow_r 0.$$

Lemma

In this case, $z \perp X$ implies $z \perp jX$.

This implies

$$-_l -_r X = -_l -_r jX, \quad -_r -_l X = -_r -_l jX.$$

Double Negation Elimination (DNE)

$$-_l -_r a = a, \quad -_r -_l a = a$$

Theorem

In any model structure S with residuated negation, the following are equivalent:

2)
$$jX = -l - K X = -r - X$$
, if X increasing.

3
$$jX = -l - rX = -r - lX$$
, if X is a fact.

Double Negation Elimination (DNE)

$$-_l -_r a = a, \quad -_r -_l a = a$$

Theorem

In any model structure \mathfrak{S} with residuated negation, the following are equivalent:

• The lattice
$$L(\mathfrak{S})$$
 of facts satisfies DNE.

2
$$jX = -l - rX = -r - lX$$
, if X increasing.

3
$$jX = -l - rX = -r - lX$$
, if X is a fact.

Corollary

If \perp is symmetric (e.g. if $x \cdot y = y \cdot x$)

then the following are equivalent for any up-set X:

- X is a *j*-fact: X = jX
- X is a Girardian fact: X = --X

The Girard Modality $! \varphi$

"Of Course φ "

Weakening

 $\frac{\Gamma\vdash\Delta}{\Gamma,\ !\varphi\vdash\Delta}$

Contraction

 $\frac{\Gamma, \ !\varphi, \ !\varphi\vdash \Delta}{\Gamma, \ !\varphi\vdash \Delta}$

Set-theoretic semantics

• Girard: $!X = - - (X \cap Id)$

where *Id* is the set of idempotent $(x \cdot x = x)$ members of $1 = - \{\varepsilon\}$.

• Here: $!X = j \uparrow (X \cap I)$

where $I\subseteq j{\uparrow}arepsilon$ has

- $x \in I$ implies $x \cdot x \preccurlyeq x$
- ► I is closed under ·
- $\blacktriangleright \ I \triangleright \varepsilon$

Note: *I* is a set of idempotents if $\uparrow \varepsilon$ is a fact and \preccurlyeq is antisymmetric.

Set-theoretic semantics

• Girard: $!X = - - (X \cap Id)$

where Id is the set of idempotent $(x \cdot x = x)$ members of $1 = - \{\varepsilon\}$.

- Here: $!X = j \uparrow (X \cap I)$
 - where $I \subseteq j \uparrow \varepsilon$ has
 - $x \in I$ implies $x \cdot x \preccurlyeq x$
 - I is closed under ·
 - $I \triangleright \varepsilon$

Note: *I* is a set of idempotents if $\uparrow \varepsilon$ is a fact and \preccurlyeq is antisymmetric.

Set-theoretic semantics

• Girard: $!X = - - (X \cap Id)$

where Id is the set of idempotent $(x \cdot x = x)$ members of $1 = - \{\varepsilon\}$.

- Here: $!X = j \uparrow (X \cap I)$
 - where $I \subseteq j \uparrow \varepsilon$ has
 - $x \in I$ implies $x \cdot x \preccurlyeq x$
 - I is closed under ·
 - $I \triangleright \varepsilon$

Note: *I* is a set of idempotents if $\uparrow \varepsilon$ is a fact and \preccurlyeq is antisymmetric.

TANCL'07

Theorem

This operation

 $!X = j {\uparrow} (X \cap I)$

is a modality over the residuated lattice $L(\mathfrak{S})$ of facts, i.e.

- $!X \leq X$
- !!X = !X
- $X \leq Y$ implies $!X \leq !Y$
- $!\mathsf{T} = 1$
- $!X \leq !X \otimes !X$
- $!X \otimes !Y \leq !(!X \otimes !Y)$

Theorem (Representation)

Any modality on a residuated lattice *L* is representable as the modality $j\uparrow(X\cap I)$ on $L(\mathfrak{S}_L)$ induced by a suitable $I \subseteq \uparrow \varepsilon$ on \mathfrak{S}_L .

Yet another lattice representation?

Let L be any lattice. Suppose

• S is the set of proper filters of L.

(or the set of intersection irreducible filters)

• $\phi(a) = \{F \in S : a \in F\}$ where $a \in L$.

Theorem (Birkhoff)

The map $a \mapsto \phi(a)$ is

- order invariant: $a \leq b$ iff $\phi(a) \subseteq \phi(b)$;
- hence injective, and
- represents meets as intersections:

$$\phi(a \wedge b) = \phi(a) \cap \phi(b).$$

Now on $\langle S, \subseteq \rangle$ define

• $C \triangleright F$ iff $\bigcap C \subseteq F$.

• T = the topology with sub-base $\{-\phi(a) : a \in L\}$.

Theorem

•
$$\phi(a \lor b) = j_{\triangleright}(\phi(a) \cup \phi(b)).$$

- $\langle S,T\rangle$ is compact.
- Each $\phi(a)$ is closed, cocompact and a *j*-fact.
- Any closed cocompact *j*-fact is equal to $\phi(a)$ for some $a \in L$.

Another Heyting algebra representation

Let L be any Heyting algebra.

- S =all principal filters of L.
- $C \triangleright F$ iff $\bigcap C = F$. Hence $C \triangleright F$ implies $C \subseteq \uparrow F$.
- Then $L(\mathfrak{S})$ is a Heyting algebra.
- Use distributivity of *L* to show

$$\phi(a \vee b) = j_{\scriptscriptstyle \triangleright}(\phi(a) \cup \phi(b))$$

 Can make this a Grothendieck topology, by requiring covers themselves to be up-sets.