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Aim:

Generalise the Kripke-Joyal intuitionistic semantics to
non-distributive logics.
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Ordered Cover Systems
Based on structures

〈S,4, .〉

4 is a pre-order on S.
I x 4 y read “y refines x”

. is a binary “cover relation”

from subsets C ⊆ S to elements x ∈ S.

I C . x is read “C covers x”

also write x / C for C . x “x is covered by C”.

axioms to follow. . .
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Increasing Subsets
Up-sets

Definitions
A set X ⊆ S is increasing if

x ∈ X and x 4 y implies y ∈ X.

↑X = {y : ∃x ∈ X(x 4 y)} the up-set generated by X

↑x = {y : x 4 y}

Y refines X if Y ⊆ ↑X, i.e. (∀y ∈ Y )(∃x ∈ X)x 4 y
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Example

For any topological space, take

S = set of open sets.

x 4 y iff x ⊇ y, “y refines x”

C . x iff
⋃
C = x.

↑x = {open y : y ⊆ x}.
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Local Truth

A property holds locally if it holds of an open neighbourhood of each
point.

“Pointless” example:

A function is locally constant if its domain is covered by open sets,
on each of which the function is constant.

Hence:
Abstract the relevant properties of open covers . . .
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Grothendieck pretopology

C . x implies C ⊆ ↑x. implies distributivity of ∧ over ∨ !

Axioms
Identity:
x / {x}.

Transitivity:
if x / C and for all y ∈ C, y / Cy, then x /

⋃
y∈C Cy.

Refinement:
if x 4 y, then every x-cover C can be refined to a y-cover B:
B ⊆ ↑C.

Topological case: B = {y ∩ z : z ∈ C}.
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Kripke-Joyal Semantics

Truth-sets/Satisfaction: ‖ϕ‖ = {x : x |= ϕ}

x |= ϕ ∧ ψ iff x |= ϕ and x |= ψ.

x |= ϕ ∨ ψ iff there is an x-cover C ⊆ ‖ϕ‖ ∪ ‖ψ‖,

i.e. for all z ∈ C, z |= ϕ or z |= ψ.

So x |= ϕ ∨ ψ iff the Boolean disjunction is locally satisfied at x.

Truth is increasing:
x |= ϕ and x 4 y implies y |= ϕ, i.e. ‖ϕ‖ is an up-set.

Local truth implies truth:
‖ϕ‖ is cover-closed, i.e.

if x / C ⊆ ‖ϕ‖, then x |= ϕ.
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Model Structures

S = 〈S,4 , ., · , ε〉

· is associative and 4-monotonic, with identity ε

Cover axioms:
Existence: there exists an x-cover C ⊆ ↑x;

Transitivity:
if x / C and for all y ∈ C, y / Cy, then x /

⋃
y∈C Cy.

Refinement:
if x 4 y, then every x-cover can be refined to a y-cover.

Stability: if C . x and B . y, then C ·B . x · y,

where C ·B = {c · b : c ∈ C and b ∈ B}.
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Ono / Došen frames: 〈S,4, · , ε〉 without ..

Sambin pretopology: 〈S, ., · , ε〉 without 4.
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The operator j
.

Definition
z ∈ j.X iff there is a C . z with C ⊆ X

iff z locally belongs to X.

Results
jX is increasing whenever X is.

X ⊆ Y implies jX ⊆ jY

X ⊆ jX

j(jX) = jX

jX • jY ⊆ j(X • Y ), where X • Y = ↑(X · Y )

Scholium: the up-sets form a quantale under •, with j a quantic nucleus
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“Facts”

Definitions
X is cover-closed iff jX ⊆ X

iff ∃C(x / C ⊆ X) implies x ∈ X.

iff “local membership implies membership”

(cf. “local truth implies truth”)

X is a fact if it is increasing and cover-closed, i.e. X = ↑X = jX.

Lemma
j↑X is the smallest fact containing X.

TANCL’07 12 / 29



“Facts”

Definitions
X is cover-closed iff jX ⊆ X

iff ∃C(x / C ⊆ X) implies x ∈ X.

iff “local membership implies membership”

(cf. “local truth implies truth”)

X is a fact if it is increasing and cover-closed, i.e. X = ↑X = jX.

Lemma
j↑X is the smallest fact containing X.

TANCL’07 12 / 29



The Algebra of Facts

Theorem
The set L(S) of facts of a model structure S is a residuated
completely lattice ordered monoid, hence a model of the full Lambek
calculus, in which

d
F =

⋂
F⊔

F = j(
⋃
F)

X ⊗ Y = j(X • Y ) = j↑(X · Y )
X ⇒l Y = {z ∈ S : z ·X ⊆ Y }
X ⇒r Y = {z ∈ S : X · z ⊆ Y }

T = S

F = j∅ = {x : ∅ . x}
1 = j↑ε

Scholium: L(S) is the quantale of j-fixpoints

TANCL’07 13 / 29



The Algebra of Facts

Theorem
The set L(S) of facts of a model structure S is a residuated
completely lattice ordered monoid, hence a model of the full Lambek
calculus, in which

d
F =

⋂
F⊔

F = j(
⋃
F)

X ⊗ Y = j(X • Y ) = j↑(X · Y )
X ⇒l Y = {z ∈ S : z ·X ⊆ Y }
X ⇒r Y = {z ∈ S : X · z ⊆ Y }

T = S

F = j∅ = {x : ∅ . x}
1 = j↑ε

Scholium: L(S) is the quantale of j-fixpoints

TANCL’07 13 / 29



Strong model structures:

Definition
X • Y is cover-closed if X and Y are. Hence

X ⊗ Y = X • Y = ↑(X · Y )

↑ε is cover-closed. Hence 1 = ↑ε
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Representation

Theorem
For any residuated lattice-ordered monoid L there is a strong model
structure SL and an isomorphic embedding

L −→ L(SL)

preserving all joins and meets that exist in L.

Proof.
Embed L into its MacNeille completion L̄.
Define a strong SL based on L̄ with L̄ ∼= L(SL).
Definition of S similar to topological cover systems.
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Satisfaction
x |=

∧
Φ iff x |= ϕ for all ϕ ∈ Φ.

x |=
∨

Φ iff there exists C . x such that for all z ∈ C,

z |= ϕ for some ϕ ∈ Φ.

x |= ϕ&ψ iff there exist y, z with y · z 4 x, y |= ϕ and z |= ψ.

x |= ϕ→l ψ iff y |= ϕ implies x · y |= ψ.

x |= ϕ→r ψ iff y |= ϕ implies y · x |= ψ.

x |= T

x |= F iff ∅ . x

x |= 1 iff ε 4 x
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Modelling Negation

Definition
Negation pair on a poset L = a Galois connection:

L
−r //

L
−l

oo

a ≤ −l b iff b ≤ −r a

Equivalently:
Antitone: a ≤ b implies −l b ≤ −l a and −r b ≤ −r a

Double Negation Introduction:
I a ≤ −l −r a
I a ≤ −r −l a
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Orthogonality relation ⊥ on S

Definition
⊥⊆ S × S, not assumed symmetric

X ⊥ Y if x ⊥ y for all x ∈ X and y ∈ Y

Special cases: x ⊥ Y , X ⊥ y

Axioms:
Refinement preserves orthogonality:
if x ⊥ y, x 4 x′ and y 4 y′, then x′ ⊥ y′.

Locally orthogonal implies orthogonal:
z / C ⊥ X implies z ⊥ X
X ⊥ C . z implies X ⊥ z
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Theorem
If X is a fact, then so are

−lX = {z : z ⊥ X}
−r X = {z : X ⊥ z}

and these define a negation pair on the lattice L(S) of facts of S.

Theorem (Representation)
A negation pair on a lattice L is representable as the negation pair on
L(SL) induced by an orthogonality relation on SL.
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Negation from a fixed fact

Fix a fact 0 in S, and define

x ⊥ y iff x · y ∈ 0.

Then we get residuated negation:

{z : z ⊥ X} = X ⇒l 0
{z : X ⊥ z} = X ⇒r 0.

Lemma
In this case, z ⊥ X implies z ⊥ jX.

This implies
−l −r X = −l −r jX, −r −lX = −r −l jX.
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Double Negation Elimination (DNE)

−l −r a = a, −r −l a = a

Theorem
In any model structure S with residuated negation, the following are
equivalent:

1 The lattice L(S) of facts satisfies DNE.

2 jX = −l −r X = −r −lX, if X increasing.

3 jX = −l −r X = −r −lX, if X is a fact.
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Corollary
If ⊥ is symmetric (e.g. if x · y = y · x)

then the following are equivalent for any up-set X:

X is a j-fact: X = jX

X is a Girardian fact: X = −−X
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The Girard Modality ! ϕ

“Of Course ϕ”

Weakening
Γ ` ∆

Γ, !ϕ ` ∆

Contraction
Γ, !ϕ, !ϕ ` ∆

Γ, !ϕ ` ∆
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Set-theoretic semantics

Girard: !X = −− (X ∩ Id)

where Id is the set of idempotent (x · x = x) members of
1 = −− {ε}.

Here: !X = j↑(X ∩ I)

where I ⊆ j↑ε has
I x ∈ I implies x · x 4 x

I I is closed under ·

I I . ε

Note: I is a set of idempotents if ↑ε is a fact and 4 is antisymmetric.
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Theorem
This operation

!X = j↑(X ∩ I)

is a modality over the residuated lattice L(S) of facts, i.e.
!X ≤ X

! !X = !X

X ≤ Y implies !X ≤ !Y

!T = 1

!X ≤ !X ⊗ !X

!X ⊗ !Y ≤ !(!X ⊗ !Y )
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Theorem (Representation)
Any modality on a residuated lattice L is representable as the modality
j↑(X ∩ I) on L(SL) induced by a suitable I ⊆ ↑ε on SL.
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Yet another lattice representation?

Let L be any lattice. Suppose

S is the set of proper filters of L.
(or the set of intersection irreducible filters)
φ(a) = {F ∈ S : a ∈ F} where a ∈ L.

Theorem (Birkhoff)
The map a 7→ φ(a) is

order invariant: a ≤ b iff φ(a) ⊆ φ(b);

hence injective, and

represents meets as intersections:

φ(a ∧ b) = φ(a) ∩ φ(b).
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Now on 〈S,⊆〉 define

C . F iff
⋂
C ⊆ F .

T = the topology with sub-base {−φ(a) : a ∈ L}.

Theorem
φ(a ∨ b) = j.(φ(a) ∪ φ(b)).

〈S, T 〉 is compact.

Each φ(a) is closed, cocompact and a j-fact.

Any closed cocompact j-fact is equal to φ(a) for some a ∈ L.
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Another Heyting algebra representation

Let L be any Heyting algebra.

S = all principal filters of L.

C . F iff
⋂
C = F . Hence C . F implies C ⊆ ↑F .

Then L(S) is a Heyting algebra.

Use distributivity of L to show

φ(a ∨ b) = j.(φ(a) ∪ φ(b))

Can make this a Grothendieck topology, by requiring covers
themselves to be up-sets.
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