Structural rules in FL: expressive power and cut elimination.

Nikolaos Galatos
Japan Advanced Institute of Science and Technology (until August)
University of Denver (from September)
galatos@jaist.ac.jp
Joint work with A. Ciabattoni and K. Terui

Overview

- FL and substructural logics
- Algebraic semantics: residuated lattices and FL-algebras
- Structural rules
- Cut elimination
- Expressive power
- Generating analytic calculi from FL + suitable axioms

Title

Overview

The system FL
Basic structural rules Substructural logics Residuated lattices Structural rules Separated rules Separated rules Separated equations Simple rules

The system FL

$$
\frac{\Pi \Rightarrow \alpha \quad \Gamma, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow \Psi} \text { (cut) } \quad \overline{\alpha \Rightarrow \alpha} \text { (ld) }
$$

Title
Overview
The system FL
Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules Separated equations
Simple rules
Completing rules
Completing equations
Cut elimination
Rules without completion
Proof
Open Problems
Bibliography

The system FL

$$
\begin{gathered}
\frac{\Pi \Rightarrow \alpha \quad \Gamma, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow \Psi} \text { (cut) } \quad \overline{\alpha \Rightarrow \alpha} \text { (Id) } \\
\frac{\Gamma, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha \wedge \beta, \Delta \Rightarrow \Psi}(\wedge \mathrm{L} \ell) \frac{\Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma, a \wedge \beta, \Delta \Rightarrow \Psi}(\wedge \mathrm{~L} r) \frac{\Pi \Rightarrow \alpha \quad \Pi \Rightarrow \beta}{\Pi \Rightarrow \alpha \wedge \beta}(\wedge \mathrm{R}) \\
\frac{\Gamma, \alpha, \Delta \Rightarrow \Psi \quad \Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma, \alpha \vee \beta, \Delta \Rightarrow \Psi}(\vee \mathrm{L}) \frac{\Pi \Rightarrow \alpha}{\Pi \Rightarrow \alpha \vee \beta}(\vee \mathrm{R} \ell) \frac{\Pi \Rightarrow \beta}{\Pi \Rightarrow \alpha \vee \beta}(\vee \mathrm{R} r)
\end{gathered}
$$

Over
Overview

The system FL

Basic structural rules Substructural logics Residuated lattices Structural rules Separated rules Separated rules Separated equations Simple rules

The system FL

$$
\begin{gathered}
\frac{\Pi \Rightarrow \alpha \quad \Gamma, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow \Psi} \text { (cut) } \quad \overline{\alpha \Rightarrow \alpha} \text { (Id) } \\
\frac{\Gamma, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha \wedge \beta, \Delta \Rightarrow \Psi}(\wedge \mathrm{L} \ell) \frac{\Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma, a \wedge \beta, \Delta \Rightarrow \Psi}(\wedge \mathrm{Lr}) \frac{\Pi \Rightarrow \alpha \quad \Pi \Rightarrow \beta}{\Pi \Rightarrow \alpha \wedge \beta}(\wedge \mathrm{R}) \\
\frac{\Gamma, \alpha, \Delta \Rightarrow \Psi \quad \Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma, \alpha \vee \beta, \Delta \Rightarrow \Psi}(\vee \mathrm{L}) \frac{\Pi \Rightarrow \alpha}{\Pi \Rightarrow \alpha \vee \beta}(\vee \mathrm{R} \ell) \frac{\Pi \Rightarrow \beta}{\Pi \Rightarrow \alpha \vee \beta}(\vee \mathrm{R} r) \\
\frac{\Pi \Rightarrow \alpha \quad \Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma, \Pi,(\alpha \backslash \beta), \Delta \Rightarrow \Psi}(\backslash \mathrm{L}) \\
\frac{\alpha, \Pi \Rightarrow \beta}{\Pi \Rightarrow \alpha \backslash \beta}(\backslash \mathrm{R}) \\
\frac{\Pi \Rightarrow \alpha \quad \Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma,(\beta / \alpha), \Pi, \Delta \Rightarrow \Psi}(/ \mathrm{L}) \\
\frac{\Pi, \alpha \Rightarrow \beta}{\Pi \Rightarrow \beta / \alpha}(/ \mathrm{R})
\end{gathered}
$$

Title
Overview

The system FL

Basic structural rules

Substructural logics Residuated lattices Structural rules Separated rules Separated rules Separated equations Simple rules

The system FL

$$
\begin{gathered}
\frac{\Pi \Rightarrow \alpha \quad \Gamma, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow \Psi}(\mathrm{cut}) \quad \overline{\alpha \Rightarrow \alpha} \text { (Id) } \\
\frac{\Gamma, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha \wedge \beta, \Delta \Rightarrow \Psi}(\wedge \mathrm{L} \ell) \frac{\Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma, a \wedge \beta, \Delta \Rightarrow \Psi}(\wedge \mathrm{~L} r) \frac{\Pi \Rightarrow \alpha \quad \Pi \Rightarrow \beta}{\Pi \Rightarrow \alpha \wedge \beta}(\wedge \mathrm{R}) \\
\frac{\Gamma, \alpha, \Delta \Rightarrow \Psi \quad \Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma, \alpha \vee \beta, \Delta \Rightarrow \Psi}(\mathrm{LL}) \frac{\Pi \Rightarrow \alpha}{\Pi \Rightarrow \alpha \vee \beta}(\vee \mathrm{R} \ell) \frac{\Pi \Rightarrow \beta}{\Pi \Rightarrow \alpha \vee \beta}(\vee \mathrm{R} r) \\
\frac{\Pi \Rightarrow \alpha \quad \Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma, \Pi,(\alpha \backslash \beta), \Delta \Rightarrow \Psi}(\backslash \mathrm{L}) \quad \frac{\alpha, \Pi \Rightarrow \beta}{\Pi \Rightarrow \alpha \backslash \beta}(\backslash \mathrm{R}) \\
\frac{\Pi \Rightarrow \alpha \quad \Gamma, \beta, \Delta \Rightarrow \Psi}{\Gamma,(\beta / \alpha), \Pi, \Delta \Rightarrow \Psi}(/ \mathrm{L}) \quad \frac{\Pi, \alpha \Rightarrow \beta}{\Pi \Rightarrow \beta / \alpha}(/ \mathrm{R}) \\
\frac{\Gamma, \alpha, \beta, \Delta \Rightarrow \Psi}{\Gamma, \alpha \cdot \beta, \Delta \Rightarrow \Psi}(\cdot \mathrm{L}) \quad \frac{\Pi \Rightarrow \alpha \quad \Sigma \Rightarrow \beta}{\Pi, \Sigma \Rightarrow \alpha \cdot \beta}(\cdot \mathrm{R}) \\
\frac{\Gamma, \Delta \Rightarrow \Psi}{\Gamma, 1, \Delta \Rightarrow \Psi}(1 \mathrm{~L}) \quad \frac{\Pi}{\Rightarrow 1}(1 \mathrm{R}) \quad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow 0}(0 \mathrm{R}) \quad \overline{0 \Rightarrow}(0 \mathrm{~L})
\end{gathered}
$$

Basic structural rules

Letters α, β denote formulas in the language $\{\wedge, \vee, \backslash, /, \cdot, 1,0\} ; \Gamma, \Sigma, \Pi$ denote sequences of formulas, and Ψ denotes either a formula or the empty set.

Title
Overview
The system FL
Basic structural rules
Substructural logics Residuated lattices Structural rules Separated rules Separated rules Separated equations
Simple rules
Completing rules
Completing equations
Cut elimination
Rules without completion
Proof
Open Problems
Bibliography

Basic structural rules

Letters α, β denote formulas in the language $\{\wedge, \vee, \backslash, /, \cdot, 1,0\} ; \Gamma, \Sigma, \Pi$ denote sequences of formulas, and Ψ denotes either a formula or the empty set.

$$
\begin{gathered}
\frac{\Gamma, \alpha, \beta, \Sigma \Rightarrow \Psi}{\Gamma, \beta, \alpha, \Sigma \Rightarrow \Psi} \text { (e) } \quad \frac{\Gamma, \alpha, \alpha, \Sigma \Rightarrow \Psi}{\Gamma, \alpha, \Sigma \Rightarrow \Psi} \text { (c) } \\
\frac{\Gamma, \Sigma \Rightarrow \Psi}{\Gamma, \alpha, \Sigma \Rightarrow \Psi} \text { (i) } \quad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow \Psi}(\text { (o) } \quad \text { (w) }=(\text { i })+(\mathrm{o})
\end{gathered}
$$

The rules exchange (e), contraction (c), left (i) and right (o) weakening are called structural.

The system FL full Lambek calculus is obtained from LJ by removing all structural rules and adding rules for $\cdot, \backslash, /, 1,0$.

Substructural logics

We write $\Phi \vdash_{\text {FL }} \psi$, if the sequent $\Rightarrow \psi$ is provable in $\mathbf{F L}$ from the set of sequents $\{(\Rightarrow \phi) \mid \phi \in \Phi\}$.

Title
Overview
The system FL
Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules
Separated equations
Simple rules
Completing rules
Completing equations
Cut elimination
Rules without completion
Proof
Open Problems
Bibliography

Substructural logics

We write $\Phi \vdash_{\text {FL }} \psi$, if the sequent $\Rightarrow \psi$ is provable in $\mathbf{F L}$ from the set of sequents $\{(\Rightarrow \phi) \mid \phi \in \Phi\}$.

A substructural logic (over FL) is a set of formulas closed under $\vdash_{\text {FL }}$ and substitution. (Equiv.: consequence relation).

Substructural logics

We write $\Phi \vdash_{\mathbf{F L}} \psi$, if the sequent $\Rightarrow \psi$ is provable in $\mathbf{F L}$ from the set of sequents $\{(\Rightarrow \phi) \mid \phi \in \Phi\}$.
A substructural logic (over FL) is a set of formulas closed under $\vdash_{\text {FL }}$ and substitution. (Equiv.: consequence relation).

Examples:

- Classical,
- intuitionistic,
- many-valued (Łukasiewicz),
- basic (Hajek),
- relevance (Anderson, Belnap),

■ paraconsistent (Johansson),

- (the multiplicative additive fragment of) linear logic (Girard).

Substructural logics

We write $\Phi \vdash_{\mathbf{F L}} \psi$, if the sequent $\Rightarrow \psi$ is provable in $\mathbf{F L}$ from the set of sequents $\{(\Rightarrow \phi) \mid \phi \in \Phi\}$.
A substructural logic (over FL) is a set of formulas closed under $\vdash_{\text {FL }}$ and substitution. (Equiv.: consequence relation).

Examples:

- Classical,
- intuitionistic,
- many-valued (Łukasiewicz),
- basic (Hajek),
- relevance (Anderson, Belnap),

■ paraconsistent (Johansson),

- (the multiplicative additive fragment of) linear logic (Girard).

An equivalent Hilbert-style system has inference rules
$\frac{\phi \quad \phi \backslash \psi}{\psi}(\mathrm{mp})$
$\frac{\phi \quad \psi}{\phi \wedge \psi}(\mathrm{adj})$
$\frac{\phi}{\psi \backslash \phi \psi}(\mathrm{n})$
$\frac{\phi}{\psi \phi / \psi}(\mathrm{n})$

Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is an algebra $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \backslash, /, 1\rangle$ such that

- $\langle L, \wedge, \vee\rangle$ is a lattice,
- $\langle L, \cdot, 1\rangle$ is a monoid and
- for all $a, b, c \in L, a b \leq c \Leftrightarrow a \leq c / b \Leftrightarrow b \leq a \backslash c$.

An FL-algebra expands a residuated lattice by an extra constant 0 . FL donotes the variety of FL-algebras.

Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is an algebra $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \backslash, /, 1\rangle$ such that

- $\langle L, \wedge, \vee\rangle$ is a lattice,
- $\langle L, \cdot, 1\rangle$ is a monoid and
- for all $a, b, c \in L, a b \leq c \Leftrightarrow a \leq c / b \Leftrightarrow b \leq a \backslash c$.

An FL-algebra expands a residuated lattice by an extra constant 0 . FL donotes the variety of FL-algebras.

Theorem. FL is an equivalent algebraic semantics for it $\vdash_{\text {FL }}$.

Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is an algebra $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \backslash, /, 1\rangle$ such that

- $\langle L, \wedge, \vee\rangle$ is a lattice,
- $\langle L, \cdot, 1\rangle$ is a monoid and

■ for all $a, b, c \in L, a b \leq c \Leftrightarrow a \leq c / b \Leftrightarrow b \leq a \backslash c$.
An FL-algebra expands a residuated lattice by an extra constant 0 . FL donotes the variety of FL-algebras.

Theorem. FL is an equivalent algebraic semantics for it $\vdash^{\text {FL }}$.
N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated Lattices: an algebraic glimpse at substructural logics, Studies in Logics and the Foundations of Mathematics, Elsevier, 2007.

Structural rules

$$
\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha, \Delta \Rightarrow \Psi}(c) \quad \frac{\Gamma, \Pi, \Pi, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow \Psi}(\text { seq-c })
$$

Title
Overview
The system FL
Basic structural rules
Substructural logics Residuated lattices

Structural rules

$$
\begin{gathered}
\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha, \Delta \Rightarrow \Psi}(c) \quad \frac{\Gamma, \Pi, \Pi, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow \Psi}(\text { seq-c }) \\
\frac{\Pi \Rightarrow \alpha}{\Gamma, \Pi, \Delta \Rightarrow \Psi}(c u t) \\
\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha, \Delta \Rightarrow \Psi}(c) \quad \frac{\Pi \Rightarrow \alpha}{\frac{\Pi \Rightarrow \alpha \Gamma, \alpha, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha, \Pi, \Delta \Rightarrow \Psi}(c u t)} \frac{\Gamma, \Pi, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow \Psi}(?)
\end{gathered}
$$

Title
Overview
The system FL
Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules Separated equations Simple rules Completing rules Completing equations Cut elimination
Rules without completion Proof
Open Problems
Bibliography

Structural rules

$$
\begin{gathered}
\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha, \Delta \Rightarrow \Psi}(c) \\
\frac{\Gamma, \Pi, \Pi, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow \Psi}(\text { seq-c }) \\
\frac{\Pi \Rightarrow \alpha}{\Gamma, \Pi, \Delta \Rightarrow \Psi}(c u t) \\
\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha, \Delta \Rightarrow \Psi}(c)
\end{gathered} \begin{gathered}
\frac{\Pi \Rightarrow \alpha}{} \frac{\Pi \Rightarrow \alpha, \Pi, \Pi, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow, \Delta, \Pi, \Delta \Rightarrow \Psi}(\text { cut }) \\
\frac{\alpha \Rightarrow \delta}{\alpha, \alpha \Rightarrow \delta} \\
\frac{\alpha_{1} \Rightarrow \delta \alpha_{2} \Rightarrow \delta}{\alpha_{1}, \alpha_{2} \Rightarrow \delta}
\end{gathered}
$$

Structural rules

$$
\begin{aligned}
& \frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \alpha, \Delta \Rightarrow \Psi}(c) \quad \frac{\Gamma, \Pi, \Pi, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta \Rightarrow \Psi}(\text { seq-c }) \\
& \frac{\Pi \Rightarrow \alpha}{\frac{\Gamma, \alpha, \alpha, \Delta \Rightarrow \Psi}{\Gamma, \Pi, \Delta, \Delta \Rightarrow \Psi}(c)}(c u t) \quad \frac{\Pi \Rightarrow \alpha}{\frac{\Gamma, \Pi, \Pi, \Delta \Rightarrow \Psi}{\Gamma, \alpha, \Pi, \Delta \Rightarrow \Psi}(c u t)} \text { (cut) } \\
& \frac{\alpha \Rightarrow \delta}{\alpha, \alpha \Rightarrow \delta} \quad \frac{\alpha_{1} \Rightarrow \delta \quad \alpha_{2} \Rightarrow \delta}{\alpha_{1}, \alpha_{2} \Rightarrow \delta} \\
& \frac{\alpha_{1} \Rightarrow \alpha \frac{\alpha_{2} \Rightarrow \alpha}{\frac{\alpha \Rightarrow \delta}{\alpha, \alpha \Rightarrow \delta}}}{\alpha_{1}, \alpha_{2} \Rightarrow \delta}(\text { cut }) \quad \frac{\alpha_{1} \Rightarrow \alpha \quad \alpha \Rightarrow \delta}{(c u t)} \quad \frac{\alpha_{1} \Rightarrow \delta}{} \quad(\text { cut }) \quad \frac{\alpha_{1} \Rightarrow \alpha \quad \alpha \Rightarrow \delta}{\alpha_{2} \Rightarrow \delta}(\text { cut })
\end{aligned}
$$

Separated rules

A structural rule of the form
$\begin{array}{ccccccc}\Upsilon_{1} \Rightarrow \ldots & \Upsilon_{k} \Rightarrow \Upsilon_{1}^{\prime} \Rightarrow \delta_{1} & \ldots & \Upsilon_{m}^{\prime} \Rightarrow \delta_{m} \quad \Upsilon_{1}^{\prime \prime} \Rightarrow \Psi_{1} & \ldots & \Upsilon_{n}^{\prime \prime} \Rightarrow \Psi_{n} \\ \Upsilon_{0} \Rightarrow \Psi_{0}\left(\delta_{0}\right)\end{array}$
is called separated, if $\Upsilon_{0}, \ldots, \Upsilon_{n}^{\prime \prime}$ are sequences of metavariables, $\Psi, \Psi_{1}, \ldots, \Psi_{n}$ range over formulas and the empty set, and δ, \ldots, range over formulas that do not

Separated rules

A structural rule of the form
$\begin{array}{cccccccc}\Upsilon_{1} \Rightarrow \ldots & \Upsilon_{k} \Rightarrow \Upsilon_{1}^{\prime} \Rightarrow \delta_{1} & \ldots & \Upsilon_{m}^{\prime} \Rightarrow \delta_{m} \quad \Upsilon_{1}^{\prime \prime} \Rightarrow \Psi_{1} & \ldots & \Upsilon_{n}^{\prime \prime} \Rightarrow \Psi_{n} \\ \Upsilon_{0} \Rightarrow \Psi_{0}\left(\delta_{0}\right)\end{array}$

Title
Overview
The system FL
Basic structural rules
Substructural logics
Residuated lattices
Structural rules

Separated rules

A structural rule of the form
$\Upsilon_{1} \Rightarrow \ldots \quad \Upsilon_{k} \Rightarrow \Upsilon_{1}^{\prime} \Rightarrow \delta_{1} \quad \ldots \quad \Upsilon_{m}^{\prime} \Rightarrow \delta_{m} \quad \Upsilon_{1}^{\prime \prime} \Rightarrow \Psi_{1} \quad \ldots \quad \Upsilon_{n}^{\prime \prime} \Rightarrow \Psi_{n}$
$\Upsilon_{0} \Rightarrow \Psi_{0}\left(\delta_{0}\right)$
is called separated, if $\Upsilon_{0}, \ldots, \Upsilon_{n}^{\prime \prime}$ are sequences of metavariables, $\Psi, \Psi_{1}, \ldots, \Psi_{n}$ range over formulas and the empty set, and $\delta_{0}, \ldots, \delta_{m}$ range over formulas that do not appear in $\Upsilon_{0}, \ldots, \Upsilon_{n}^{\prime \prime}$.
$I\left(\alpha_{1}, \ldots, \alpha_{n} \Rightarrow \delta\right)=\left(\alpha_{1} \cdot \ldots \cdot \alpha_{n} \leq \delta\right)$
$I\left(\alpha_{1}, \ldots, \alpha_{n} \Rightarrow\right)=\left(\alpha_{1} \cdot \ldots \cdot \alpha_{n} \leq 0\right)$
$I\left(\frac{s_{1} \ldots s_{n}}{s}\right)=\left(I\left(s_{1}\right) \& \ldots \& I\left(s_{n}\right) \Longrightarrow I(s)\right)$
Lemma The interpretation of a separated structural rule is equivalent, over the theory of FL, to an equation.

Separated rules

Consider the separated structural rule

$$
\frac{\alpha, \gamma, \alpha \Rightarrow \quad \beta, \gamma, \beta \Rightarrow \quad \Gamma, \gamma, \alpha, \phi, \beta, \gamma, \Delta \Rightarrow \Psi}{\Gamma, \gamma, \beta, \phi, \alpha, \gamma, \Delta \Rightarrow \Psi}
$$

Its interpretation is equivalent to the quasiequation

$$
a c a \leq 0 \text { and } b c b \leq 0 \text { and } c a f b c \leq d \Longrightarrow c b f a c \leq d
$$

Title

Overview
The system FL
Basic structural rules Substructural logics Residuated lattices Structural rules Separated rules

Separated rules

Consider the separated structural rule

$$
\frac{\alpha, \gamma, \alpha \Rightarrow \quad \beta, \gamma, \beta \Rightarrow \quad \Gamma, \gamma, \alpha, \phi, \beta, \gamma, \Delta \Rightarrow \Psi}{\Gamma, \gamma, \beta, \phi, \alpha, \gamma, \Delta \Rightarrow \Psi}
$$

Its interpretation is equivalent to the quasiequation

$$
a c a \leq 0 \text { and } b c b \leq 0 \text { and } c a f b c \leq d \Longrightarrow c b f a c \leq d
$$

For the choice of variables c for $a c a, b$ for $b c b$ and f for $c a f b c$ we obtain the equation

$$
c^{\prime} b^{\prime} f^{\prime} a c^{\prime} \leq d
$$

where $c^{\prime}=c \wedge a \backslash 0 / a, b^{\prime}=b \wedge 0 / c b$ and $f^{\prime}=f \wedge c a \backslash d / b c$.

Separated rules

Consider the separated structural rule

$$
\frac{\alpha, \gamma, \alpha \Rightarrow \quad \beta, \gamma, \beta \Rightarrow \quad \Gamma, \gamma, \alpha, \phi, \beta, \gamma, \Delta \Rightarrow \Psi}{\Gamma, \gamma, \beta, \phi, \alpha, \gamma, \Delta \Rightarrow \Psi}
$$

Its interpretation is equivalent to the quasiequation

$$
a c a \leq 0 \text { and } b c b \leq 0 \text { and } c a f b c \leq d \Longrightarrow c b f a c \leq d
$$

For the choice of variables c for $a c a, b$ for $b c b$ and f for $c a f b c$ we obtain the equation

$$
c^{\prime} b^{\prime} f^{\prime} a c^{\prime} \leq d
$$

where $c^{\prime}=c \wedge a \backslash 0 / a, b^{\prime}=b \wedge 0 / c b$ and $f^{\prime}=f \wedge c a \backslash d / b c$.
Alternatively, for the choice of variables c for $a c a$ and c for $b c b$ we obtain the equation

$$
c^{\prime} b f^{\prime} a c^{\prime} \leq d
$$

where $c^{\prime}=c \wedge a \backslash 0 / a \wedge b \backslash 0 / b$ and $f^{\prime}=f \wedge c a \backslash d / b c$.

Separated equations

For a set of variables V, we define the set of separated formulas (or terms) $\operatorname{sep}(V)$ as the smallest set such that

1. $\{0, \top\} \cup V \subseteq \operatorname{sep}(V)$, (if T is in the language),
2. if $t_{1}, t_{2} \in \operatorname{sep}(V)$, then $t_{1} \wedge t_{2} \in \operatorname{sep}(V)$,
3. if s is a $\{\cdot, V, 1\}$-term with no variable from V and $t \in \operatorname{sep}(V)$, then $s \backslash t, t / s \in \operatorname{sep}(V)$.

Separated equations

For a set of variables V, we define the set of separated formulas (or terms) $\operatorname{sep}(V)$ as the smallest set such that

1. $\{0, \top\} \cup V \subseteq \operatorname{sep}(V)$, (if T is in the language),
2. if $t_{1}, t_{2} \in \operatorname{sep}(V)$, then $t_{1} \wedge t_{2} \in \operatorname{sep}(V)$,
3. if s is a $\{\cdot, V, 1\}$-term with no variable from V and
$t \in \operatorname{sep}(V)$, then $s \backslash t, t / s \in \operatorname{sep}(V)$.
A substitution σ is called separated, relative to V, if there are variables x_{1}, \ldots, x_{n} not in V and terms $t_{1}, \ldots, t_{n} \in \operatorname{sep}(V)$ such that $\sigma\left(x_{i}\right)=x_{i} \wedge t_{i}$, for all i, and σ fixes all other

Overview

The system FL
Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules variables.

Separated equations

For a set of variables V, we define the set of separated formulas (or terms) $\operatorname{sep}(V)$ as the smallest set such that

1. $\{0, \top\} \cup V \subseteq \operatorname{sep}(V)$, (if T is in the language),
2. if $t_{1}, t_{2} \in \operatorname{sep}(V)$, then $t_{1} \wedge t_{2} \in \operatorname{sep}(V)$,
3. if s is a $\{\cdot, V, 1\}$-term with no variable from V and
$t \in \operatorname{sep}(V)$, then $s \backslash t, t / s \in \operatorname{sep}(V)$.
A substitution σ is called separated, relative to V, if there are variables x_{1}, \ldots, x_{n} not in V and terms $t_{1}, \ldots, t_{n} \in \operatorname{sep}(V)$ such that $\sigma\left(x_{i}\right)=x_{i} \wedge t_{i}$, for all i, and σ fixes all other

Overview

The system FL

Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules variables.

An equation is called separated, if it is of the form $\sigma(t) \leq z$, where σ is a separated substitution, $t \in \operatorname{sep}(V)$ and $z \in V$.

Separated equations

For a set of variables V, we define the set of separated formulas (or terms) $\operatorname{sep}(V)$ as the smallest set such that

1. $\{0, \top\} \cup V \subseteq \operatorname{sep}(V)$, (if T is in the language),
2. if $t_{1}, t_{2} \in \operatorname{sep}(V)$, then $t_{1} \wedge t_{2} \in \operatorname{sep}(V)$,
3. if s is a $\{\cdot, V, 1\}$-term with no variable from V and
$t \in \operatorname{sep}(V)$, then $s \backslash t, t / s \in \operatorname{sep}(V)$.
A substitution σ is called separated, relative to V, if there are variables x_{1}, \ldots, x_{n} not in V and terms $t_{1}, \ldots, t_{n} \in \operatorname{sep}(V)$ such that $\sigma\left(x_{i}\right)=x_{i} \wedge t_{i}$, for all i, and σ fixes all other variables.

An equation is called separated, if it is of the form $\sigma(t) \leq z$, where σ is a separated substitution, $t \in \operatorname{sep}(V)$ and $z \in V$.

Theorem. (Sets of) separated structural rules correspond to (Sets of) separated equations.

Simple rules

A substructural rule is called simple if it is of one of the forms

$$
\begin{gathered}
\Upsilon_{1}^{\prime} \Rightarrow \quad \ldots \quad \Upsilon_{n}^{\prime} \Rightarrow \quad \Gamma, \Upsilon_{1}, \Delta \Rightarrow \Psi \quad \ldots \quad \Gamma, \Upsilon_{m}, \Delta \Rightarrow \Psi \\
\Gamma, \Upsilon_{0}, \Delta \Rightarrow \Psi \\
\frac{\Upsilon_{1}^{\prime} \Rightarrow \quad \ldots \quad \Upsilon_{n}^{\prime} \Rightarrow}{\Upsilon_{0}^{\prime} \Rightarrow}
\end{gathered}
$$

where Ψ is a metavariable for formulas or the empty set, Γ, Δ are metavariables for sequences of formulas and $\Upsilon_{0}^{\prime}, \Upsilon_{1}^{\prime}, \ldots, \Upsilon_{m}$ are specific sequences of metavariables for sequences of formulas, and Υ_{0} is linear.

Simple rules

A substructural rule is called simple if it is of one of the forms

$$
\begin{gathered}
\Upsilon_{1}^{\prime} \Rightarrow \quad \ldots \quad \Upsilon_{n}^{\prime} \Rightarrow \quad \Gamma, \Upsilon_{1}, \Delta \Rightarrow \Psi \quad \ldots \quad \Gamma, \Upsilon_{m}, \Delta \Rightarrow \Psi \\
\Gamma, \Upsilon_{0}, \Delta \Rightarrow \Psi \\
\frac{\Upsilon_{1}^{\prime} \Rightarrow \quad \ldots \quad \Upsilon_{n}^{\prime} \Rightarrow}{\Upsilon_{0}^{\prime} \Rightarrow}
\end{gathered}
$$

where Ψ is a metavariable for formulas or the empty set, Γ, Δ are metavariables for sequences of formulas and $\Upsilon_{0}^{\prime}, \Upsilon_{1}^{\prime}, \ldots, \Upsilon_{m}$ are specific sequences of metavariables for sequences of formulas, and Υ_{0} is linear.

Lemma. The interpretation of a simple structural rule is equivalent, over the theory of FL , to an equation of the form

$$
\sigma\left(t_{0}\right) \leq \sigma\left(t_{1} \vee \ldots \vee t_{m}\right)
$$

where t_{i} is a product of variables, for all i, t_{0} is linear, and σ is a simple ($V=\emptyset$) substitution.

Completing rules

Theorem. [CGT] (cf. [Ter]) Every separated rule is equivalent, over FL, to a simple rule.

Title

Overview
The system FL
Basic structural rules
Substructural logics Residuated lattices Structural rules Separated rules Separated rules Separated equations
Simple rules

Completing equations
Cut elimination
Rules without completion
Proof
Open Problems
Bibliography

Completing rules

Theorem. [CGT] (cf. [Ter]) Every separated rule is equivalent, over FL, to a simple rule.

Redundand premises: Remove premises that involve variables not occuring in the conclusion.

Sequencing: Replace lower-case letters by upper-case ones.

$$
\frac{\Gamma, \alpha, \alpha \Rightarrow \Psi}{\Gamma, \alpha \Rightarrow \Psi} \quad \rightsquigarrow \quad \frac{\Gamma, \Pi, \Pi \Rightarrow \Psi}{\Gamma, \Pi \Rightarrow \Psi}
$$

Linearizarion: Make sure all occurences of the variables are distinct.

$$
\frac{\alpha \Rightarrow \delta}{\alpha, \alpha \Rightarrow \delta} \quad \rightsquigarrow \quad \frac{\alpha_{1} \Rightarrow \delta \quad \alpha_{2} \Rightarrow \delta}{\alpha_{1}, \alpha_{2} \Rightarrow \delta}
$$

Contexting: Uniformly enter a context $\Gamma, _, \Delta \Rightarrow \Psi$.

$$
\frac{\Gamma, \alpha_{1} \Rightarrow \delta \quad \Gamma, \alpha_{2} \Rightarrow \delta}{\Gamma, \alpha_{1}, \alpha_{2} \Rightarrow \delta} \rightsquigarrow \frac{\Gamma, \alpha_{1}, \Delta \Rightarrow \Psi \quad \Gamma, \alpha_{2}, \Delta \Rightarrow \Psi}{\Gamma, \alpha_{1}, \alpha_{2}, \Delta \Rightarrow \Psi}
$$

Completing equations

$$
\begin{gathered}
\frac{\alpha \Rightarrow \delta}{\alpha, \alpha \Rightarrow \delta} \\
a \leq d \Longrightarrow a^{2} \leq d \\
a^{2} \leq a \\
\left(a_{1} \vee a_{2}\right)^{2} \leq a_{1} \vee a_{2} \\
a_{1}^{2} \vee a_{1} a_{2} \vee a_{2} a_{1} \vee a_{2}^{2} \leq a_{1} \vee a_{2} \\
a_{1} a_{2} \leq a_{1} \vee a_{2} \\
a_{1} \leq G \backslash p / D \& a_{2} \leq G \backslash p / D \Longrightarrow a_{1} a_{2} \leq G \backslash p / D \\
a_{1} \vee a_{2} \leq G \backslash p / D \Longrightarrow a_{1} a_{2} \leq G \backslash p / D \\
G a_{1} D \leq p \& G a_{2} D \leq p \Longrightarrow G a_{1} a_{2} D \leq p \\
\frac{\Gamma, \alpha_{1}, \Delta \Rightarrow \Psi}{\Gamma, \alpha_{1}, \alpha_{2}, \Delta \Rightarrow \Psi} \alpha_{2}, \Delta \Rightarrow \Psi \\
\hline \text { min })
\end{gathered}
$$

he system FL

Basic structural rules Substructural logics Residuated lattices Structural rules Separated rules Separated rules Separated equations Simple rules Completing rules

Completing equations

Cut elimination
Rules without completion Proof
Open Problems
Bibliography

Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut elimination.
Proof: 1. Using syntactic arguments presented in [CT]. 2. Using semantial arguments presented in [GJ].

Title

Overview
The system FL
Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules
Separated equations
Simple rules
Completing rules
Completing equations
Rules without completion Proof
Open Problems
Bibliography

Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (\mathbf{W}, \mathbf{B}) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame ($\mathbf{W}_{\mathbf{L}}, \mathbf{L}$). Also, to a Gentzen frame (W, B), we associate its dual algebra $\mathbf{R}(\mathbf{W})$, which is an FL-algebra.

Overview

The system FL

Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules
Separated equations
Simple rules
Completing rules
Completing equations

Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (\mathbf{W}, \mathbf{B}) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame ($\mathbf{W}_{\mathbf{L}}, \mathbf{L}$). Also, to a Gentzen frame (W, B), we associate its dual algebra $\mathbf{R}(\mathbf{W})$, which is an FL-algebra.
Lemma. If \mathbf{L} is an FL-algebra, then $\mathbf{R}\left(\mathbf{W}_{\mathbf{L}}\right)$ is the

Overview

The system FL

Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules
Separated equations
Simple rules
Completing rules
Completing equations Dedekind-MacNeille competion of L.

Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (\mathbf{W}, \mathbf{B}) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame ($\mathbf{W}_{\mathbf{L}}, \mathbf{L}$). Also, to a Gentzen frame (\mathbf{W}, \mathbf{B}), we associate its dual algebra $\mathbf{R}(\mathbf{W})$, which is an FL-algebra.
Lemma. If \mathbf{L} is an FL-algebra, then $\mathbf{R}\left(\mathbf{W}_{\mathbf{L}}\right)$ is the Dedekind-MacNeille competion of L.
Theorem. [GJ] If (\mathbf{W}, \mathbf{B}) is a (cut-free) Gentzen frame, then every sequent valid in $\mathbf{R}(\mathbf{W})$ is also valid in (\mathbf{W}, \mathbf{B}).

Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (\mathbf{W}, \mathbf{B}) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame ($\mathbf{W}_{\mathbf{L}}, \mathbf{L}$). Also, to a Gentzen frame (W, B), we associate its dual algebra $\mathbf{R}(\mathbf{W})$, which is an FL-algebra.
Lemma. If \mathbf{L} is an FL-algebra, then $\mathbf{R}\left(\mathbf{W}_{\mathbf{L}}\right)$ is the Dedekind-MacNeille competion of L.
Theorem. [GJ] If (\mathbf{W}, \mathbf{B}) is a (cut-free) Gentzen frame, then every sequent valid in $\mathbf{R}(\mathbf{W})$ is also valid in (\mathbf{W}, \mathbf{B}).
Theorem. [CGT] Let (\mathbf{W}, \mathbf{B}) be a cut free Gentzen frame and let ε be a simple equation. Then, (\mathbf{W}, \mathbf{B}) satisfies $R(\varepsilon)$ iff $\mathbf{R}(\mathbf{W})$ satisfies ε.

Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (\mathbf{W}, \mathbf{B}) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame ($\mathbf{W}_{\mathbf{L}}, \mathbf{L}$). Also, to a Gentzen frame (W, B), we associate its dual algebra $\mathbf{R}(\mathbf{W})$, which is an FL-algebra.
Lemma. If \mathbf{L} is an FL-algebra, then $\mathbf{R}\left(\mathbf{W}_{\mathbf{L}}\right)$ is the Dedekind-MacNeille competion of L.
Theorem. [GJ] If (\mathbf{W}, \mathbf{B}) is a (cut-free) Gentzen frame, then every sequent valid in $\mathbf{R}(\mathbf{W})$ is also valid in (\mathbf{W}, \mathbf{B}).
Theorem. [CGT] Let (\mathbf{W}, \mathbf{B}) be a cut free Gentzen frame and let ε be a simple equation. Then, (\mathbf{W}, \mathbf{B}) satisfies $\mathrm{R}(\varepsilon)$ iff $\mathbf{R}(\mathbf{W})$ satisfies ε.

Theorem. [CGT] Separated equations are preserved under the Dedekind-MacNeille completion. (cf. [TV])

Rules without completion

Theorem. The rule

$$
\frac{\alpha, \beta \Rightarrow \beta}{\beta, \alpha \Rightarrow \beta}(w e)
$$

is not equivalent to a rule that admits cut elimination.

Title
Overview
The system FL
Basic structural rules Substructural logics Residuated lattices Structural rules Separated rules Separated rules Separated equations Simple rules

Rules without completion

Theorem. The rule

$$
\frac{\alpha, \beta \Rightarrow \beta}{\beta, \alpha \Rightarrow \beta}(w e)
$$

is not equivalent to a rule that admits cut elimination.
Proof (Sketch) Assume that there is a set of rules R that is equivalent to (we) and admits cut elimination. So, there is a proof of $q, p \Rightarrow q$ from $p, q \Rightarrow q$ in $\mathbf{F L}+R$, where p, q are propositional variables.

Title
Overview
The system FL
Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules
Separated equations
Simple rules
Completing rules
Completing equations

Fact (using [CT]) There is a cut free proof of $q, p \Rightarrow v$ from assumptions $q \Rightarrow v ; p, q \Rightarrow v ; \ldots ; p, p, \ldots, p, q \Rightarrow v \ldots$ in
$\mathbf{F L}+R$, where v is a new propositional variable.
So, we have

$$
\left\{p^{n} q \leq v: n \in \omega\right\} \models_{\mathrm{F} L_{\mathrm{R}}} q p \leq v
$$

To disprove this, we will construct an algebra \mathbf{A} in FL_{r} and elements $a, b, c \in A$ such that $a^{n} b \leq c$ for all $n \in \omega$, but $b a \not \leq c$.

Proof

We take \mathbf{A} to be the totally ordered ℓ-group based on the free group on two generators.

Fact [Ber] A satisfies: if $1 \leq x^{m} \leq y$, for all $m \in \omega$, then $x^{m} \leq y^{-1} x y$, for all $m \in \omega$.

Since \mathbf{A} is based on the free group it is not abelian, hence not archimedian (it is totally ordered). So, there exist elements $g, h \in A$ with $1<g, h$ and $g^{m}<h$, for all $m \in \omega$.

By the property of the constructed ℓ-group, we get $g^{m} \leq h^{-1} g h$, namely $g^{m} h^{-1} \leq h^{-1} g$, for all $m \in \omega$. Now, let

$$
a=g^{2}, b=h^{-1}, \text { and } c=h^{-1} g .
$$

We have $a^{n} b=g^{2 n} h^{-1} \leq h^{-1} g=c$, for all $n \in \omega$; but $c=h^{-1} g<h^{-1} g^{2}=b a$, because $1<g$, so $b a \not \leq c$.

Overview

Open Problems

- Characterize all structural rules that cannot be completed.
- Characterize all structural rules that are equivalent to equations.
[Separated rules and rules over a single variable are.]
- Find all equations that are preserved under the Dedekind-MacNeille completion.
[Simple equations and prelinearity are preserved.]
- Characterize the equations that correspond to rules that admit cut elimination.
- Develop more general framework, like hypersequents, and study the expressive power and cut elimination.
[We can prove standard completeness for all logics of the form $\mathbf{F L}{ }_{e}+$ linearity + simple rules.]

Bibliography

[Ber] G. Bergman. Specially ordered groups, Comm. Algebra 12(19-20) (1984), 2315-2333.
[CT] A. Ciabattoni and K. Terui. Towards a semantic characterization of cut-elimination. Stud. Log. 82(1), 2006 [CGT] A. Ciabattoni, N. Galatos and K. Terui. The expressive power of structural rules for FL, manuscript.
[GJ] N. Galatos and P. Jipsen. Residuated frames and applications to decidability, manuscript.
[GO] N. Galatos and H. Ono. Cut elimination and strong separation: an algebraic approach, manuscript. [GJKO] N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated Lattices: an algebraic glimpse at substructural logics, Studies in Logics and the Foundations of Mathematics, Elsevier, 2007.
[Ter] K. Terui, Which Structural Rules Admit Cut Elimination?

- An Algebraic Criterion. To appear in JSL.
[TV] M. Theunissen and Y. Venema; MacNeille completions of lattice expansions, Algebra Universalis, to appear.

