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Overview

Dynamic Topological Logic (DT L) is a propositional modal frame-

work for reasoning about dynamic topological systems. Here we

will present an alternative interpretation for DT L which uses

purely relational semantics, at the cost of passing to systems

where the dynamics are not deterministic. This allows us to use

tools from combinatorics which are not available in the original

topological setting.
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Dynamical topological systems

A dynamical topological system is a pair 〈X, f〉, where X is a

topological space and f a function acting on X. We think of

points in X as states and f as a transformation of the system in

time, taking each state x to the state f(x).

We will focus on the case where f is continuous, and always

assume that this is the case.
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Topological semantics for S4

The language of S4 is obtained by extending that of propositional

logic (whose formulas are built from a countably infinite set Var

of propositional variables and the Boolean connectives ∧,∨,→,¬)

with the modal operator �.

If we have a topological space X and a valuation

V : Var → P(X),

we can extend V to all formulas of the language by setting

V (α ∧ β) = V (α) ∩ V (β)
V (¬α) = X \ V (α)
V (�α) = V (α)◦.

(Other Booleans are defined by De Morgan’s rules.)
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Kripke semantics for S4

Another familiar interpretation for S4 is given by Kripke seman-
tics. If we have a pair

〈W,4〉

and a valuation V on W , Kripke semantics are defined by setting

w |= �α⇔ ∀v (w 4 v ⇒ v |= α) .

However, this can be seen as a particular case of topological
semantics: we can define a topology on W by saying that a set
U is open if, whenever w ∈ U and w 4 v, it follows that v ∈ U .
One can then check that both interpretations of � coincide.

This topology has the property that arbitrary intersections of
open sets are open. Conversely, every such topology gives rise
to a preorder.
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Dynamic Topological Logic

Dynamic Topological Logic (DT L) is an extension of S4 which

uses the temporal modalities © (‘next’) and ∗ (‘henceforth’).

Formulas in the language are interpreted over dynamic topolog-

ical models, which are tuples

M = 〈X, f, V 〉 .

We define x |= ©α if and only if f(x) |= α.

Likewise, ∗α holds in x ∈ X if it holds in the entire orbit of x,{
x, f(x), f2(x)...

}
.
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Incompleteness of DT L for Kripke semantics

The formula

∗�p→ � ∗ p

is valid on all Kripke frames.

The left hand side is defined as⋂
n≥0

f−n(V (p)◦),

which is an intersection of open sets and hence open on all

Aleksandroff spaces (such as Kripke frames); therefore adding �
in front of the formula does not change its valuation.
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A counterexample to ∗�p→ � ∗ p

However, this formula is not valid in general.

A counterexample is given by

X = R,

f(x) = 2x,

V (p) = (−1,1).
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A counterexample to ∗�p→ � ∗ p

∗�p,¬� ∗ p ¬ ∗ p ¬p

( •
f

��

f
$$)

−1 0 1

V (p)

X X X X X X X X X X X X X X X X X X

eeeeeeeeeeeeeeeeeeeee
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A counterexample to ∗�p→ � ∗ p

This can be resumed in the following diagram:

v
f

++ f
//w

f
��

u
f

44

OO
O�
O�
O�
O�
O�
O�
O�
O�
O�
O�
O�

u |= p, ∗�p,¬� ∗ p
v |= p,¬ ∗ p
w |= ¬p.
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Typed Kripke frames

A ϕ-type is a set of formulas t ⊆ sub(ϕ) satisfying

α ∧ β ∈ t(w) ⇒ α ∈ t(w) and β ∈ t(w)

and

¬α ∈ t(w) ⇔ α 6∈ t(w).

Definition 1 (typed Kripke frame). Let ϕ be a formula in the

language of DT L. A ϕ-typed Kripke frame is a triple

F = 〈W,4, t〉

where W is a finite set, 4 a preorder on W and t a function

assigning a ϕ-type t(w) to each w ∈W satisfying

�ψ ∈ t(w) ⇔ ∀v (w 4 v ⇒ ψ ∈ t(v)) .
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Sensible relations
Definition 2 (sensible relation). A continuous relation

g ⊆W ×W

such that g(w) 6= ∅ for all w ∈W is sensible if

1. for all ©ψ ∈ sub(ϕ) and gwv, ©ψ ∈ t(w) ⇔ ψ ∈ t(v) and

2. for all ∗ψ ∈ sub(ϕ) and gwv,

∗ψ ∈ t(w) ⇔ ψ ∈ t(w) and ∗ ψ ∈ t(v).
Further, g is ω-sensible if

3. for all ∗ψ ∈ sub(ϕ), ¬ ∗ ψ ∈ t(w) ⇔ ∃v ∈ W and N ≥ 0 such
that ¬ψ ∈ t(v) and gNwv.
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Non-deterministic semantics

Non-deterministic semantics are given by typed Kripke frames

equipped with an ω-sensible relation. A non-deterministic quasi-

model for ϕ is a tuple

D = 〈W,4, g, t〉 ,

where 〈W,4, t〉 is a ϕ-typed Kripke frame and g is an ω-sensible

relation on W .
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Soundness and completeness

Theorem 1. DT L is sound and complete for the class of non-

deterministic quasimodels; that is, a formula ϕ of DT L is satisfi-

able in a dynamic topological model if and only if it is satisfiable

in a non-deterministic quasimodel.
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Soundness of DT L for non-deterministic semantics

Given a non-deterministic quasimodel

D = 〈W,4, g, t〉 ,

we can extract a dynamic topological model from it, which sat-

isfies the same set of formulas. This implies that DT L is sound

for non-deterministic semantics.

We will do this by considering infinite sequences of worlds as

points of a topological space. Only those sequences which re-

spect the temporal modalities will be part of the model; the rest

will be discarded.
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Definition 3 (realizing sequence). An infinite sequence

w0, w1, ..., wn, ...

is realizing if gwnwn+1 for all n and, whenever ¬∗ψ ∈ t(wn), there

exists m ≥ n such that ¬ψ ∈ t(wm). We will denote the set of all

realizing sequences by W g.
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Define the ‘shift’ operator, σ, by

σ 〈wn〉n≥0 =
〈
wn+1

〉
n≥0

.

Clearly, W g is closed under σ.

If p is a propositional variable, we will set

~w |= p⇔ p ∈ t(w0).

By the definition of a sensible relation, we have that

~w |= ©α⇔ σ (~w) |= α,

and, because all sequences are realizing,

~w |= ∗α⇔ σn (~w) |= α

for all n ≥ 0.
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The limit model of a non-deterministic quasimodel

Theorem 2. There exist a topology T on W g such that σ is

continuous under T such that, for all ψ ∈ sub(ϕ),

~w |= ψ ⇔ ψ ∈ t(w0).

Thus we can define a dynamic topological model given by

limD = 〈W g, σ, V 〉 ,

which satisfies the same subformulas of ϕ that D does.
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Recursive enumerability

In Dynamic topological logics over spaces with continuous func-

tions, Konev, Kontchakov, Wolter and Zakharyaschev prove that

a fragment of DT L, DT L1, is recursively enumerable.

DT L1 uses all three modalities but ∗ is not allowed to appear in

the scope of �. This fragment is complete for Kripke frames.

The proof uses a model-search procedure, and uses Kruskal’s

Tree Theorem to show that the procedure terminates whenever

it is applied to a valid formula.
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A recursive enumeration of DT L1

Definition 4 (path of Kripke frames). A path of typed Kripke

frames is a finite or infinite sequence of typed Kripke frames 〈Kn〉
such that there exist continuous functions

fn : Kn → Kn+1

which respect the temporal modalities.
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A recursive enumeration of DT L1

The procedure attempts to construct a model by searching through

all finite paths of Kipke frames.

The main obstacle is that there is no way to tell how long we

must wait before a formula of the form ¬∗α is realized in a path;

that is, if w |= ¬ ∗ α, how big should N be so that fN(x) |= ¬α?

However, this can be resolved by noting that, if we have indices

m < n and an embedding

e : Km → Kn,

we can use this to shorten the path. We will say m and n form

a loop.
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A recursive enumeration of DT L1

K0
f

//K1
e

22
f

//K2
f

//K3
f

//K4
f

//K5
f

// ...
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A recursive enumeration of DT L1

K0
f

//K1
e

22
f

//K2
f

//K3
f

//K4
f

//K5
f

// ...

¬ ∗ γ ¬γ
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A recursive enumeration of DT L1

K0
f

//K1
e

22
f

//K2
f

//K3
f

//K4
f

//K5
f

// ...

⇓

K0
ef

11
f

//K1
f

//K2
f

//K3
f

//K4
f

//K5
f

// ...
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A recursive enumeration of DT L1

K0
f

//K1
e

22
f

//K2
f

//K3
f

//K4
f

//K5
f

// ...

⇓

K0
ef

11
f

//K1
f

//K2
f

//K3
f

//K4
f

//K5
f

// ...

⇓

K0
ef

//K4
f

//K5
f

//K6
f

//K7
f

//K8
f

// ...
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A recursive enumeration of DT L1

K0
f

//K1
e

22
f

//K2
f

//K3
f

//K4
f

//K5
f

// ...

⇓

K0
ef

11
f

//K1
f

//K2
f

//K3
f

//K4
f

//K5
f

// ...

⇓

K0
ef

//K4
f

//K5
f

//K6
f

//K7
f

//K8
f

// ...

¬ ∗ ψ ∗ψ
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A recursive enumeration of DT L1

Theorem 3 (Kruskal). If 〈Tn〉n≥0 is an infinite sequence of trees

with labels on a finite set Λ, then there exist m < n such that

Tm embeds into Tn.

We can use this to guarantee that any infinite path of Kripke

frames contains loops.
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A recursive enumeration of DT L1

To see this, note that we can represent finite Kripke frames by

trees labeled by sets of ϕ-types.

w4 {t(w4)} {t(w4)}

w1 ∼ w2

>>
>~
>~
>~
>~
>~
>~
>~
>~
>~
>~
>~
>~

w3

ZZ
Z�
Z�
Z�
Z�
Z�
Z�
Z�
Z�
Z�
Z�

=⇒ {t(w1), t(w2)}

OO
O�
O�
O�
O�
O�
O�
O�

{t(w3)}

OO
O�
O�
O�
O�
O�
O�
O�

w0

DD
D�
D�
D�
D�
D�
D�
D�
D�
D�
D�

``
` 
` 
` 
` 
` 
` 
` 
` 
` 
` 
` 
` 

{t(w0)}

;;;{
;{
;{
;{
;{
;{
;{
;{
;{
;{
;{
;{

ff f& f& f& f& f& f& f& f& f& f& f& f& f& f&
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A recursive enumeration of DT L1

To check if a formula ϕ is valid, one can enumerate all finite

paths of Kripke frames which contain no unnecessary loops and

begin at a frame satisfying ¬ϕ. Explicit bounds can be given for

the k-th term of the sequence.

If the enumeration does not terminate we can use König’s Lemma

to extract an infinite sequence which gives us a countermodel

for ϕ.

Otherwise, every path runs into a ‘dead end’ and thus there

exists no countermodel for ϕ.
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Recursive enumerability of full DT L

In principle, the techniques we described above can be applied

only to Kripke frames and not to arbitrary topological spaces.

However, non-deterministic semantics allows us to run a very

similar procedure on quasimodels to obtain the following theo-

rem:

Theorem 4. The set of valid formulas of DT L is recursively

enumerable.
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There are a few modifications which must be made to the ver-

ification algorithm for DT L1. Because sensible relations may

assign multiple temporal successors to each world, now rather

than searching through paths of Kripke frames we must consider

a type of tree of frames. However, such trees can be dealt with

as before, and Kruskal’s theorem can be used in much the same

way.
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