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• Unification, unification types: 1, ω, ∞, 0,
• Poly/multi– modal logics: fusions, Cartesian products,
• Unification in fusions,
• Unification in logics with interacting axioms: weakly
transitive, conjugated op., Local Agreement,
• Applications: Tense, Epistemic, Multiagent logic of hy-
percubes, DALLA,
• Non-classical case - hoops with dual normal operations.



Unification

1930 J.Herbrand - automated deduction 1st ord. logic,
1965 J.A.Robinson - resolution, unification algor., mgu,

E-unification
E - equational theory, t1, t2 - terms, in var. x = {x1, ...xn}.

t1 =? t2 - a unification problem, a solution is a sub-
stitution σ : x → T

`E σt1 = σt2 - is called a unifier for t1 and t2;
t1, t2 - unifiable if such σ exists,

σ is more general then τ , τ � σ, if
`E δ(σ(x)) = τ(x), for some substitution δ; � a pre-order,

a mgu - a most general unifier, not unique.



E = ∅ -syntactic unification (Robinson): unifiable - mgu,
E 6= ∅ - four types: 1 - unitary (“best"), ω - finitary, ∞ -
infinitary, 0 - nullary, according to a number of �- maximal
unifiers of „the worst case" of t1, t2.

Ex. unitary - Boolean alg., discriminator var.(Burris 89);
finitary - Heyting alg. (Ghilardi 99), Abelian groups (Lank-
ford 79);
infinitary - groups, rings (Lawrence 89);
nullary - lattices, distributive lattices (Willard 91, 89).

Unification is basic to Resolution Theorem Provers (Mc-
Cunne solution to the Robbins problem) and Term Rewrit-
ing Systems; categorial grammars, generalizing proofs.



Unification in logic
A logic L; a unifier for a formula A(x) in L - a substitution
σ : x → F such that

`L σ(A);

σ - a unifier, A - unifiable; � related to `L.
Unification is filtering: τ1, τ2 unif for A there exists σ unif
for A such that τ1 � σ and τ2 � σ; unitary or nullary.

Ex. CL - classical propositional logic - unitary (best),
Modal: K4,S4,GL - finitary, Ghilardi (2000),
S5 -unitary; K4.2,S4.2 - unitary, Ghilardi, Sacchetti (2004).
Unification - not preserved under extensions/weakenings
and expansions/reducts.
Applications: admissibility of rules (decidability).



Poly/multi-modal logic; m unary connectives:
�1, . . . , �m, "necessity", ♦1, . . . , ♦m, "possibility", where
♦iA = ¬�i¬A, i ≤ m, classical connectives ¬,∨,∧,→.

A normal poly/multimodal logic is a set of formulas from
F containing all classical tautologies, the axioms:

Ki : �i(A → B) → (�iA → �iB), i ≤ m

closed under: Modus Ponens, Necessitation: A/�iA, i ≤ m

and substitution.
m-frame F = 〈W, R1, . . . , Rm〉, W 6= ∅, R1, . . . , Rm, Ri ⊆ W2

BAO’s: B = 〈B,∨,∧,−, {mi}i≤m〉, mi(a ∨ b) = mia ∨ mib

(additive) and mi0 = 0 (normal); mi corresponds to ♦i.
Jónsson – Tarski.



Fusions of unimodal logics
L1, . . . , Lm with m distinct �1, . . . , �m, resp., the fusion
L1 ⊗ · · · ⊗ Lm is the smallest m-modal logic containing
L1∪· · ·∪Lm; Km,S5m, etc. Kripke Cpl, dec., unif.interpol.

Lemma 1. Let Li, i ≤ m be unimodal logics from the set
{K,KD,KT,K4,K4.2,K4.3,KD4,KD45,S4,S4.2,S4.3}.
Then the fusion L = L1⊗ ...⊗Lm have the following prop-
erty, for any Ai ∈ F, i ≤ m:
`L �1A1 ∨ ... ∨�mAm ⇒ `L Ai, for some i ≤ m.

Hence unification in L is not unitary.
Lemma 2. Unification in S5m = S5⊗ ...⊗ S5, m ≥ 2, is
not unitary.

Unitary unification is not preserved under fusions.
Ex. S4.2, K4.2, S5



Cartesian products L1 × L2 of modal logics.

Li determined by Ci, i ≤ 2, L1 × L2 - det. by all F1 ×F2,
F1 ∈ C1, F2 ∈ C2, where for F1 = 〈W1, R1〉, F2 = 〈W2, R2〉
the Cartesian product F1×F2 of frames F1 and F2 is the
frame: F1 ×F2 = 〈W1 ×W2, Rh, Rv〉, where

(u1, v1) Rh (u2, v2) iff u1 R1 u2 and v1 = v2,
(u1, v1) Rv (u2, v2) iff v1 R2 v2 and u1 = u2.

L1 ⊗ L2 ⊂ L1 × L2, true in L1 × L2 but not in L1 ⊗ L2:
comm: �1�2x ↔ �2�1x (commutativity),
con(1,2) : ♦1�2x → �2♦1x (confluence, or Church-
Rosser property), also con(2,1) : ♦2�1x → �1♦2x .
Generalize to product of n-copies.
con(i, j) : ♦i�jx → �j♦ix.



Weakly transitive m-modal logics

let �A = �1A ∧ · · · ∧�mA, ♦A = ♦1A ∨ · · · ∨ ♦mA.

�(0)A = A, �(n+1)A = �(n)A ∧��(n)A;

�(n)A = A ∧�A ∧��A ∧ · · · ∧�nA, ♦(n)A dually,

4(n) �(n)x → �(n+1)x or ♦(n+1)A → ♦(n)A.

m-modal logic L is n-transitive if `L �(n)x → �(n+1)x.
L is weakly transitive if it is n-transitive for some n.

L is weakly transitive iff the corresponding class of BAO’s
has Equationally Definable Principal Congruences, EDPC
(Blok, Pigozzi).



n-confluence axiom or n-Church-Rosser axiom

2(n) : ♦(n)�(n)x → �(n)♦(n)x.

Theorem 3. If a m-modal logic L is n-transitive and n-
confluent for some n, then unification in L is filtering, i.e.
unitary or nullary (generalization of Ghilardi-Sachetti).

Corollary 4. Let Li, i ≤ m, be Kripke complete unimodal
logics containing S4 and having filtering unification. Then
L1 × · · · × Lm has filtering unification too.



Conjugate operations (J-T) Operations f and g on a Boolean
algebra B, g is a conjugate of f if, for x, y ∈ B:

x ∧ f(y) = 0 iff g(x) ∧ y = 0.

f is conjugate if there is g such that g is a conjugate of f .

A = 〈A,≤〉, B = 〈B,≤′〉, f : A → B, h : B → A, the pair
(f, h) is called residuated if f(a) ≤′ b iff a ≤ h(b).
Given f , if g, h exist, then: g(y) = hd(y), h(y) = gd(y).

1-variable formulas M1 and M2 are conjugate in L if,
`L M1Md

2x → x and `L M2Md
1x → x;

where Mdx = ¬M¬x.



Theorem 5. If L is a n-transitive normal m-modal logic
containing Di : ♦>, i ≤ m and if either, (A) every ♦i is
conjugate, or (B) every ♦i occurs in some self-conjugate
formula ♦n1

i1
. . . ♦nr

ik
x ∨ · · · ∨ ♦m1

j1
. . . ♦ms

jp
x, then unification in

L is unitary.

B(n) : ♦(n)�(n)x → x, n-symmetry.

Corollary 6. If a m-modal logic L contains Di and 4(n)B(n),
i.e. it is n-transitive and n-symmetric, for some n, in par-
ticular, if L contains S5m = S5× · · · ×S5, then unification
in L is unitary.



APPLICATIONS - unitary unification:

- Tense logics: linear, weakly future (past) connected,
tense logic of Q,R,Z (with infinite time),

- Logic w. Local Agreement: �ix ∧�jx ↔ �i�jx ∧�j�ix,
DALLA = S5m + (LA) (Demri, Orłowska),

- Multiagent Logic of Hypercubes (Lomuscio, Ryan),

- Logic of inaccessible worlds of Humberstone,

Here mgu is explicit, effective.

Wolter et al., K, K4 + univ. modality - unif. undecidable



Hoops with dual normal operators
A hoop A = (A, ·,→,1), (A, ·,1) is a commutative monoid
with the unit 1 satisfying: (1) x → x = 1,
(2) x → (y → z) = (x · y) → z, (3) (x → y) · x = (y → x) · y.
x0 = 1, xk+1 = xk · x; k- potent hoop : xk+1 = xk

A hoop with dual normal operators in the sense of Jónsson
and Tarski , see Blok and Pigozzi, (A, ·,→,1, �i)i≤m,
a hoop (A, ·,→,1) expanded with {�i}i≤m such that
�i(1) = 1; �i(a · b) = �i(a) ·�i(b), i ≤ m.

Theorem 7. Let L be a weakly transitive logic of k-potent
hoops with dual normal operators �i, i ≤ m, containing
the Beth axiom: �ia → �ib ≤ �i(�ia → b), i ≤ m.
Then L has unitary unification.



Summary:

- in fusions unification is bad, unification is not preserved
under fusions,

- n-transitive and n-confluent logics have filtering unifica-
tion (unitary or nullary),

- n-transitive and n-symmetric logics have unitary unifica-
tion,

- filtering unification of unimodal logics over S4 is pre-
served under Cartesian products.
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