Algebraic and Topological Methods in Non-Classical Logics III St Anne's College, OXFORD 2007

Unification in some polymodal logics Wojciech Dzik Silesian University, Katowice, Poland

dzikw@silesia.top.pl

- Unification, unification types: 1, ω , ∞ , 0,
- Poly/multi- modal logics: fusions, Cartesian products,
- Unification in fusions,
- Unification in logics with interacting axioms: weakly transitive, conjugated op., Local Agreement,
- Applications: Tense, Epistemic, Multiagent logic of hypercubes, DALLA,
- Non-classical case hoops with dual normal operations.

Unification

1930 J.Herbrand - automated deduction 1^{st} ord. logic, 1965 J.A.Robinson - resolution, unification algor., mgu,

E-unification

E - equational theory, t_1 , t_2 - terms, in var. $\underline{x} = \{x_1, ..., x_n\}$. $t_1 = {}^{?} t_2$ - a unification problem, a solution is a substitution $\sigma : \underline{x} \to T$ $\vdash_E \sigma t_1 = \sigma t_2$ - is called a *unifier* for t_1 and t_2 ; t_1, t_2 - *unifiable* if such σ exists,

 σ is more general then τ , $\tau \preceq \sigma$, if $\vdash_E \delta(\sigma(x)) = \tau(x)$, for some substitution δ ; \preceq a pre-order, a mgu - a most general unifier, not unique. $E = \emptyset$ -syntactic unification (Robinson): unifiable - mgu, $E \neq \emptyset$ - four types: 1 - unitary ("best"), ω - finitary, ∞ infinitary, 0 - nullary, according to a number of \leq - maximal unifiers of "the worst case" of t_1 , t_2 .

Ex. unitary - Boolean alg., discriminator var.(Burris 89); finitary - Heyting alg. (Ghilardi 99), Abelian groups (Lankford 79); infinitary - groups, rings (Lawrence 89); nullary - lattices, distributive lattices (Willard 91, 89).

Unification is basic to Resolution Theorem Provers (Mc-Cunne solution to the Robbins problem) and Term Rewriting Systems; categorial grammars, generalizing proofs.

Unification in logic

A logic L; a unifier for a formula $A(\underline{x})$ in L - a substitution $\sigma : \underline{x} \to F$ such that

$$\vdash_L \sigma(A);$$

 σ - a unifier, A - unifiable; \leq related to \vdash_L . Unification is *filtering*: τ_1, τ_2 unif for A there exists σ unif for A such that $\tau_1 \leq \sigma$ and $\tau_2 \leq \sigma$; unitary or nullary.

Ex. CL - classical propositional logic - unitary (best), Modal: K4,S4,GL - finitary, Ghilardi (2000), S5 -unitary; K4.2,S4.2 - unitary, Ghilardi, Sacchetti (2004). Unification - not preserved under extensions/weakenings and expansions/reducts.

Applications: admissibility of rules (decidability).

Poly/multi-modal logic; m unary connectives: \Box_1, \ldots, \Box_m , "necessity", $\Diamond_1, \ldots, \Diamond_m$, "possibility", where $\Diamond_i A = \neg \Box_i \neg A, i \leq m$, classical connectives $\neg, \lor, \land, \rightarrow$.

A normal poly/multimodal logic is a set of formulas from F containing all classical tautologies, the axioms:

$$K_i$$
: $\Box_i(A \to B) \to (\Box_i A \to \Box_i B), i \leq m$

closed under: Modus Ponens, Necessitation: $A/\Box_i A$, $i \leq m$ and substitution.

m-frame $\mathfrak{F} = \langle W, R_1, \ldots, R_m \rangle$, $W \neq \emptyset$, R_1, \ldots, R_m , $R_i \subseteq W^2$

BAO's: $\mathfrak{B} = \langle B, \vee, \wedge, -, \{\mathfrak{m}_i\}_{i \leq m} \rangle$, $\mathfrak{m}_i(a \vee b) = \mathfrak{m}_i a \vee \mathfrak{m}_i b$ (additive) and $\mathfrak{m}_i 0 = 0$ (normal); \mathfrak{m}_i corresponds to \Diamond_i . Jónsson – Tarski.

Fusions of unimodal logics

 L_1, \ldots, L_m with m distinct \Box_1, \ldots, \Box_m , resp., the *fusion* $L_1 \otimes \cdots \otimes L_m$ is the smallest m-modal logic containing $L_1 \cup \cdots \cup L_m$; K_m, S5_m, etc. Kripke Cpl, dec., unif.interpol.

Lemma 1. Let $L_i, i \leq m$ be unimodal logics from the set $\{K, KD, KT, K4, K4.2, K4.3, KD4, KD45, S4, S4.2, S4.3\}$. Then the fusion $L = L_1 \otimes ... \otimes L_m$ have the following property, for any $A_i \in F, i \leq m$:

 $\vdash_L \Box_1 A_1 \lor \ldots \lor \Box_m A_m \implies \vdash_L A_i$, for some $i \leq m$. Hence unification in L is not unitary.

Lemma 2. Unification in $S5_m = S5 \otimes ... \otimes S5$, $m \ge 2$, is not unitary.

Unitary unification is not preserved under fusions. **Ex.** S4.2, K4.2, S5

Cartesian products $L_1 \times L_2$ of modal logics.

 $\begin{array}{ll} L_i \text{ determined by } \mathcal{C}_i, \ i \leq 2, \ L_1 \times L_2 \ \text{- det. by all } \mathcal{F}_1 \times \mathcal{F}_2, \\ \mathcal{F}_1 \in \mathcal{C}_1, \ \mathcal{F}_2 \in \mathcal{C}_2, \ \text{where for } \mathcal{F}_1 = \langle W_1, R_1 \rangle, \ \mathcal{F}_2 = \langle W_2, R_2 \rangle \\ \text{the Cartesian product } \mathcal{F}_1 \times \mathcal{F}_2 \ of \ frames \ \mathcal{F}_1 \ \text{and } \mathcal{F}_2 \ \text{is the} \\ \text{frame: } \mathcal{F}_1 \times \mathcal{F}_2 = \langle W_1 \times W_2, R_h, R_v \rangle, \ \text{where} \\ (u_1, v_1) \ R_h \ (u_2, v_2) \quad \text{iff} \quad u_1 \ R_1 \ u_2 \ \text{and} \ v_1 = v_2, \\ (u_1, v_1) \ R_v \ (u_2, v_2) \quad \text{iff} \quad v_1 \ R_2 \ v_2 \ \text{and} \ u_1 = u_2. \end{array}$

 $\begin{array}{ll} L_1 \otimes L_2 \subset L_1 \times L_2, \text{ true in } L_1 \times L_2 \text{ but not in } L_1 \otimes L_2:\\ comm: & \Box_1 \Box_2 x \leftrightarrow \Box_2 \Box_1 x \quad (\text{commutativity}),\\ con(1,2): & \Diamond_1 \Box_2 x \to \Box_2 \Diamond_1 x \quad (\text{confluence, or Church-Rosser property}), \text{ also } con(2,1): \Diamond_2 \Box_1 x \to \Box_1 \Diamond_2 x \text{ .}\\ \text{Generalize to product of } n\text{-copies.}\\ con(i,j): & \Diamond_i \Box_j x \to \Box_j \Diamond_i x. \end{array}$

Weakly transitive *m*-modal logics

let
$$\Box A = \Box_1 A \land \dots \land \Box_m A$$
, $\Diamond A = \Diamond_1 A \lor \dots \lor \Diamond_m A$.
 $\Box^{(0)} A = A$, $\Box^{(n+1)} A = \Box^{(n)} A \land \Box \Box^{(n)} A$;
 $\Box^{(n)} A = A \land \Box A \land \Box \Box A \land \dots \land \Box^n A$, $\Diamond^{(n)} A$ dually,
 $4^{(n)}$ $\Box^{(n)} x \to \Box^{(n+1)} x$ or $\Diamond^{(n+1)} A \to \Diamond^{(n)} A$.
m-modal logic *L* is *n*-transitive if $\vdash_L \Box^{(n)} x \to \Box^{(n+1)} x$.
L is weakly transitive if it is *n*-transitive for some *n*.

L is weakly transitive iff the corresponding class of BAO's has Equationally Definable Principal Congruences, EDPC (Blok, Pigozzi).

n-confluence axiom or *n*-Church-Rosser axiom

$$2^{(n)}: \qquad \Diamond^{(n)}\square^{(n)}x \to \square^{(n)}\Diamond^{(n)}x.$$

Theorem 3. If a m-modal logic L is n-transitive and nconfluent for some n, then unification in L is filtering, i.e. unitary or nullary (generalization of Ghilardi-Sachetti).

Corollary 4. Let L_i , $i \leq m$, be Kripke complete unimodal logics containing S4 and having filtering unification. Then $L_1 \times \cdots \times L_m$ has filtering unification too.

Conjugate operations (J-T) Operations f and g on a Boolean algebra \mathcal{B} , g is a *conjugate of* f if, for $x, y \in B$:

$$x \wedge f(y) = 0$$
 iff $g(x) \wedge y = 0$.

f is conjugate if there is g such that g is a conjugate of f.

 $A = \langle A, \leq \rangle$, $B = \langle B, \leq' \rangle$, $f : A \to B$, $h : B \to A$, the pair (f,h) is called *residuated* if $f(a) \leq' b$ iff $a \leq h(b)$. Given f, if g, h exist, then: $g(y) = h^d(y)$, $h(y) = g^d(y)$.

1-variable formulas M_1 and M_2 are conjugate in L if, $\vdash_L M_1 M_2^d x \to x$ and $\vdash_L M_2 M_1^d x \to x$; where $M^d x = \neg M \neg x$. **Theorem 5.** If *L* is a *n*-transitive normal *m*-modal logic containing $D_i : \Diamond \top$, $i \leq m$ and if either, (A) every \Diamond_i is conjugate, or (B) every \Diamond_i occurs in some self-conjugate formula $\Diamond_{i_1}^{n_1} \dots \Diamond_{i_k}^{n_r} x \lor \dots \lor \Diamond_{j_1}^{m_1} \dots \Diamond_{j_p}^{m_s} x$, then unification in *L* is unitary.

$$B^{(n)}$$
: $\Diamond^{(n)}\square^{(n)}x \to x$, *n*-symmetry.

Corollary 6. If a *m*-modal logic *L* contains D_i and $4^{(n)}B^{(n)}$, *i.e. it is n*-transitive and *n*-symmetric, for some *n*, in particular, if *L* contains $S5^m = S5 \times \cdots \times S5$, then unification in *L* is unitary.

APPLICATIONS - unitary unification:

- Tense logics: linear, weakly future (past) connected, tense logic of $\mathbf{Q}, \mathbf{R}, \mathbf{Z}$ (with infinite time),

- Logic w. Local Agreement: $\Box_i x \wedge \Box_j x \leftrightarrow \Box_i \Box_j x \wedge \Box_j \Box_i x$, DALLA = S5_m + (LA) (Demri, Orłowska),

- Multiagent Logic of Hypercubes (Lomuscio, Ryan),
- Logic of inaccessible worlds of Humberstone,

Here mgu is explicit, effective.

Wolter et al., K, K4 + univ. modality - unif. undecidable

Hoops with dual normal operators

A hoop $A = (A, \cdot, \rightarrow, 1)$, $(A, \cdot, 1)$ is a commutative monoid with the unit 1 satisfying: (1) $x \rightarrow x = 1$, (2) $x \rightarrow (y \rightarrow z) = (x \cdot y) \rightarrow z$, (3) $(x \rightarrow y) \cdot x = (y \rightarrow x) \cdot y$. $x^0 = 1, x^{k+1} = x^k \cdot x$; k- potent hoop : $x^{k+1} = x^k$

A hoop with dual normal operators in the sense of Jónsson and Tarski , see Blok and Pigozzi, $(A, \cdot, \rightarrow, 1, \Box_i)_{i \leq m}$, a hoop $(A, \cdot, \rightarrow, 1)$ expanded with $\{\Box_i\}_{i \leq m}$ such that $\Box_i(1) = 1; \quad \Box_i(a \cdot b) = \Box_i(a) \cdot \Box_i(b), \quad i \leq m.$

Theorem 7. Let *L* be a weakly transitive logic of *k*-potent hoops with dual normal operators \Box_i , $i \leq m$, containing the Beth axiom: $\Box_i a \to \Box_i b \leq \Box_i (\Box_i a \to b)$, $i \leq m$. Then *L* has unitary unification.

Summary:

- in fusions unification is bad, unification is not preserved under fusions,

- *n*-transitive and *n*-confluent logics have filtering unification (unitary or nullary),

- *n*-transitive and *n*-symmetric logics have unitary unification,

- filtering unification of unimodal logics over S4 is preserved under Cartesian products. References:

Blok, W.J. and Pigozzi, Don, *On the structure of varieties with equationally definable principal congruences III*, Algebra Universalis, **32** (1994), 545–608.

Demri, S. and Orłowska, E. *Incomplete Information: Structure, Inference, Complexity*, Springer, Berlin 2002.

Dzik, W., Unification in some Substructural Logics of BL-algebras and Hoops, to appear (2007).

Gabbay, D., Kurucz, A., Wolter, F. and Zakharyaschev, M., *Many-dimensional modal logics: theory and applications*, Elsevier, Amsterdam 2003.

Gabbay, D. and Shehtman, V., *Products of modal logics, Part 1*, Logic Journal of the IGPL, **6** (1998), 73–146.

Ghilardi, S., *Best solving Modal Equations*, Ann. Pure Appl. Logic, **102, N.1-3** (2000), 183–198.

Ghilardi, S. and Sacchetti, L., *Filtering Unification and Most General Unifiers in Modal Logic*, J. of Symbolic Logic, **69** (2004), 879–906. Lomuscio, A.,R., Meyden, R. van der, Ryan, M., *Knowledge in Multi-agent Systems: Initial Configurations and Broadcast*, ACM Transactions on Computational Logic, **1**, **no.2** (2000), 246–282.

Wolter, F., A note on atoms in polymodal algebras, Algebra Universalis, **37** (1997), 334–341.