TANCL07
 Oxford, August 6-10, 2007

Janusz Czelakowski
University of Opole, Poland e-mail: jczel@math.uni.opole.pl

ALGEBRAIC ASPECTS
OF THE BACK AND FORTH METHOD

The purpose of this talk is to provide a general, abstract framework for some model-theoretic constructions, which is based on the order-oriented fixed-point theory.

The so called back and forth method is particularly useful in many branches of algebra and model theory (see e.g. Chang and Keisler [1973]). It dates back to the proof of the famous Cantor's theorem stating that any two countable linear dense orders without endpoints are isomorphic.

In a systematic way the back and forth method was studied by Fraïssé, Ehrenfeucht and others.

A plausible and general abstract formulation of the back and forth method in the context of the theory of reflexive points for ordered Kripke frames is presented.

Definition 1.

Let (P, \leq) be a poset and let $\pi: P \rightarrow P$ be a mapping.
π is expansive if $x \leq \pi(x)$, for all $x \in P$.
π is monotone if $x \leq y$ implies $\pi(x) \leq \pi(y)$, for all $x, y \in P$.
π is conditionally expansive (or quasi-expansive) if
$x \leq \pi(x)$ implies $\pi(x) \leq \pi(\pi(x))$, for all $x \in P$.

Every expansive mapping π is quasi-expansive and every monotone mapping π is quasi-expansive.

The notion of a conditionally expansive mapping is thus a generalization of the above two types of mappings associated with posets.

The order-oriented fixed-point theory offers a variety of fixed-point theorems for monotone or expansive mappings.

Theoretical computer science also provides fixed-point theorems (alias reflexive point theorems) for binary relations defined on posets (J. Cai and R. Paige [1992], J. Desharnais and B. Möller [2005]).

Definition 2.

A binary relation R defined on a poset (P, \leq) is conditionally expansive (or quasi-expansive) if :

$$
(\forall a, b \in P)[a \leq b \wedge a R b \rightarrow(\exists c \in P) b R c \wedge b \leq c]
$$

(see the diagram below).

If R is the graph of a mapping $\pi: P \rightarrow P$, then the relation R is quasi-expansive in the above sense
if and only if
the mapping π is quasi-expansive.

A poset (P, \leq) is chain- σ-complete (or σ-inductive) if every chain in P of type $\leq \omega$ has a supremum.

Thus (P, \leq) is σ-inductive
if and only if
every chain in P of type ω has a supremum and (P, \leq) has zero 0 the supremum of the empty chain.

The case of chain- σ-complete posets
Definition 3. Let (P, \leq) be a chain- σ-complete poset and let P_{0} be a subset of P. A binary relation R on P is conditionally σ-continuous relative to P_{0} if:
(1) R is conditionally expansive on P_{0}, i.e., for every pair $a, b \in P_{0}$ such that $a \leq b$ and $a R b$ there exists $c \in P_{0}$ such that $b R c$ and $b \leq c$.
(2) For every chain $C \subseteq P_{0}$ of type ω_{0} and every monotone and expansive mapping $f: C \rightarrow P_{0}$, if $a R f(a)$ for all $a \in C$, then $\sup (C) R \sup (f[C])$.
$\left(\sup (C)\right.$ and $\sup (f[C])$ may not belong to P_{0}.) \square
a^{*} is a reflexive point (or a fixed-point) of a relation R if $a^{*} R a^{*}$.

Theorem 4.
Let (P, \leq) be a chain- σ-complete poset and let P_{0} be a subset of P. Assume that a relation $R \subseteq P \times P$ is conditionally σ-continuous relative to P_{0}. If $0 \in P_{0}$ and the set $P_{0} \cap R[\mathbf{0}]$ is non-empty, then R has a reflexive-point in P.
\square

We discuss further modifications of the above definitions.

Definition 5.

Let (P, \leq) be a poset and let R_{1} and R_{2} be two binary relations on P. Let P_{0} be a subset of P.
R_{1} and R_{2} are adjoint on P_{0} if :
(A1) $\left(\forall a_{1}, b_{1} \in P_{0}\right)\left[a_{1} \leq b_{1} \wedge a_{1} R_{1} b_{1} \rightarrow\right.$

$$
\left.\left(\exists c_{1} \in P_{0}\right) b_{1} R_{2} c_{1} \wedge b_{1} \leq c_{1}\right],
$$

(A2) $\left(\forall a_{2}, b_{2} \in P_{0}\right)\left[a_{2} \leq b_{2} \wedge a_{2} R_{2} b_{2} \rightarrow\right.$

$$
\left.\left(\exists c_{2} \in P_{0}\right) b_{2} R_{1} c_{2} \wedge b_{2} \leq c_{2}\right] .
$$

R_{1} is then called the forth relation and R_{2} is the back relation. (see the diagram below)

R_{1} is the forth relation and R_{2} is the back relation.

Definition 6. Let (P, \leq) be a chain- σ-complete poset and let P_{0} be a subset of P. A pair $\left(R_{1}, R_{2}\right)$ of binary relations on P is σ-continuously adjoint relative to P_{0} if R_{1} and R_{2} are adjoint on P_{0} and, furthermore, for every chain

$$
C=\left\{a_{n}: n \in \omega\right\}
$$

in P_{0} of type $\leq \omega$ and for every monotone and expansive mapping $f: C \rightarrow P_{0}$ such that

$$
a_{2 n} R_{1} f\left(a_{2 n}\right) \text { and } a_{2 n+1} R_{2} f\left(a_{2 n+1}\right) \text {, for all } n \in \omega \text {, }
$$

it is the case that:

$$
\sup (C) R_{1} \sup (f[C]) \text { and } \sup (C) R_{2} \sup (f[C]) . \quad \square
$$

(The supremums $\sup (C)$ and $\sup (f[C])$ need not belong to P_{0}. Furthermore, as f is expansive on C, we have that

$$
\sup (C) \leq \sup (f[C]) .)
$$

An element $a^{*} \in P$ is a reflexive point (alias fixed-point) of the pair $\left(R_{1}, R_{2}\right)$ if a^{*} is a reflexive point of both relations R_{1} and R_{2}, i.e., it is the case that $a^{*} R_{1} a^{*}$ and $a^{*} R_{2} a^{*}$.

Theorem 7.
Let (P, \leq) be a chain- σ-complete poset and let P_{0} be a subset of P. Assume that a pair $\left(R_{1}, R_{2}\right)$ of binary relations on P is σ-continuously adjoint relative to P_{0}.

If $0 \in P_{0}$ and the set $P_{0} \cap R_{1}[0]$ is non-empty, then the pair $\left(R_{1}, R_{2}\right)$ has a reflexive point in P.

Proof.

We define a countable chain C (of type ω)

$$
a_{0} \leq a_{1} \leq \ldots \leq a_{n} \leq a_{n+1} \leq \ldots
$$

of elements of P_{0}. We put $a_{0}:=\mathbf{0}$. Let a_{1} be an arbitrary element of $P_{0} \cap R_{1}[\mathbf{0}]$.

As

$$
a_{0}, a_{1} \in P_{0}, a_{0} \leq a_{1} \text { and } a_{0} R_{1} a_{1},
$$

there exists, by (A1), an element $a_{2} \in P_{0}$ such that

$$
a_{1} \leq a_{2} \text { and } a_{1} R_{2} a_{2} .
$$

Taking then the pair a_{1}, a_{2} and applying (A2), we see that there exists an element $a_{3} \in P_{0}$ such that

$$
a_{2} \leq a_{3} \text { and } a_{2} R_{1} a_{3} .
$$

Then applying (A1) to the pair a_{2}, a_{3}, we find an element $a_{4} \in P_{0}$ such that $a_{3} \leq a_{4}$ and $a_{3} R_{2} a_{4}$. Continuing, we define an increasing chain

$$
C=\left\{a_{n}: n \in \omega\right\} \text { in } P_{0}
$$

such that $a_{0} R_{1} a_{1} R_{2} a_{2} R_{1} a_{3} R_{2} a_{4} \ldots a_{2 n} R_{1} a_{2 n+1} R_{2} a_{2 n+2} \ldots$
The mapping $f: C \rightarrow C$ defined by $f\left(a_{n}\right):=a_{n+1}$, for all $n \in \omega$, is expansive and monotone. Furthermore

$$
a_{2 n} R_{1} f\left(a_{2 n}\right) \text { and } a_{2 n+1} R_{2} f\left(a_{2 n+1}\right), \text { for all } n \in \omega .
$$

As the pair $\left(R_{1}, R_{2}\right)$ is σ-continuously adjoint relative to P_{0}, we have that

$$
\sup (C) R_{1} \sup (f[C]) \text { and } \sup (C) R_{2} \sup (f[C])
$$

Let $a^{*}:=\sup (C)$. Evidently, $a^{*}=\sup (f[C])$. So $a^{*} R_{1} a^{*}$ and $a^{*} R_{2} a^{*}$. This concludes the proof of the theorem. \square

As a simple (and somewhat trivial) application of Theorem 7 we give a proof of the following Cantors theorem:

Theorem 8. Every two countable linear and dense orders without end points are isomorphic.

Proof. Let $\left(X_{1}, \leq_{1}\right)$ and $\left(X_{2}, \leq_{2}\right)$ be two such orders. By a partial isomorphism from $\left(X_{1}, \leq_{1}\right)$ to (X_{2}, \leq_{2}) we mean any partial function $f: X_{1} \rightarrow X_{2}$ such that f is injective on its domain $\operatorname{Dom}(f)$ and, furthermore, for any elements $x, y \in \operatorname{Dom}(f)$,

$$
x \leq_{1} y \text { iff } f(x) \leq_{1} f(y) .
$$

A partial isomorphism $f: X_{1} \rightarrow X_{2}$ is finite if its domain $\operatorname{Dom}(f)$ is a finite set.

0 denotes the empty partial isomorphism.

A (partial) isomorphism f is total if $\operatorname{Dom}(f)=X_{1}$ and the co-domain $\operatorname{CDom}(f)$ is equal to X_{2}.

Denote by P the set of all partial isomorphisms from $\left(X_{1}, \leq_{1}\right)$ to $\left(X_{2}, \leq_{2}\right) . \quad P$ is partially ordered by the inclusion relation \subseteq between partial isomorphisms. (Each partial isomorphism is a subset of the product $X_{1} \times X_{2}$.)

The poset (P, \subseteq) is chain- σ-complete because the union of any ω chain of partial isomorphisms is a partial isomorphism. Furthermore, the empty isomorphism $\mathbf{0}$ is the least element in (P, \subseteq).

We define two relations R_{1} and R_{2} on P. As X_{1} and X_{2} are countably infinite, we can write

$$
X_{1}=\left\{a_{n}: n \in \omega\right\} \text { and } X_{2}=\left\{b_{n}: n \in \omega\right\} .
$$

Given partial isomorphisms f and g, we put :
$f R_{1} g$ iff either f is a total isomorphism and $g=f$ or f is a finite isomorphism and $g=f \cup\left\{\left(a_{m}, b_{n}\right)\right\}$, where
(1) m is the smallest i such that $a_{i} \notin \operatorname{Dom}(f)$,
(2) n is the smallest j such that $b_{j} \notin \operatorname{CDom}(f)$ and $f \cup\left\{\left(a_{m}, b_{j}\right)\right\}$ is a partial isomorphism.
(Note that the choice of n depends on the definition of m.)
$f R_{2} g$ iff either f is a total isomorphism and $g=f$ or f is a finite isomorphism and $g=f \cup\left\{\left(a_{m}, b_{n}\right)\right\}$, where
(3) n is the smallest j such that $b_{j} \notin \operatorname{CDom}(f)$,
(4) m is the smallest i such that $a_{i} \notin \operatorname{Dom}(f)$ and $f \cup\left\{\left(a_{i}, b_{n}\right)\right\}$ is a partial isomorphism.
(The choice of m depends on the definition of n.)

Let $P_{0} \subseteq P$ be the set of all finite isomorphisms. Using the fact that the orders $\left(X_{1}, \leq_{1}\right)$ and $\left(X_{2}, \leq_{2}\right)$ are linear, dense, and without endponts, it is easy to verify that
$\left(R_{1}, R_{2}\right)$ is a back and forth pair of relations relative to P_{0} and
the pair $\left(R_{1}, R_{2}\right)$ is σ-continuously adjoint relative to P_{0}.
Evidently, the set $P_{0} \cap R_{1}[\mathbf{0}]$ is non-empty. Hence, applying Theorem 7, we obtain that the pair $\left(R_{1}, R_{2}\right)$ has a fixed-point in (P, \subseteq), say f^{*}. It follows from the definition of R_{1} and R_{2} that f^{*} is a total (bijective) isomorphism between $\left(X_{1}, \leq_{1}\right)$ and $\left(X_{2}, \leq_{2}\right)$.

The case of directed-complete posets
Definition 9. Let (P, \leq) be a poset. Two relations R_{1} and R_{2} defined on P are adjoint if they are adjoint on the whole of P. The pair $\left(R_{1}, R_{2}\right)$ is then called an adjoint pair of relations.
R_{1} is called the forth relation and R_{2} is the back relation.
If $R_{1}=R_{2}=R$, then it is easy to see that the pair (R, R) is adjoint if and only if R is conditionally expansive.

Note. The definition of a back and forth pair of relations can be expressed in terms of one relation (together with its inverse !), but defined on a poset having a more complicated set-theoretic structure than (P, \leq), viz. the direct power $P \times P$. However, for didactical and conceptual reasons, it is easier to work with posets having two binary relations defined on them.

Before introducing the next definition we note the following simple fact.

Lemma 10. Let (P, \leq) be a directed-complete poset and let D_{1} and D_{2} be non-empty directed subsets of (P, \leq). Furthermore, let $f_{1}: D_{1} \rightarrow$ D_{2} and $f_{2}: D_{2} \rightarrow D_{1}$ be monotone mappings such that
(1) $x \leq f_{1}(x)$ for all $x \in D_{1}$,
(2) $y \leq f_{2}(y)$ for all $y \in D_{2}$.

Then

$$
\sup \left(D_{1}\right)=\sup \left(D_{2}\right)=\sup \left(f_{1}\left[D_{1}\right]\right)=\sup \left(f_{2}\left[D_{2}\right]\right)
$$

The above lemma gives rise to the following definition.

Definition 11. Let (P, \leq) be a directed-complete poset and let R_{1} and R_{2} be binary relations on P. The system $\left(P, \leq, R_{1}, R_{2}\right)$ is said to have the back and forth property if :
(1) $\left(R_{1}, R_{2}\right)$ is an adjoint pair;
(2) For every pair $\left(D_{1}, D_{2}\right)$ of non-empty \leq-directed subsets of P and for every pair $\left(f_{1}, f_{2}\right)$ of monotone mappings $f_{1}: D_{1} \rightarrow D_{2}$, $f_{2}: D_{2} \rightarrow D_{1}$ such that
(a) $x R_{1} f_{1}(x)$ and $x \leq f_{1}(x)$ for all $x \in D_{1}$,
(b) $y R_{2} f_{2}(y)$ and $y \leq f_{2}(y)$ for all $y \in D_{2}$
it is the case that

$$
R_{1}[a] \cap \uparrow a \neq \emptyset \text { and } R_{2}[a] \cap \uparrow a \neq \emptyset,
$$

where $a:=\sup \left(D_{1}\right)$

$$
\left(=\sup \left(D_{2}\right)=\sup \left(f_{1}\left[D_{1}\right]\right)=\sup \left(f_{2}\left[D_{2}\right]\right) \text { by Lemma } 11\right) . \square
$$

Since in (2), f_{1} and f_{2} are monotone, the above lemma applies to the above situation. Hence a satisfies the above equations. (2) states that there exist elements $b_{1}, b_{2} \in P$ such that

$$
a \leq b_{1}, a R_{1} b_{1} \text { and } a \leq b_{2}, a R_{2} b_{2} .
$$

Theorem 12. Let (P, \leq) be a directed-complete poset and let R_{1} and R_{2} be binary relations on P such that

$$
\left(R_{1}[\mathbf{0}] \cap \uparrow \mathbf{0}\right) \cup\left(R_{2}[\mathbf{0}] \cap \uparrow \mathbf{0}\right) \neq \emptyset .
$$

If the system $\left(P, \leq, R_{1}, R_{2}\right)$ has the back and forth property, then the pair $\left(R_{1}, R_{2}\right)$ has a fixed-point a^{*} in P.

The basic idea of this and of many other proofs of fixed-point theorems is based on the same cumulative scheme: one constructs a specialized well-ordered chain of elements of a directed-complete poset and proves the supremum of the chain is the required fixed- point.

Back and forth mappings.
Definition 13. If $F: P \rightarrow P$ and $G: P \rightarrow P$ are mappings, then F and G are said to be adjoint if the graphs of F and G form an adjoint pair of relations. In this case F is the forth function and G is the back function. \square
It is easy to see that (F, G) is an adjoint pair of mappings if and only if
(A1) funct $\quad(\forall a \in P)[a \leq F(a)$ implies $F(a) \leq G(F(a))]$
and
(A2) funct

$$
(\forall b \in P)[b \leq G(b) \text { implies } G(b) \leq F(G(b))] .
$$

In particular, if F and G coincide, then (F, F) is an adjoint pair if and only if F is conditionally expansive.

If R_{1} and R_{2} are graphs of adjoint mappings

$$
F_{1}: P \rightarrow P, F_{2}: P \rightarrow P
$$

then condition (2) of Definition 11 says that for any non-empty
\leq-directed sets $D_{1}, D_{2} \subseteq P$ such that

$$
F_{1}\left\lceil D_{1}: D_{1} \rightarrow D_{2}, F_{2}\left\lceil D_{2}: D_{2} \rightarrow D_{1}\right.\right.
$$

if $F_{1}\left\lceil D_{1}\right.$ and $F_{2}\left\lceil D_{2}\right.$ are monotone,

$$
x \leq F_{1}(x) \text { for all } x \in D_{1} \text {, and } y \leq F_{2}(y) \text { for all } y \in D_{2},
$$

then for $a:=\sup \left(D_{1}\right)\left(=\sup \left(D_{2}\right)=\sup \left(F_{1}\left[D_{1}\right]\right)=\sup \left(F_{2}\left[D_{2}\right]\right)\right.$ it is the case that:

$$
a \leq F_{1}(a) \text { and } a \leq F_{2}(a) .
$$

Definition 14. If (P, \leq) be a directed-complete poset and

$$
F_{1}: P \rightarrow P \text { and } F_{2}: P \rightarrow P
$$

are mappings, then we say that the system $\left(P, \leq, F_{1}, F_{2}\right)$ has the back and forth property if and only if the system over (P, \leq) formed from the graphs of the above mappings has the back and forth property. \square

Corollary 15.
Let (P, \leq) be a directed-complete poset. Let $F: P \rightarrow P$ and $G: P \rightarrow P$ be mappings such that the system (P, \leq, F, G) has the back and forth property. Then π has a fixed-point, i.e., there exists a^{*} in P such that $F\left(a^{*}\right)=G\left(a^{*}\right)=a^{*}$.

Bibliography

J. Cai and R. Paige [1992] Languages polynomial in the input plus output, in: Second International Conference on Algebraic Methodology and Software Technology (AMAST 91), Springer Verlag, London, 287-300.
C.C. Chang and H.J. Keisler [1973] Model Theory, North-Holland and American Elsevier, Amsterdam London New York.
J. Desharnais and B. Möller [2005] Least reflexive points of relations, Higher-Order and Symbolic Computation 18, 51-77.
J. Dugundji and A. Granas [1982] Fixed Point Theory, Monografie Matematyczne 61, PWN, Warsaw.
W.A. Kirk and B. Sims (eds.) [2001] Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht Boston London.
Y. N. Moschovakis [1994] Notes on Set Theory, Springer-Verlag, New York Berlin.
A. Tarski [1955] A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics 5, 285-309.

