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The purpose of this talk is to provide a general, abstract framework for
some model-theoretic constructions, which is based on the order-oriented
fixed-point theory.

The so called back and forth method is particularly useful in many
branches of algebra and model theory (see e.g. Chang and Keisler
[1973]). It dates back to the proof of the famous Cantor’s theorem
stating that any two countable linear dense orders without endpoints are
isomorphic.

In a systematic way the back and forth method was studied by Fräıssé,
Ehrenfeucht and others.

A plausible and general abstract formulation of the back and forth
method in the context of the theory of reflexive points for ordered Kripke
frames is presented.
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Definition 1.

Let (P,≤) be a poset and let π : P → P be a mapping.

π is expansive if x ≤ π(x), for all x ∈ P .

π is monotone if x ≤ y implies π(x) ≤ π(y), for all x, y ∈ P .

π is conditionally expansive (or quasi-expansive) if

x ≤ π(x) implies π(x) ≤ π(π(x)), for all x ∈ P .
�

Every expansive mapping π is quasi-expansive and every monotone
mapping π is quasi-expansive.

The notion of a conditionally expansive mapping is thus a generaliza-
tion of the above two types of mappings associated with posets.
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The order-oriented fixed-point theory offers a variety of fixed-point
theorems for monotone or expansive mappings.

Theoretical computer science also provides fixed-point theorems (alias
reflexive point theorems) for binary relations defined on posets (J. Cai
and R. Paige [1992], J. Desharnais and B. Möller [2005]).
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Definition 2.

A binary relation R defined on a poset (P,≤) is conditionally expansive
(or quasi-expansive) if :

(∀a, b ∈ P )[a ≤ b ∧ aR b → (∃c ∈ P )bR c ∧ b ≤ c]

(see the diagram below). �
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If R is the graph of a mapping π : P → P , then the relation R is
quasi-expansive in the above sense

if and only if

the mapping π is quasi-expansive.

A poset (P,≤) is chain-σ-complete (or σ-inductive) if every chain in P

of type ≤ ω has a supremum.

Thus (P,≤) is σ-inductive

if and only if

every chain in P of type ω has a supremum and (P,≤) has zero 0 the
supremum of the empty chain.
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The case of chain-σ-complete posets

Definition 3. Let (P,≤) be a chain-σ-complete poset and let P0 be
a subset of P . A binary relation R on P is conditionally σ-continuous
relative to P0 if:

(1) R is conditionally expansive on P0, i.e., for every pair a, b ∈ P0 such
that a ≤ b and aRb there exists c ∈ P0 such that bRc and b ≤ c.

(2) For every chain C ⊆ P0 of type ω0 and every monotone and
expansive mapping f : C → P0, if aRf(a) for all a ∈ C, then
sup(C)R sup(f [C]).

(sup(C) and sup(f [C]) may not belong to P0.) �

a* is a reflexive point (or a fixed-point) of a relation R if a*Ra*.
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Theorem 4.

Let (P,≤) be a chain-σ-complete poset and let P0 be a subset of
P . Assume that a relation R ⊆ P × P is conditionally σ-continuous
relative to P0. If 0 ∈ P0 and the set P0 ∩ R[0] is non-empty, then R

has a reflexive-point in P .
�

We discuss further modifications of the above definitions.



J. Czelakowski, Algebraic aspect of the back and forth method 9

Definition 5.

Let (P,≤) be a poset and let R1 and R2 be two binary relations on
P . Let P0 be a subset of P .

R1 and R2 are adjoint on P0 if :

(A1) (∀a1, b1 ∈ P0)[a1 ≤ b1 ∧ a1R1b1 →
(∃c1 ∈ P0)b1R2c1 ∧ b1 ≤ c1],

(A2) (∀a2, b2 ∈ P0)[a2 ≤ b2 ∧ a2R2b2 →
(∃c2 ∈ P0)b2R1c2 ∧ b2 ≤ c2].

R1 is then called the forth relation and R2 is the back relation.

(see the diagram below)
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R1 is the forth relation and R2 is the back relation.
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Definition 6. Let (P,≤) be a chain-σ-complete poset and let P0 be a
subset of P . A pair (R1, R2) of binary relations on P is σ-continuously
adjoint relative to P0 if R1 and R2 are adjoint on P0 and, furthermore,
for every chain

C = {an : n ∈ ω}

in P0 of type ≤ ω and for every monotone and expansive mapping
f : C → P0 such that

a2nR1f(a2n) and a2n+1R2f(a2n+1), for all n ∈ ω,

it is the case that:

sup(C)R1 sup(f [C]) and sup(C)R2 sup(f [C]). �

(The supremums sup(C) and sup(f [C]) need not belong to P0.
Furthermore, as f is expansive on C, we have that

sup(C) ≤ sup(f [C]).)
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An element a* ∈ P is a reflexive point (alias fixed-point) of the pair
(R1, R2) if a* is a reflexive point of both relations R1 and R2,

i.e., it is the case that a*R1a* and a*R2a*.

Theorem 7.

Let (P,≤) be a chain-σ-complete poset and let P0 be a subset of P .
Assume that a pair (R1, R2) of binary relations on P is σ-continuously
adjoint relative to P0.

If 0 ∈ P0 and the set P0∩R1[0] is non-empty, then the pair (R1, R2)
has a reflexive point in P .
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Proof.

We define a countable chain C (of type ω)

a0 ≤ a1 ≤ ... ≤ an ≤ an+1 ≤ ...

of elements of P0. We put a0 := 0. Let a1 be an arbitrary element of
P0 ∩ R1[0].

As

a0, a1 ∈ P0, a0 ≤ a1 and a0R1a1,

there exists, by (A1), an element a2 ∈ P0 such that

a1 ≤ a2 and a1R2a2.

Taking then the pair a1, a2 and applying (A2), we see that there exists
an element a3 ∈ P0 such that

a2 ≤ a3 and a2R1a3.
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Then applying (A1) to the pair a2, a3, we find an element a4 ∈ P0 such
that a3 ≤ a4 and a3R2a4. Continuing, we define an increasing chain

C = {an : n ∈ ω} in P0

such that a0R1a1R2a2R1a3R2a4...a2nR1a2n+1R2a2n+2...

The mapping f : C → C defined by f(an) := an+1, for all n ∈ ω,
is expansive and monotone. Furthermore

a2nR1f(a2n) and a2n+1R2f(a2n+1), for all n ∈ ω.

As the pair (R1, R2) is σ-continuously adjoint relative to P0, we have
that

sup(C)R1 sup(f [C]) and sup(C)R2 sup(f [C]).

Let a* := sup(C). Evidently, a* = sup(f [C]). So a*R1a* and
a*R2a*. This concludes the proof of the theorem. �
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As a simple (and somewhat trivial) application of Theorem 7 we give
a proof of the following Cantors theorem:

Theorem 8. Every two countable linear and dense orders without end
points are isomorphic.

Proof. Let (X1,≤1) and (X2,≤2) be two such orders. By a partial
isomorphism from (X1,≤1) to (X2,≤2) we mean any partial function
f : X1 → X2 such that f is injective on its domain Dom(f) and,
furthermore, for any elements x, y ∈ Dom(f),

x ≤1 y iff f(x) ≤1 f(y).

A partial isomorphism f : X1 → X2 is finite if its domain Dom(f) is a
finite set.

0 denotes the empty partial isomorphism.
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A (partial) isomorphism f is total if Dom(f) = X1 and the co-domain
CDom(f) is equal to X2.

Denote by P the set of all partial isomorphisms from (X1,≤1) to
(X2,≤2). P is partially ordered by the inclusion relation ⊆ between
partial isomorphisms. (Each partial isomorphism is a subset of the product
X1 × X2.)

The poset (P,⊆) is chain-σ-complete because the union of any ω-
chain of partial isomorphisms is a partial isomorphism. Furthermore, the
empty isomorphism 0 is the least element in (P,⊆).

We define two relations R1 and R2 on P . As X1 and X2 are countably
infinite, we can write

X1 = {an : n ∈ ω} and X2 = {bn : n ∈ ω}.
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Given partial isomorphisms f and g, we put :

fR1g iff either f is a total isomorphism and g = f or f is a finite
isomorphism and g = f ∪ {(am, bn)}, where

(1) m is the smallest i such that ai 6∈ Dom(f),
(2) n is the smallest j such that bj 6∈ CDom(f) and f ∪{(am, bj)}

is a partial isomorphism.

(Note that the choice of n depends on the definition of m.)

fR2g iff either f is a total isomorphism and g = f or f is a finite
isomorphism and g = f ∪ {(am, bn)}, where

(3) n is the smallest j such that bj 6∈ CDom(f),
(4) m is the smallest i such that ai 6∈ Dom(f) and f ∪ {(ai, bn)}

is a partial isomorphism.

(The choice of m depends on the definition of n.)
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Let P0 ⊆ P be the set of all finite isomorphisms. Using the fact that the
orders (X1,≤1) and (X2,≤2) are linear, dense, and without endponts,
it is easy to verify that

(R1, R2) is a back and forth pair of relations relative to P0

and

the pair (R1, R2) is σ-continuously adjoint relative to P0.

Evidently, the set P0 ∩ R1[0] is non-empty. Hence, applying Theorem
7, we obtain that the pair (R1, R2) has a fixed-point in (P,⊆), say f*.
It follows from the definition of R1 and R2 that f* is a total (bijective)
isomorphism between (X1,≤1) and (X2,≤2). �
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The case of directed-complete posets

Definition 9. Let (P,≤) be a poset. Two relations R1 and R2 defined
on P are adjoint if they are adjoint on the whole of P . The pair (R1, R2)
is then called an adjoint pair of relations.

R1 is called the forth relation and R2 is the back relation. �

If R1 = R2 = R, then it is easy to see that the pair (R,R) is adjoint if
and only if R is conditionally expansive.

Note. The definition of a back and forth pair of relations can be expressed
in terms of one relation (together with its inverse !), but defined on a
poset having a more complicated set-theoretic structure than (P,≤), viz.
the direct power P ×P . However, for didactical and conceptual reasons,
it is easier to work with posets having two binary relations defined on
them. �
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Before introducing the next definition we note the following simple
fact.

Lemma 10. Let (P,≤) be a directed-complete poset and let D1 and D2

be non-empty directed subsets of (P,≤). Furthermore, let f1 : D1 →
D2 and f2 : D2 → D1 be monotone mappings such that

(1) x ≤ f1(x) for all x ∈ D1,

(2) y ≤ f2(y) for all y ∈ D2.

Then

sup(D1) = sup(D2) = sup(f1[D1]) = sup(f2[D2]). �

The above lemma gives rise to the following definition.
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Definition 11. Let (P,≤) be a directed-complete poset and let R1 and
R2 be binary relations on P . The system (P,≤, R1, R2) is said to have
the back and forth property if :

(1) (R1, R2) is an adjoint pair;

(2) For every pair (D1,D2) of non-empty ≤-directed subsets of P

and for every pair (f1, f2) of monotone mappings f1 : D1 → D2,
f2 : D2 → D1 such that

(a) xR1f1(x) and x ≤ f1(x) for all x ∈ D1,

(b) yR2f2(y) and y ≤ f2(y) for all y ∈ D2

it is the case that

R1[a]∩ ↑a 6= ∅ and R2[a]∩ ↑a 6= ∅,

where a := sup(D1)

(= sup(D2) = sup(f1[D1]) = sup(f2[D2]) by Lemma 1 1). �
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Since in (2), f1 and f2 are monotone, the above lemma applies to the
above situation. Hence a satisfies the above equations. (2) states that
there exist elements b1, b2 ∈ P such that

a ≤ b1, aR1b1 and a ≤ b2, aR2b2.

Theorem 12. Let (P,≤) be a directed-complete poset and let R1 and
R2 be binary relations on P such that

(R1[0]∩ ↑0) ∪ (R2[0]∩ ↑0) 6= ∅.

If the system (P,≤, R1, R2) has the back and forth property, then the
pair (R1, R2) has a fixed-point a* in P . �

The basic idea of this and of many other proofs of fixed-point theorems
is based on the same cumulative scheme: one constructs a specialized
well-ordered chain of elements of a directed-complete poset and proves
the supremum of the chain is the required fixed- point.
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Back and forth mappings.

Definition 13. If F : P → P and G : P → P are mappings, then F

and G are said to be adjoint if the graphs of F and G form an adjoint
pair of relations. In this case F is the forth function and G is the back
function. �

It is easy to see that (F,G) is an adjoint pair of mappings if and only
if

(A1)funct (∀a ∈ P )[a ≤ F (a) implies F (a) ≤ G(F (a))]

and

(A2)funct (∀b ∈ P )[b ≤ G(b) implies G(b) ≤ F (G(b))].

In particular, if F and G coincide, then (F,F ) is an adjoint pair if and
only if F is conditionally expansive.
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If R1 and R2 are graphs of adjoint mappings

F1 : P → P , F2 : P → P ,

then condition (2) of Definition 11 says that for any non-empty
≤-directed sets D1,D2 ⊆ P such that

F1⌈D1 : D1 → D2, F2⌈D2 : D2 → D1,

if F1⌈D1 and F2⌈D2 are monotone,

x ≤ F1(x) for all x ∈ D1, and y ≤ F2(y) for all y ∈ D2,

then for a := sup(D1) (= sup(D2) = sup(F1[D1]) = sup(F2[D2])
it is the case that:

a ≤ F1(a) and a ≤ F2(a).
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Definition 14. If (P,≤) be a directed-complete poset and

F1 : P → P and F2 : P → P

are mappings, then we say that the system (P,≤, F1, F2) has the back
and forth property if and only if the system over (P,≤) formed from the
graphs of the above mappings has the back and forth property. �

Corollary 15.
Let (P,≤) be a directed-complete poset. Let F : P → P and

G : P → P be mappings such that the system (P,≤, F,G) has the
back and forth property. Then π has a fixed-point, i.e., there exists a*
in P such that F (a*) = G(a*) = a*.

�
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