TANCL07 Oxford, August 6 - 10, 2007

Janusz Czelakowski

University of Opole, Poland e-mail: jczel@math.uni.opole.pl

ALGEBRAIC ASPECTS OF THE BACK AND FORTH METHOD The purpose of this talk is to provide a general, abstract framework for some model-theoretic constructions, which is based on the order-oriented fixed-point theory.

The so called back and forth method is particularly useful in many branches of algebra and model theory (see e.g. Chang and Keisler [1973]). It dates back to the proof of the famous Cantor's theorem stating that any two countable linear dense orders without endpoints are isomorphic.

In a systematic way the back and forth method was studied by Fraïssé, Ehrenfeucht and others.

A plausible and general abstract formulation of the back and forth method in the context of the theory of reflexive points for ordered Kripke frames is presented.

Definition 1.

Let (P, \leq) be a poset and let $\pi : P \to P$ be a mapping.

 π is expansive if $x \leq \pi(x)$, for all $x \in P$.

- π is monotone if $x \leq y$ implies $\pi(x) \leq \pi(y)$, for all $x, y \in P$.
- π is conditionally expansive (or quasi-expansive) if

$$x \le \pi(x)$$
 implies $\pi(x) \le \pi(\pi(x))$, for all $x \in P$.

Every expansive mapping π is quasi-expansive and every monotone mapping π is quasi-expansive.

The notion of a conditionally expansive mapping is thus a generalization of the above two types of mappings associated with posets. The order-oriented fixed-point theory offers a variety of fixed-point theorems for monotone or expansive mappings.

Theoretical computer science also provides fixed-point theorems (alias reflexive point theorems) for binary relations defined on posets (J. Cai and R. Paige [1992], J. Desharnais and B. Möller [2005]).

Definition 2.

A binary relation R defined on a poset (P, \leq) is conditionally expansive (or quasi-expansive) if :

 $(\forall a, b \in P)[a \le b \land a R b \to (\exists c \in P)b R c \land b \le c]$

(see the diagram below). \Box

If R is the graph of a mapping $\pi : P \to P$, then the relation R is quasi-expansive in the above sense

if and only if

the mapping π is quasi-expansive.

A poset (P, \leq) is chain- σ -complete (or σ -inductive) if every chain in P of type $\leq \omega$ has a supremum.

Thus (P, \leq) is σ -inductive

if and only if

every chain in P of type ω has a supremum and (P,\leq) has zero 0 the supremum of the empty chain.

The case of chain- σ -complete posets

Definition 3. Let (P, \leq) be a chain- σ -complete poset and let P_0 be a subset of P. A binary relation R on P is conditionally σ -continuous relative to P_0 if:

(1) R is conditionally expansive on P_0 , i.e., for every pair $a, b \in P_0$ such that $a \leq b$ and aRb there exists $c \in P_0$ such that bRc and $b \leq c$.

(2) For every chain $C \subseteq P_0$ of type ω_0 and every monotone and expansive mapping $f : C \to P_0$, if aRf(a) for all $a \in C$, then $\sup(C)R\sup(f[C])$.

 $(\sup(C) \text{ and } \sup(f[C]) \text{ may not belong to } P_0.)$

 a^* is a reflexive point (or a fixed-point) of a relation R if a^*Ra^* .

Theorem 4.

Let (P, \leq) be a chain- σ -complete poset and let P_0 be a subset of P. Assume that a relation $R \subseteq P \times P$ is conditionally σ -continuous relative to P_0 . If $\mathbf{0} \in P_0$ and the set $P_0 \cap R[\mathbf{0}]$ is non-empty, then R has a reflexive-point in P.

We discuss further modifications of the above definitions.

Definition 5.

Let (P, \leq) be a poset and let R_1 and R_2 be two binary relations on P. Let P_0 be a subset of P.

 $\begin{array}{l} R_1 \text{ and } R_2 \text{ are adjoint on } P_0 \text{ if :} \\ \textbf{(A1)} \quad (\forall a_1, b_1 \in P_0)[a_1 \leq b_1 \wedge a_1 R_1 b_1 \rightarrow \\ \quad (\exists c_1 \in P_0) b_1 R_2 c_1 \wedge b_1 \leq c_1], \\ \textbf{(A2)} \quad (\forall a_2, b_2 \in P_0)[a_2 \leq b_2 \wedge a_2 R_2 b_2 \rightarrow \\ \quad (\exists c_2 \in P_0) b_2 R_1 c_2 \wedge b_2 \leq c_2]. \end{array}$

 R_1 is then called the forth relation and R_2 is the back relation. (see the diagram below) R_1 is the forth relation and R_2 is the back relation.

Definition 6. Let (P, \leq) be a chain- σ -complete poset and let P_0 be a subset of P. A pair (R_1, R_2) of binary relations on P is σ -continuously adjoint relative to P_0 if R_1 and R_2 are adjoint on P_0 and, furthermore, for every chain

 $C = \{a_n : n \in \omega\}$

in P_0 of type $\leq \omega$ and for every monotone and expansive mapping $f: C \to P_0$ such that

 $a_{2n}R_1f(a_{2n})$ and $a_{2n+1}R_2f(a_{2n+1})$, for all $n \in \omega$,

it is the case that:

 $\sup(C)R_1\sup(f[C])$ and $\sup(C)R_2\sup(f[C])$. \Box

(The supremums $\sup(C)$ and $\sup(f[C])$ need not belong to P_0 . Furthermore, as f is expansive on C, we have that

 $\sup(C) \le \sup(f[C]).)$

An element $a^* \in P$ is a reflexive point (alias fixed-point) of the pair (R_1, R_2) if a^* is a reflexive point of both relations R_1 and R_2 , i.e., it is the case that $a^*R_1a^*$ and $a^*R_2a^*$.

Theorem 7.

Let (P, \leq) be a chain- σ -complete poset and let P_0 be a subset of P. Assume that a pair (R_1, R_2) of binary relations on P is σ -continuously adjoint relative to P_0 .

If $\mathbf{0} \in P_0$ and the set $P_0 \cap R_1[\mathbf{0}]$ is non-empty, then the pair (R_1, R_2) has a reflexive point in P.

Proof.

We define a countable chain C (of type ω)

$$a_0 \le a_1 \le \dots \le a_n \le a_{n+1} \le \dots$$

of elements of P_0 . We put $a_0 := 0$. Let a_1 be an arbitrary element of $P_0 \cap R_1[0]$. As

 $a_0, a_1 \in P_0, a_0 \leq a_1 \text{ and } a_0 R_1 a_1$,

there exists, by (A1), an element $a_2 \in P_0$ such that

 $a_1 \le a_2 \text{ and } a_1 R_2 a_2.$

Taking then the pair a_1, a_2 and applying (A2), we see that there exists an element $a_3 \in P_0$ such that

 $a_2 \le a_3 \text{ and } a_2 R_1 a_3.$

Then applying (A1) to the pair a_2, a_3 , we find an element $a_4 \in P_0$ such that $a_3 \leq a_4$ and $a_3R_2a_4$. Continuing, we define an increasing chain

 $C = \{a_n : n \in \omega\} \text{ in } P_0$

such that $a_0R_1a_1R_2a_2R_1a_3R_2a_4...a_{2n}R_1a_{2n+1}R_2a_{2n+2}...$

The mapping $f: C \to C$ defined by $f(a_n) := a_{n+1}$, for all $n \in \omega$, is expansive and monotone. Furthermore

 $a_{2n}R_1f(a_{2n})$ and $a_{2n+1}R_2f(a_{2n+1})$, for all $n \in \omega$.

As the pair (R_1, R_2) is σ -continuously adjoint relative to P_0 , we have that

 $\sup(C)R_1\sup(f[C])$ and $\sup(C)R_2\sup(f[C])$.

Let $a^* := \sup(C)$. Evidently, $a^* = \sup(f[C])$. So $a^*R_1a^*$ and $a^*R_2a^*$. This concludes the proof of the theorem. \Box

As a simple (and somewhat trivial) application of Theorem 7 we give a proof of the following Cantors theorem:

Theorem 8. Every two countable linear and dense orders without end points are isomorphic.

Proof. Let (X_1, \leq_1) and (X_2, \leq_2) be two such orders. By a partial isomorphism from (X_1, \leq_1) to (X_2, \leq_2) we mean any partial function $f : X_1 \to X_2$ such that f is injective on its domain Dom(f) and, furthermore, for any elements $x, y \in Dom(f)$,

$$x \leq_1 y$$
 iff $f(x) \leq_1 f(y)$.

A partial isomorphism $f: X_1 \to X_2$ is finite if its domain Dom(f) is a finite set.

0 denotes the empty partial isomorphism.

A (partial) isomorphism f is total if $Dom(f) = X_1$ and the co-domain CDom(f) is equal to X_2 .

Denote by P the set of all partial isomorphisms from (X_1, \leq_1) to (X_2, \leq_2) . P is partially ordered by the inclusion relation \subseteq between partial isomorphisms. (Each partial isomorphism is a subset of the product $X_1 \times X_2$.)

The poset (P, \subseteq) is chain- σ -complete because the union of any ω chain of partial isomorphisms is a partial isomorphism. Furthermore, the empty isomorphism 0 is the least element in (P, \subseteq) .

We define two relations R_1 and R_2 on P. As X_1 and X_2 are countably infinite, we can write

$$X_1 = \{a_n : n \in \omega\} \text{ and } X_2 = \{b_n : n \in \omega\}.$$

Given partial isomorphisms f and g, we put :

 fR_1g iff either f is a total isomorphism and g = f or f is a finite isomorphism and $g = f \cup \{(a_m, b_n)\}$, where

(1) m is the smallest i such that $a_i \notin Dom(f)$,

(2) *n* is the smallest *j* such that $b_j \notin CDom(f)$ and $f \cup \{(a_m, b_j)\}$ is a partial isomorphism.

(Note that the choice of n depends on the definition of m.)

 fR_2g iff either f is a total isomorphism and g = f or f is a finite isomorphism and $g = f \cup \{(a_m, b_n)\}$, where

(3) n is the smallest j such that $b_j \not\in \mathsf{CDom}(f)$,

(4) *m* is the smallest *i* such that $a_i \notin Dom(f)$ and $f \cup \{(a_i, b_n)\}$ is a partial isomorphism.

(The choice of m depends on the definition of n.)

Let $P_0 \subseteq P$ be the set of all finite isomorphisms. Using the fact that the orders (X_1, \leq_1) and (X_2, \leq_2) are linear, dense, and without endponts, it is easy to verify that

 (R_1, R_2) is a back and forth pair of relations relative to P_0

and

the pair (R_1, R_2) is σ -continuously adjoint relative to P_0 .

Evidently, the set $P_0 \cap R_1[0]$ is non-empty. Hence, applying Theorem 7, we obtain that the pair (R_1, R_2) has a fixed-point in (P, \subseteq) , say f^* . It follows from the definition of R_1 and R_2 that f^* is a total (bijective) isomorphism between (X_1, \leq_1) and (X_2, \leq_2) . \Box

The case of directed-complete posets

Definition 9. Let (P, \leq) be a poset. Two relations R_1 and R_2 defined on P are adjoint if they are adjoint on the whole of P. The pair (R_1, R_2) is then called an adjoint pair of relations.

 R_1 is called the forth relation and R_2 is the back relation.

If $R_1 = R_2 = R$, then it is easy to see that the pair (R, R) is adjoint if and only if R is conditionally expansive.

Note. The definition of a back and forth pair of relations can be expressed in terms of one relation (together with its inverse !), but defined on a poset having a more complicated set-theoretic structure than (P, \leq) , viz. the direct power $P \times P$. However, for didactical and conceptual reasons, it is easier to work with posets having two binary relations defined on them. \Box

Before introducing the next definition we note the following simple fact.

Lemma 10. Let (P, \leq) be a directed-complete poset and let D_1 and D_2 be non-empty directed subsets of (P, \leq) . Furthermore, let $f_1 : D_1 \rightarrow D_2$ and $f_2 : D_2 \rightarrow D_1$ be monotone mappings such that

(1)
$$x \leq f_1(x)$$
 for all $x \in D_1$,

(2)
$$y \leq f_2(y)$$
 for all $y \in D_2$.

Then

 $\sup(D_1) = \sup(D_2) = \sup(f_1[D_1]) = \sup(f_2[D_2]).$

The above lemma gives rise to the following definition.

Definition 11. Let (P, \leq) be a directed-complete poset and let R_1 and R_2 be binary relations on P. The system (P, \leq, R_1, R_2) is said to have the back and forth property if :

(1) (R_1, R_2) is an adjoint pair;

(2) For every pair (D_1, D_2) of non-empty \leq -directed subsets of P and for every pair (f_1, f_2) of monotone mappings $f_1 : D_1 \rightarrow D_2$, $f_2 : D_2 \rightarrow D_1$ such that

(a) $xR_1f_1(x)$ and $x \leq f_1(x)$ for all $x \in D_1$,

(b) $yR_2f_2(y)$ and $y \leq f_2(y)$ for all $y \in D_2$

it is the case that

 $R_1[a] \cap \uparrow a \neq \emptyset$ and $R_2[a] \cap \uparrow a \neq \emptyset$,

where $a := \sup(D_1)$

 $(= \sup(D_2) = \sup(f_1[D_1]) = \sup(f_2[D_2])$ by Lemma 1 1). \Box

Since in (2), f_1 and f_2 are monotone, the above lemma applies to the above situation. Hence *a* satisfies the above equations. (2) states that there exist elements $b_1, b_2 \in P$ such that

 $a \leq b_1, aR_1b_1 \text{ and } a \leq b_2, aR_2b_2.$

Theorem 12. Let (P, \leq) be a directed-complete poset and let R_1 and R_2 be binary relations on P such that

 $(R_1[\mathbf{0}] \cap \uparrow \mathbf{0}) \cup (R_2[\mathbf{0}] \cap \uparrow \mathbf{0}) \neq \emptyset.$

If the system (P, \leq, R_1, R_2) has the back and forth property, then the pair (R_1, R_2) has a fixed-point a^* in P. \Box

The basic idea of this and of many other proofs of fixed-point theorems is based on the same cumulative scheme: one constructs a specialized well-ordered chain of elements of a directed-complete poset and proves the supremum of the chain is the required fixed- point.

Back and forth mappings.

Definition 13. If $F : P \to P$ and $G : P \to P$ are mappings, then F and G are said to be adjoint if the graphs of F and G form an adjoint pair of relations. In this case F is the forth function and G is the back function. \Box

It is easy to see that (F,G) is an adjoint pair of mappings if and only if

(A1)_{funct} $(\forall a \in P)[a \leq F(a) \text{ implies } F(a) \leq G(F(a))]$ and

(A2)_{funct} $(\forall b \in P)[b \leq G(b) \text{ implies } G(b) \leq F(G(b))].$

In particular, if F and G coincide, then (F, F) is an adjoint pair if and only if F is conditionally expansive.

If R_1 and R_2 are graphs of adjoint mappings

$$F_1: P \to P$$
, $F_2: P \to P$,

then condition (2) of Definition 11 says that for any non-empty \leq -directed sets $D_1, D_2 \subseteq P$ such that

$$F_1 \lceil D_1: D_1
ightarrow D_2$$
, $F_2 \lceil D_2: D_2
ightarrow D_1$,

if $F_1 \lceil D_1$ and $F_2 \lceil D_2$ are monotone,

 $x \leq F_1(x)$ for all $x \in D_1$, and $y \leq F_2(y)$ for all $y \in D_2$,

then for $a := \sup(D_1)$ (= $\sup(D_2) = \sup(F_1[D_1]) = \sup(F_2[D_2])$ it is the case that:

$$a \leq F_1(a)$$
 and $a \leq F_2(a)$.

Definition 14. If (P, \leq) be a directed-complete poset and

$$F_1: P \to P \text{ and } F_2: P \to P$$

are mappings, then we say that the system (P, \leq, F_1, F_2) has the back and forth property if and only if the system over (P, \leq) formed from the graphs of the above mappings has the back and forth property. \Box

Corollary 15.

Let (P, \leq) be a directed-complete poset. Let $F : P \to P$ and $G : P \to P$ be mappings such that the system (P, \leq, F, G) has the back and forth property. Then π has a fixed-point, i.e., there exists a^* in P such that $F(a^*) = G(a^*) = a^*$.

Bibliography

J. Cai and R. Paige [1992] Languages polynomial in the input plus output, in: Second International Conference on Algebraic Methodology and Software Technology (AMAST 91), Springer Verlag, London, 287-300.

C.C. Chang and H.J. Keisler [1973] Model Theory, North-Holland and American Elsevier, Amsterdam London New York.

J. Desharnais and B. Möller [2005] Least reflexive points of relations, Higher-Order and Symbolic Computation 18, 51-77.

J. Dugundji and A. Granas [1982] Fixed Point Theory, Monografie Matematyczne 61, PWN, Warsaw.

W.A. Kirk and B. Sims (eds.) [2001] Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht Boston London.

Y. N. Moschovakis [1994] Notes on Set Theory, Springer-Verlag, New York Berlin.

A. Tarski [1955] A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics 5, 285-309.