
ON THE ARCHIMEDEAN MULTIPLE-VALUED LOGIC ALGEBRAS

LAVINIA CORINA CIUNGU

Abstract. The Archimedean property is one of the most beautiful axioms of the
classical arithmetic and some of the methods of constructing the field of real numbers
are based on this property. It is well-known that every Archimedean `-group is abelian
and every pseudo-MV algebra is commutative. The aim of this paper is to introduce the
Archimedean property for pseudo-MTL algebras and FLw-algebras. The main results
consit of proving that there exist non-commutative Archimedean FLw-algebras. We
also prove that any locally finite FLw-algebra is Archimedean.

1. Introduction

The Archimedean property was stated by Archimedes in the following form: ”... the
following lemma is assumed: that the excess by which the greater of (two) unequal areas
exceeds the less can, by being added to itself, be made to exceed any given finite area”
([15], p.234). This is one of the most beautiful axioms of the classical arithmetic.
In the case of the field of real numbers, the Archimedean property can be formulated
as follows: for any real numbers a and b such that 0 < a < b, there exists n ∈ N such
that na > b.
Some of the methods of constructing the field of real numbers are based on Archimedean
properties (see [3]).
In the case of `-groups, the Archimedean property was investigated by many authors and
for the main results we refer the reader to [3]. For MV algebras this property was defined
in different, but equivalent ways by Dvurec̆enskij ([12]) and Belluce ([2]), while in the
case of pseudo-MV algebras it was defined by Dvurec̆enskij in [11]. In [4] and [5] there
were defined Archimedean BL algebras and Archimedean pseudo-BL algebras and there
were investigated some of their properties. In the same way we will define Archimedean
pseudo-MTL algebras and Archimedean FLw-algebras. A well-known result states that
every Archimedean `-group is abelian (see for example [3]). Dvurec̆enskij proved that
an Archimedean pseudo-MV algebra is commutative, i.e. an MV algebra ([10]). We will
show that, generally, an Archimedean residuated lattice and an Archimedean pseudo-
MTL algebra are not commutative. We also prove that any locally finite FLw-algebra
is Archimedean.

2. On the Archimedean property in residuated structures

A residuated lattice is an algebra A = (A,∧,∨,�,→, , 1) of the type (2, 2, 2, 2, 2, 0)
satisfying the following conditions:
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(A1) (A,∧,∨) is a lattice;
(A2) (A,�, 1) is a monoid;
(A3) x� y ≤ z iff x ≤ y → z iff y ≤ x z for any x, y, z ∈ A (pseudo-residuation).

A residuated lattice with a constant 0 (which can denote any element) is called a
full Lambek algebra or FL-algebra for short. The variety of all full Lambek algebras is
denoted by FL.
An important subvariety of FL is that of the FLw-algebras, that is the FL-algebras A
satisfying the condition 0 ≤ x ≤ 1 for all x ∈ A.
An FLw-algebra A is commutative if the operation � is commutative. It is easy to
see that A is commutative iff →= . The variety of all commutative FLw-algebras is
denoted by FLew.

A divisible FLw-algebra or R`-monoid is An FLw-algebraA = (A,∧,∨,�,→, , 0, 1)
satisfying the condition:

(A4) (x → y)� x = x� (x y) = x ∧ y (pseudo-divisibility).

A pseudo-MTL algebra or weak pseudo-BL algebra is an FLw-algebraA = (A,∧,∨,�,→
, , 0, 1) satisfying the condition:

(A5) (x → y) ∨ (y → x) = (x y) ∨ (y  x) = 1 (pseudo-prelinearity).
Pseudo-MTL algebras were introduced in [13] and their properties were also investigated
in [16].

A pseudo-BL algebra is an FLw-algebra A = (A,∧,∨,�,→, , 0, 1) satisfying the
axioms A4 and A5. Pseudo-BL algebras were introduced in [14] and their properties
were deeply investigated in [8] and [9].

Proposition 2.1. ([16], [13]), In any pseudo-MTL algebra A the following rules of
calculus hold:
(1) z � (x ∧ y) = (z � x) ∧ (z � y) and (x ∧ y)� z = (x� z) ∧ y � z);
(2) (x ∧ y)− = x− ∨ y− and (x ∧ y)∼ = x∼ ∨ y∼;
(3) (x ∨ y)−

∼
= x−

∼ ∨ y−
∼

and (x ∨ y)∼− = x∼− ∨ y∼−;
(4) z � (x1 ∧ x2 ∧ · · · ∧ xn) = (z � x1) ∧ (z � x2) ∧ · · · ∧ (z � xn) and

(x1 ∧ x2 ∧ · · · ∧ xn)� z = (x1 � z) ∧ (x2 � z) ∧ · · · ∧ (xn � z);
(5) x ∨ y = [(x → y) y] ∧ [(y → x) x] and

x ∨ y = [(x y) → y] ∧ [(y  x) → x];
(6) (x → y) → z ≤ ((y → x) → z) → z and

(x y) z ≤ ((y  x) z) z;
(7) (x → y) → z ≤ ((y → x) → z) z and

(x y) z ≤ ((y  x) z) → z;
(8) (x → y)n ∨ (y → x)n = 1 and (x y)n ∨ (y  x)n = 1,

for all x, y ∈ A and n ∈ N, n ≥ 1.

Definition 2.2. Let A be an FLw-algebra. A nonempty set F of A is called filter of L
if the following conditions hold:
(F1) If x, y ∈ F , then x� y ∈ F ;
(F2) If x ∈ F , y ∈ A, x ≤ y then y ∈ F.

Proposition 2.3. ([8]) If F is a filter of A then:
(F3) 1 ∈ F ;
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(F4) If x ∈ F , y ∈ A then y → x ∈ F , y  x ∈ F ;
(F5) If x, y ∈ F , then x ∧ y ∈ F .

Proposition 2.4. For a subset F of A the following are equivalent:
(a) F is a filter;
(b) 1 ∈ F and if x, x → y ∈ F , then y ∈ F ;
(c) 1 ∈ F and if x, x y ∈ F , then y ∈ F .

Definition 2.5. A proper filter of A is called maximal or ultrafilter if it is not strictly
contained in any other proper filter of A.
Denote Max(A) = {F | F is maximal filter of A}.

Theorem 2.6. ([9]) If H is a proper normal filter of A then the following are equivalent:
(1) H ∈ Max(A);
(2) For any x ∈ A, x /∈ H iff (xn)− ∈ H for some n ∈ N;
(3) For any x ∈ A, x /∈ H iff (xn)∼ ∈ H for some n ∈ N.

Definition 2.7. Let A be an FLw-algebra. A filter H of A is called normal if for any
x, y ∈ A, x → y ∈ H iff x y ∈ H.
We denote by Fn(A) the set of all normal filters of A.
We also denote be Maxn(A) the set of all maximal and normal filters of A.

Definition 2.8. An element a of the FLw-algebra A is called co-atom if a ≤ x < 1
implies x = a.
For any a ∈ A, the set ⊥a = {x ∈ A | x ∨ a = 1} is called the co-annihilator of a.
If X ⊆ A, then the set ⊥X = {a ∈ A | x ∨ a = 1 for any x ∈ X} is called the
co-annihilator of X.

Remark 2.9. It is obvious that:
(1) ⊥{1} = A, ⊥A = {1};
(2) For any a ∈ A and X ⊆ A, ⊥a and ⊥X are filters of A.

Proposition 2.10. If A is a pseudo-MTL algebra and a ∈ A, then ⊥a is a normal filter
of A.

Proof. Let’s suppose that x → y ∈⊥ a, that is (x → y) ∨ a = 1. We have:
y → x = (y → x) ∨ 1 = (y → x) ∨ (x → y) ∨ a = 1 ∨ a = 1, so y ≤ x.
It follows that y  x = 1 and taking into consideration that

(x y) ∨ (y  x) ∨ a = 1 ∨ a = 1,
we get (x y)∨ a = 1, that is x y ∈⊥ a. Similarly x y ∈⊥ a implies x → y ∈⊥ a.
Thus, ⊥a is a normal filter of A. �

Let A be an FLw-algebra. For any n ∈ N, x ∈ A we put x0 = 1 and xn+1 = xn� x =
x� xn. The order of x ∈ A, denoted ord(x) is the smallest n ∈ N such that xn = 0.
If there is no such n, then ord(x) = ∞.
An FLw-algebra A is locally finite if for any x ∈ A, x 6= 1 implies ord(x) < ∞.
Let B(A) be the set of all complemented elements of the lattice L(A) = (A,∧,∨, 0, 1).

Proposition 2.11. ([6]) If A be an FLw-algebra and H is a proper normal filter of A,
then the following are equivalent:
(1) H ∈ Maxn(A);
(2) A/H is locally finite.
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Lemma 2.12. ([7]) Let A be an FLw-algebra. Then, the following are equivalent:
(a) x ∈ B(A);
(b) x ∨ x− = 1 and x ∧ x− = 0;
(c) x ∨ x∼ = 1 and x ∨ x∼ = 0.

Proposition 2.13. ([7]) Let A be an FLw-algebra, x ∈ B(A) and n ∈ N, n ≥ 1. Then,
the following are equivalent:
(a) xn ∈ B(A);
(b) x ∨ (xn)− = 1 and x ∨ (xn)∼ = 1.

Proposition 2.14. ([7]) Let A be an FLw-algebra. If x ∈ A, n ∈ N, n ≥ 1 such that
xn ∈ B(A) and xn ≥ x− ∨ x∼, then x = 1.

Proposition 2.15. In any FLw-algebra the following are equivalent:
(a) xn ≥ x− ∨ x∼ for any n ∈ N implies x = 1;
(b) xn ≥ y− ∨ y∼ for any n ∈ N implies x ∨ y = 1.

Proof. (a) ⇒ (b) Take x, y ∈ A such that xn ≥ y− ∨ y∼ for any n ∈ N.
By the properties of FLw-algebras and by the hypothesis we have:

(x ∨ y)− = x− ∧ y− ≤ y− ≤ y− ∨ y∼ ≤ xn ≤ (x ∨ y)n

(x ∨ y)∼ = x∼ ∧ y∼ ≤ y∼ ≤ y− ∨ y∼ ≤ xn ≤ (x ∨ y)n,
hence (x ∨ y)n ≥ (x ∨ y)− ∨ (x ∨ y)∼ for any n ∈ N. Thus, by the hypothesis we get
x ∨ y = 1.
(b) ⇒ (a) Consider x ∈ A such that xn ≥ x− ∨ x∼ for any n ∈ N.
Taking y = x in (b) we get x ∨ x = 1, hence x = 1. �

Definition 2.16. an FLw-algebra is called Archimedean if one of the equivalent condi-
tions from the above proposition is satisfied.

Proposition 2.17. If in an Archimedean FLw-algebra A, xn ≥ y−∨ y∼ for any n ∈ N,
then x → y = x y = y.

Proof. By the properties of an FLw-algebra, if x, y ∈ A we have (see [6]):
(x ∨ y) ≤ [(x → y) y] ∧ [(y  x) → x]
(x ∨ y) ≤ [(x y) → y] ∧ [(y → x) x].

Since x ∨ y = 1, it follows that:
[(x → y) y] ∧ [(y  x) → x] = 1
[(x y) → y] ∧ [(y → x) x] = 1,

hence (x → y) y = 1 and (x y) → y = 1.
From (x → y)  y = 1 we have x → y ≤ y and taking into consideration that
y ≤ x → y, we obtain x → y = y.
Similarly, x y = y. �

Example 2.18. ([17]) Let’s take A = {0, a1, a2, s, a, b, n, c, d, m, 1} with 0 < a1 < a2 <
s < a, b < n < c, d < m < 1. Consider the operations �,→, given by the following
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tables:
� 0 a1 a2 s a b n c d m 1
0 0 0 0 0 0 0 0 0 0 0 0
a1 0 0 0 a1 a1 a1 a1 a1 a1 a1 a1

a2 0 a1 a2 a2 a2 a2 a2 a2 a2 a2 a2

s 0 a1 a2 s s s s s s s s
a 0 a1 a2 s s s s s s s a
b 0 a1 a2 s s s s s s s b
n 0 a1 a2 s s s s s s s n
c 0 a1 a2 s s s s s s s c
d 0 a1 a2 s s s s s s s d
m 0 a1 a2 s s s s s s s m
1 0 a1 a2 s a b n c d m 1

→ 0 a1 a2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1
a1 a1 1 1 1 1 1 1 1 1 1 1
a2 a1 a1 1 1 1 1 1 1 1 1 1
s 0 a1 a2 1 1 1 1 1 1 1 1
a 0 a1 a2 m 1 m 1 1 1 1 1
b 0 a1 a2 m m 1 1 1 1 1 1
n 0 a1 a2 m m m 1 1 1 1 1
c 0 a1 a2 m m m m 1 m 1 1
d 0 a1 a2 m m m m m 1 1 1
m 0 a1 a2 m m m m m m 1 1
1 0 a1 a2 s a b n c d m 1

 0 a1 a2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1
a1 a2 1 1 1 1 1 1 1 1 1 1
a2 0 a1 1 1 1 1 1 1 1 1 1
s 0 a1 a2 1 1 1 1 1 1 1 1
a 0 a1 a2 m 1 m 1 1 1 1 1
b 0 a1 a2 m m 1 1 1 1 1 1
n 0 a1 a2 m m m 1 1 1 1 1
c 0 a1 a2 m m m m 1 m 1 1
d 0 a1 a2 m m m m m 1 1 1
m 0 a1 a2 m m m m m m 1 1
1 0 a1 a2 s a b n c d m 1

Then, A = (A,∧,∨,�,→, , 0, 1) is an FLw-algebra. Since sn = s ≥ s− ∨ s∼ = 0 for
all n ∈ N, it follows that A is not an Archimedean FLw-algebra.

Definition 2.19. An element x ∈ A is called Archimedean if there is n ∈ N, n ≥ 1
such that xn ∈ B(A).
An FLw-algebra A is called hyperarchimedean if all its elements are Archimedean.
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Proposition 2.20. If a ∈ A is an Archimedean co-atom of the FLw-algebra A, then
⊥a is a maximal filter of A.

Proof. Since a is Archimedean, then there is n ∈ N, n ≥ 1 such that an ∈ B(A).
According to Proposition 2.13 we have a ∨ (an)− = 1, so (an)− ∈⊥ a.

Consider x /∈⊥ a, that is x ∨ a 6= 1, so a ≤ x ∨ a < 1.
Since a is a co-atom, we get a = x ∨ a ≥ x. It follows that an ≥ xn, so (xn)− ≥ (an)−,
so (xn)− ∈⊥ a. Applying Theorem 2.6 we conclude that ⊥a is a maximal filter of A. �

Example 2.21. Consider FLw-algebra A from Example 2.18.
Since a2

1 = 0 ∈ B(A), it follows that a1 is Archimedean.
By contrast, an

2 = a2 /∈ B(A) for all n ∈ N, n ≥ 1, so a2 is not Archimedean.
Thus, A is not a hyperarchimedean FLw-algebra.

Proposition 2.22. Every locally finite FLw-algebra is hyperarchimedean.

Proof. Let A be a locally finite FLw-algebra algebra and x ∈ A. Hence, there exists
n ∈ N such that xn = 0 ∈ B(A). It follows that any element x of A is Archimedean, so
A is hyperarchimedean. �

Corollary 2.23. Every hyperarchimedean FLw-algebra is Archimedean.

Proof. Let A be a hyperarchimedean FLw-algebra and x ∈ A such that xn ≥ x− ∨ x∼

for any n ∈ N. Since A is hyperarchimedean, there exists m ∈ N, m ≥ 1 such that xm ∈
B(A). According to Proposition 2.14 it follows that x = 1, so A is Archimedean. �

Corollary 2.24. Every locally finite FLw-algebra is Archimedean.

Proof. It follows from Proposition 2.22 and Corollary 2.23. �

Proposition 2.25. For any commutative FLw-algebra A the following properties are
equivalent:
(a) A is Archimedean;
(b) xn ≥ y− for any n ∈ N implies x → y = y and y → x = x.

Proof. (a) ⇒ (b). Let x, y ∈ A such that xn ≥ y− for any n ∈ N.
By the hypothesis we have:

(x ∨ y)− = x− ∧ y− ≤ y− ≤ xn ≤ (x ∨ y)n,

hence, by the hypothesis, we get x ∨ y = 1.
Since in any FLw-algebra we have x ∨ y ≤ [(x → y) → y] ∧ [(y → x) → x] (see [6]) and
taking in consideration that x∨y = 1, it follows that [(x → y) → y]∧[(y → x) → x] = 1,
hence (x → y) → y = 1 and (y → x) → x = 1.
From (x → y) → y = 1, we have x → y ≤ y and considering that y ≤ x → y we obtain
x → y = y. Similarly, y → x = x.
(b) ⇒ (a): Consider x ∈ A such that xn ≥ x−, for any n ∈ N.
By the hypothesis we obtain x → x = x, hence x = 1.
Thus, A is Archimedean. �

Proposition 2.26. For any pseudo-MTL algebra A the following are equivalent:
(a) A is Archimedean;
(b) xn ≥ y− ∨ y∼ for any n ∈ N implies x → y = x y = y.
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Proof. (a) ⇒ (b) Assume that xn ≥ y− ∨ y∼ for any n ∈ N.
Since A is Archimedean, it follows that x ∨ y = 1. For x, y ∈ A we have (see [16]):

(x ∨ y) = [(x → y) y] ∧ [(y  x) → x]

(x ∨ y) = [(x y) → y] ∧ [(y → x) x].

Since x ∨ y = 1, it follows that:

[(x → y) y] ∧ [(y  x) → x] = 1,

[(x y) → y] ∧ [(y → x) x] = 1,

hence (x → y) y = 1 and (x y) → y = 1.
From (x → y)  y = 1 we have x → y ≤ y and taking into consideration that
y ≤ x → y, we obtain x → y = y. Similarly, x y = y.
(b) ⇒ (a) Consider x ∈ A such that xn ≥ x− ∨ x∼ for any n ∈ N.
Taking y = x in (b) we get x → x = x, hence x = 1. Thus, A is Archimedean. �

Example 2.27. Let’s consider A = {0, a, b, c, 1} where 0 < a < b < c < 1 and the
operations �,→, given by the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 a a c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b b c 1 1 1
c b c c 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 1 1
c a c c 1 1
1 0 a b c 1

.

Then, A = (A,∧,∨,�,→, , 0, 1) is a pseudo-MTL algebra and we have:

ord(0) = 1, ord(a) = 2, ord(b) = 2, ord(c) = 3.

Thus, A is a locally finite pseudo-MTL algebra, so it is Archimedean and hyperar-
chimedean.

Example 2.28. Let’s consider A = {0, a, b, c, 1} with 0 < a < b, c < 1, but b, c are
incomparable. Consider also the operations �,→, given by the following tables:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 a 0 a
b 0 0 b 0 b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b 0 c 1 c 1
c b b b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 c 1
c 0 b b 1 1
1 0 a b c 1

.

Then, A = (A,∧,∨,�,→, , 0, 1) is a pseudo-MTL algebra.
Since a2 = 0 ∈ B(A), it follows that a is Archimedean. By contrast, bn = b /∈ B(A)
for all n ∈ N, n ≥ 1, so b is not Archimedean. Thus, A is not a hyperarchimedean
pseudo-MTL algebra.

We give an example of Archimedean pseudo-MTL algebra which is not a chain and
is not a hyperarchimedean pseudo-MTL algebra.

Example 2.29. (Archimedean, but not hyperarchimedean pseudo-MTL algebra).
Let’s consider the pseudo-MTL algebra A from Example 2.28 . We have:

0n = 0 � 0− ∨ 0∼ = 1 ∨ 1 = 1, n ≥ 1
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an = 0 � a− ∨ a∼ = b ∨ c = 1, n ≥ 2

bn = b � b− ∨ b∼ = 0 ∨ c = c, n ≥ 1

cn = c � c− ∨ c∼ = b ∨ 0 = b, n ≥ 1

1n = 1 ≥ 1− ∨ 1∼ = 0 ∨ 0 = 0, n ≥ 1.

We conclude that, if xn ≥ x− ∨ x∼ for all n ∈ N, n ≥ 1, then x = 1.
Hence, A is an Archimedean pseudo-MTL algebra.
In Example 2.28 we showed that A is not a hyperarchimedean pseudo-MTL algebra.

Remark 2.30. By Examples 2.27 and 2.29 we proved that, generally, an Archimedean
pseudo-MTL algebra is not commutative. Obviously, this result is also valid in the case
of FLw-algebras.
This result seems to be important, taking in consideration the known results in the case
of other structures: any Archimedean `-group is abelian ([3]) and any Archimedean
pseudo MV-algebra is an MV-algebra, so it is commutative ([10])).

Open problem 2.31. Find an Archimedean pseudo-BL algebra which is not commu-
tative.

Theorem 2.32. If A is a pseudo-MTL algebra and a ∈ A an Archimedean co-atom of
A, then A/⊥a is Archimedean and hyperarchimedean.

Proof. According to Propositions 2.10 and 2.20, ⊥a ∈ Maxn(A). Applying Proposition
2.11 if follows that A/⊥a is a locally finite pseudo-MTL algebra. Finally, by Proposition
2.22 and Corollary 2.24 we conclude that A/⊥a is Archimedean and hyperarchimedean.

�

Let’s consider the case of a FLew-algebra.

Proposition 2.33. For any FLew-algebra A the following properties are equivalent:
(a) A is Archimedean;
(b) xn ≥ y− for any n ∈ N implies x → y = y and y → x = x.

Proof. (a) ⇒ (b). Let x, y ∈ A such that xn ≥ y− for any n ∈ N.
By (rl − c10) and by the hypothesis we have:

(x ∨ y)− = x− ∧ y− ≤ y− ≤ xn ≤ (x ∨ y)n,

hence, by the hypothesis, we get x ∨ y = 1.
By (rl − c18) we have x ∨ y ≤ [(x → y) → y] ∧ [(y → x) → x].
Since x ∨ y = 1, it follows that [(x → y) → y] ∧ [(y → x) → x] = 1,
hence (x → y) → y = 1 and (y → x) → x = 1.
From (x → y) → y = 1, we have x → y ≤ y and considering that y ≤ x → y we obtain
x → y = y. Similarly, y → x = x.
(b) ⇒ (a): Consider x ∈ A such that xn ≥ x−, for any n ∈ N.
By the hypothesis we obtain x → x = x, hence x = 1.
Thus, A is Archimedean. �

We will give bellow one example of Archimedean FLew-algebra.



ON THE ARCHIMEDEAN MULTIPLE-VALUED LOGIC ALGEBRAS 9

Example 2.34. ([18]) Let’s consider A = {0, a, b, c, d, 1} with 0 < a < b, c < d < 1 and
b, c incomparable. Define the operations �,→ by the following tables:

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 0 0 0 b
c 0 0 0 0 0 c
d 0 0 0 0 0 d
1 0 a b c 1 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 1 1 1
b d d 1 d 1 1
c d d d 1 1 1
d d d d d 1 1
1 0 a b c d 1

.

Then, A = (A,∧,∨,�,→, 0, 1) is a proper FLew-algebra.
Indeed, since (b → c) � b = 0 6= a = b ∧ c, it follows that the condition (B4) is not
satisfied, so A is neither a BL algebra nor a divisible residuated lattice.
Moreover, (b → c) ∨ (c → b) = d 6= 1, so A is not an MTL algebra.
(In fact, A is a FLew-algebra with weak nilpotent minimum(WNM) and (C∨) conditions:

(WNM): (x� y)− ∨ [(x ∧ y) → (x� y)] = 1
(C∨) : x ∨ y = [(x → y) → y] ∧ [(y → x) → x]).

We have:

0n = 0 � 0− = 1, n ≥ 1

an = 0 � a− = d, n ≥ 2

bn = 0 � b− = d, n ≥ 2

cn = 0 � c− = d, n ≥ 2

dn = 0 � d− = d, n ≥ 2

1n = 1 ≥ 1− = 0, n ≥ 1.

We conclude that, if xn ≥ x− for all n ∈ N, n ≥ 1, then x = 1. Hence, A is an
Archimedean FLew-algebra.

We will give bellow an example of not Archimedean FLew-algebra.

Example 2.35. Consider the FLew-algebra A = (A,∧,∨,�,→, 0, 1) defined on the
unit interval A = [0, 1] with the operations (see [21]):

x� y =

{
0, if x + y ≤ 1

2
x ∧ y, otherwise

x → y =

{
1, if x ≤ y

max{1
2
− x, y}, otherwise

Since (1
3
)n = 1

3
> 1

6
= (1

3
)− for al n ∈ N and 1

3
6= 1, it follows that A is not Archimedean.
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