Quantifiers on m-semilattices

Jānis Cirulis
University of Latvia
jc@lanet.lv

TANCL'07, Oxford, 6-9 August, 2007

Contents

(The aim is not to algebraize some strange first-order logic, but to find out how weak an algebraic structure may be to admit a reasonable theory of an existential quantifier.)

BOOLEAN QUANTIFIERS: THE BASIC FACTS

A) Definition
B) Algebraic duality
C) Kripke duality
D) Halmos duality
E) Functional representation

QUANTIFIERS ON DISTRIBUTIVE LATTICES A), B), C), D), E)

M-SEMILATTICES

QUANTIFIERS ON M-SEMILATTICES
A) , B) C) D) (?)

BOOLEAN QUANTIFIERS: Basic facts

- A: Definition

A quantifier on a Boolean algebra A is an operation ∇ such that

$$
\begin{aligned}
& \nabla 0=0 \\
& a \leq \nabla a \\
& \nabla(a \wedge \nabla b)=\nabla a \wedge \nabla b
\end{aligned}
$$

- B: Algebraic properties
- Every quantifier is a completely additive closure operator.
- An operation ∇ on A is a quantifier iff it is an additive closure operator whose range is a subalgebra of A.
- There is a bijection (algebraic duality) between quantifiers on A and relatively complete subalgebras A_{0} of A (where $\min \left\{x \in A_{0}: a \leq x\right\}$ exists for every $a \in A$):
$\nabla^{*}:=\operatorname{ran} \nabla \quad\left(A_{0}\right)^{*}(a):=\min \left\{x \in A_{0}: a \leq x\right\}$.
- Quantifiers and equivalence relations I
- There is a bijection (Kripke duality) between the set of binary relations on $Y \times X$ and the set of completely additive mappings of $\mathcal{P}(X) \rightarrow$ $\mathcal{P}(Y)$: if
R is a binary relation on $Y \rightarrow X$,
h is a completely additive selfmap of

$$
\mathcal{P}(X) \rightarrow \mathcal{P}(Y)
$$

then

$$
\begin{aligned}
& v h^{*} u: \equiv v \in h(\{u\}) \\
& v \in R^{*}(M): \equiv v R u \text { for some } u \in M
\end{aligned}
$$

- h is a quantifier iff h^{*} is an equivalence.
- Quantifiers and equivalence relations II
- There is a bijection (Halmos duality) between ($\vee, 0$)-preserving mappings $h: A \rightarrow B$ and certain topologically well-behaved relations R on $S(B) \times S(A)$ (Stone spaces of B an of A).
- h is a quantifier iff the corresponding relation is an equivalence.
- Functional representation:
- A monadic algebra is a pair (A, ∇), where A is a Boolean algebra and ∇ is quantifier on A.
- B - a Boolean algebra, X - a set.
A - a Boolean subalgebra of B_{X} such that for every $p \in A$ there is $q \in A$ satisfying $q(x)=\bigvee(p(y): y \in X)$.
The standard quantifier on A :
$\exists p:=q$;
(A, \exists) - a functional monadic algebra.
- Every monadic Boolean algebra is embeddable into a monadic functional algebra.

QUANTIFIERS ON DISTRIBUTIVE LATTICES

- A: Definition

A quantifier on a distributive lattice A is an operation ∇ such that
$\nabla(a \vee b)=\nabla a \vee \nabla b$,
$\nabla 0=0$,
$a \leq \nabla a$,
$\nabla(a \wedge \nabla b)=\nabla a \wedge \nabla b$.

- B: Algebraic properties
- A quantifier is an additive closure operator, but need not be completely additive.
- The range of a quantifier is a sublattice of A, which need not be relatively complete: the algebraic duality fails.
- It still holds for Heyting algebras.
- C: Quantifiers and equivalences I
- Kripke duality holds.
- D: Quantifiers and equivalences II Halmos duality (modified) holds:
- There is a bijection between quantifiers on a distributive lattice and certain topologically well-behaved equivalences on its Priestley space.
- E: Functional representation
- No representation theorem for monadic, or Q-distributive, lattices is known to the author.
- There is a representation theorem for monadic Heyting algebras with both existential and universal quantifiers.
(Halmos techniques does not work in full.)

MULTIPLICATIVE SEMILATTICES

- M-semilattice:
algebra $(A, \vee, \cdot, 0)$, where
- $(A, \vee, 0)$ is a join semilattice with the least element,
- ($A, \cdot, 0$) is a groupoid with absorbing zero,
- multiplication . is left and right distributive over \vee.
- An m-semilattice A is
- commutative or associative if multiplication is commutative, resp., associative,
- unital if it has two-side multiplicative unit 1 ,
- integral if it is unital and 1 is the greatest element in A,
- an idempotent semiring or dioid if it is unital and associative,
- infinitely distributive if multiplication is left and right distributive over all existing joins,
- complete if arbitrary joins exist,
- (left) residuated if, for all y and z, the subset $\{x: x y \leq z\}$ has the maximal element $y \rightarrow z$, - biresiduated if it is left and right residuated.
- A complete and infinitely distributive semilattice monoid is known as a quantale.
A complete m-semilattice is left residuated iff it is infinitely right distributive.

Example 1. A bounded distributive lattice is a commutative integral dioid.
Example 2. In an MV-algebra ($A, \oplus, \odot, \neg, 0,1$), the reduct $(A, \vee, \odot, 0,1)$ is a commutative integral dioid. It is even residuated with

$$
x \rightarrow y:=\neg(x \odot \neg y)
$$

- MV-algebra is a particular residuated dioid: $(A, \vee, \odot, \rightarrow, 0,1)$.

QUANTIFIERS ON M-SEMILATTICES

A - an integral m-semilattice.

- A: Definition

A (left) quantifier on A is an operation ∇ on A such that

$$
\begin{aligned}
& \nabla(x \vee y)=\nabla x \vee \nabla y \\
& \nabla 0=0 \\
& x \leq \nabla x \\
& \nabla(x \nabla y)=\nabla x \nabla y .
\end{aligned}
$$

∇ is completely additive if it preserves all exixting joins.

B: Algebraic properties

- A quantifier is an additive closure operator, but need not be completely additive.
- The range of a quantifier is a subalgebra of A, which need not be relatively complete: the algebraic duality fails.
- Theorem 1. In a residuated m-semilattice A, an operation ∇ is a quantifier iff it is an additive closure operation whose range is a subalgebra of A.
If it is the case, then ∇ is completely additive iff the subalgebra is complete, i.e., closed under all existing joins.
- So, algebraic duality holds true for residuated m-semilattices.
- C: Equivalence and quantifiers I Kripke duality holds in a modified form for function algebras instead of powersets (see the next slide).
- D: Quantifiers and equivalences II

A programm for future (fuzzification) (see slide 14).

Functional m-semilattices

B - an integral m-semilattice,
U - a non-empty set.
Then B^{U} is an integral m-semilattice with pointwise defined operations.
If B is (bi)residuated, then so is B^{U}.
Functions in B^{U} admit left and right multiplication by elements of B.

Kripke duality in algebras of functions

B - complete.
U, V - sets.

- A hemimorphism from B^{U} to B^{V} is a $(\vee, 0)$ preserving map $h: B^{U} \rightarrow B^{V}$.
A hemimorphism $h: B^{U} \rightarrow B^{V}$ is (right) linear if $h(p) \cdot b=h(p \cdot b)$.
- A completely additive quantifier on B^{U} is linear iff its range contains all constant functions.
- A B-relation on $V \times U$ is a mapping
$\mu: V \times U \rightarrow B$
identified with the family of functions $\mu_{v} \in B^{U}$:

$$
\mu_{v}(u):=\mu(v, u)
$$

- The B-identity on U is a B-relation η defined by

$$
\begin{aligned}
& \eta_{u}\left(u^{\prime}\right):=1 \text { if } u^{\prime}=u \\
& \eta_{u}\left(u^{\prime}\right):=0 \text { otherwise. }
\end{aligned}
$$

- The full B-relation $\omega: V \times U$ is defined by

$$
\omega_{v}(u):=1
$$

- The dual of h - the relation h^{*} on $V \rightarrow U$ such that

$$
h^{*}(v, u)=h\left(\eta_{u}\right)(v)
$$

- The dual of μ - the mapping $\mu^{*}: B^{U} \rightarrow B^{V}$ such that

$$
\mu^{*}(p)(v)=\bigvee\left(\mu_{v}(u) p(u): u \in U\right)
$$

- Theorem 2. This duality is a bijection between linear completely additive hemimorphisms $B^{U} \rightarrow B^{V}$ and B-relations on $V \times U$.
- A B-relation λ on U is an B-equivalence if it satisfies the conditions
(E1) $\lambda(u, u)=1$,
(E2) $\lambda\left(u, u^{\prime}\right) \lambda\left(u^{\prime}, u^{\prime \prime}\right)=\lambda\left(u, u^{\prime}\right) \lambda\left(u, u^{\prime \prime}\right)$.
- A B-equivalence is symmetric and transitive:
(E3) $\lambda\left(u, u^{\prime}\right)=\lambda\left(u^{\prime}, u\right)$,
(E4) $\lambda\left(u, u^{\prime}\right) \lambda\left(u^{\prime}, u^{\prime \prime}\right) \leq \lambda\left(u, u^{\prime \prime}\right)$.
- λ is strong, if instead of (E2), a stronger condition

$$
\begin{array}{r}
\lambda\left(u, u^{\prime}\right) b_{1} \cdot \lambda\left(u^{\prime}, u^{\prime \prime}\right) b_{2}=\lambda\left(u, u^{\prime}\right) b_{1} \cdot \lambda\left(u, u^{\prime \prime}\right) b_{2} \\
\text { is fulfilled for all } b_{1}, b_{2} \in B .
\end{array}
$$

- B-identity η is a strong equivalence.
- The full relation ω is a strong equivalence.
- If B is commutative and associative, then every equivalence is strong.
- Theorem 3. If B is infinitely distributive, then the dual of a competely additive linear quantifier is a strong B-equivalence, and conversely.
- Corollary. If B is a quantale, then the dual of a linear complete quantifier is a B-equivalence, and conversely.

Towards a fuzzy Halmos-style duality (an outline)

Generally, an m-semilattice cannot be represented as an algebra of subsets of any space.

- $A-$ an integral dioid,
- $A \subset \Pi\left(B_{i}: i \in U\right)-A$ is a subdirect product of subdirectly irreducible integral dioids B_{i},
- B - a minimal (in a certain strict sense) quantale in which all B_{i} are embedded.
(If A is a distributive lattice, then B is the two-element lattice 2.)
U replaces the prime ideal space of A.
- A quantifier on A induces a strong B-equivalence on U.
- Problem. Is this transformation injective?
- A subset τ of B_{U} is a fuzzy topology on U if it is closed under • and arbitrary joins, and contains all constant functions. Thus, τ is a sub-quantale of B^{U}.
- A is embedded in B^{X}, and induces a subbase of some fuzy topology τ on U.
- Problem. Is the B-relation induced by a quantifier on A topologically well-behaved w.r.t. τ ?

