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BOOLEAN QUANTIFIERS:

Basic facts

• A: Definition
A quantifier on a Boolean algebra A is an op-
eration ∇ such that
∇0 = 0,
a ≤ ∇a,
∇(a ∧∇b) = ∇a ∧∇b.

• B: Algebraic properties
¦ Every quantifier is a completely additive clo-
sure operator.
¦ An operation ∇ on A is a quantifier iff it is
an additive closure operator whose range is a
subalgebra of A.
¦ There is a bijection (algebraic duality) be-
tween quantifiers on A and relatively complete
subalgebras A0 of A (where min{x ∈ A0: a ≤ x} ex-

ists for every a ∈ A):
∇∗ := ran ∇ (A0)

∗(a) := min{x ∈ A0: a ≤ x}.
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• Quantifiers and equivalence relations I
¦ There is a bijection (Kripke duality) between

the set of binary relations on Y × X and the

set of completely additive mappings of P(X) →
P(Y ): if

R is a binary relation on Y → X,

h is a completely additive selfmap of

P(X) → P(Y ),

then

v h∗ u :≡ v ∈ h({u}),
v ∈ R∗(M) :≡ v R u for some u ∈ M .

¦ h is a quantifier iff h∗ is an equivalence.

• Quantifiers and equivalence relations II
¦ There is a bijection (Halmos duality) between

(∨,0)-preserving mappings h: A → B and cer-

tain topologically well-behaved relations R on

S(B)× S(A) (Stone spaces of B an of A).

¦ h is a quantifier iff the corresponding relation

is an equivalence.
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• Functional representation:
¦ A monadic algebra is a pair (A,∇), where A

is a Boolean algebra and ∇ is quantifier on A.

¦ B – a Boolean algebra, X – a set.

A – a Boolean subalgebra of BX such that

for every p ∈ A there is q ∈ A satisfying

q(x) =
∨
(p(y): y ∈ X).

The standard quantifier on A:

∃p := q;

(A, ∃) – a functional monadic algebra.

¦ Every monadic Boolean algebra is embed-

dable into a monadic functional algebra.
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QUANTIFIERS ON DISTRIBUTIVE

LATTICES

• A: Definition

A quantifier on a distributive lattice A is an

operation ∇ such that

∇(a ∨ b) = ∇a ∨∇b,

∇0 = 0,

a ≤ ∇a,

∇(a ∧∇b) = ∇a ∧∇b.

• B: Algebraic properties
¦ A quantifier is an additive closure operator,

but need not be completely additive.
¦ The range of a quantifier is a sublattice of

A, which need not be relatively complete: the

algebraic duality fails.
¦ It still holds for Heyting algebras.
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• C: Quantifiers and equivalences I
¦ Kripke duality holds.

• D: Quantifiers and equivalences II

Halmos duality (modified) holds:
¦ There is a bijection between quantifiers on

a distributive lattice and certain topologically

well-behaved equivalences on its Priestley space.

• E: Functional representation
¦ No representation theorem for monadic, or

Q-distributive, lattices is known to the author.
¦ There is a representation theorem for monadic

Heyting algebras with both existential and uni-

versal quantifiers.

(Halmos techniques does not work in full.)
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MULTIPLICATIVE SEMILATTICES

• M-semilattice:
algebra (A,∨, ·,0), where
¦ (A,∨,0) is a join semilattice with the least

element,
¦ (A, ·,0) is a groupoid with absorbing zero,
¦ multiplication · is left and right distributive

over ∨.

• An m-semilattice A is
¦ commutative or associative if multiplication
is commutative, resp., associative,
¦ unital if it has two-side multiplicative unit 1,
¦ integral if it is unital and 1 is the greatest
element in A,
¦ an idempotent semiring or dioid if it is unital
and associative,
¦ infinitely distributive if multiplication is left
and right distributive over all existing joins,
¦ complete if arbitrary joins exist,
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¦ (left) residuated if, for all y and z, the subset

{x: xy ≤ z} has the maximal element y → z,
¦ biresiduated if it is left and right residuated.

• A complete and infinitely distributive semi-

lattice monoid is known as a quantale.

A complete m-semilattice is left residuated

iff it is infinitely right distributive.

Example 1. A bounded distributive lattice is

a commutative integral dioid.

Example 2. In an MV-algebra (A,⊕,¯,¬,0,1),

the reduct (A,∨,¯,0,1) is a commutative in-

tegral dioid. It is even residuated with

x → y := ¬(x¯ ¬y)
¦ MV-algebra is a particular residuated dioid:

(A,∨,¯,→,0,1).
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QUANTIFIERS ON M-SEMILATTICES

A – an integral m-semilattice.

• A: Definition

A (left) quantifier on A is an operation ∇ on

A such that

∇(x ∨ y) = ∇x ∨∇y,

∇0 = 0,

x ≤ ∇x,

∇(x∇y) = ∇x∇y.

∇ is completely additive if it preserves all exix-

ting joins.

B: Algebraic properties
¦ A quantifier is an additive closure operator,

but need not be completely additive.
¦ The range of a quantifier is a subalgebra of

A, which need not be relatively complete: the

algebraic duality fails.
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¦ Theorem 1. In a residuated m-semilattice A,

an operation ∇ is a quantifier iff it is an additive

closure operation whose range is a subalgebra

of A.

If it is the case, then ∇ is completely additive iff

the subalgebra is complete, i.e., closed under

all existing joins.

¦ So, algebraic duality holds true for residuated

m-semilattices.

• C: Equivalence and quantifiers I

Kripke duality holds in a modified form for

function algebras instead of powersets (see the

next slide).

• D: Quantifiers and equivalences II

A programm for future (fuzzification) (see slide 14).
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Functional m-semilattices

B – an integral m-semilattice,
U – a non-empty set.

Then BU is an integral m-semilattice with point-

wise defined operations.
If B is (bi)residuated, then so is BU .

Functions in BU admit left and right multipli-

cation by elements of B.

Kripke duality in algebras of functions

B – complete.

U, V – sets.

¦ A hemimorphism from BU to BV is a (∨,0)-

preserving map h : BU → BV .

A hemimorphism h : BU → BV is (right) linear

if h(p) · b = h(p · b).
¦ A completely additive quantifier on BU is lin-

ear iff its range contains all constant functions.
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¦ A B-relation on V × U is a mapping

µ: V × U → B

identified with the family of functions µv ∈ BU :

µv(u) := µ(v, u).
¦ The B-identity on U is a B-relation η defined

by

ηu(u′) := 1 if u′ = u,

ηu(u′) := 0 otherwise.
¦ The full B-relation ω: V × U is defined by

ωv(u) := 1.

¦ The dual of h – the relation h∗ on V → U

such that

h∗(v, u) = h(ηu)(v).
¦ The dual of µ – the mapping µ∗: BU → BV

such that

µ∗(p)(v) =
∨
(µv(u)p(u): u ∈ U).

¦ Theorem 2. This duality is a bijection be-

tween linear completely additive hemimorphisms

BU → BV and B-relations on V × U .
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¦ A B-relation λ on U is an B-equivalence if it
satisfies the conditions
(E1) λ(u, u) = 1,
(E2) λ(u, u′)λ(u′, u′′) = λ(u, u′)λ(u, u′′).

¦ A B-equivalence is symmetric and transitive:
(E3) λ(u, u′) = λ(u′, u),
(E4) λ(u, u′)λ(u′, u′′) ≤ λ(u, u′′).

¦ λ is strong, if instead of (E2), a stronger
condition

λ(u, u′)b1 · λ(u′, u′′)b2 = λ(u, u′)b1 · λ(u, u′′)b2
is fulfilled for all b1, b2 ∈ B.

¦ B-identity η is a strong equivalence.
¦ The full relation ω is a strong equivalence.
¦ If B is commutative and associative, then
every equivalence is strong.

¦ Theorem 3. If B is infinitely distributive, then
the dual of a competely additive linear quanti-
fier is a strong B-equivalence, and conversely.
¦ Corollary. If B is a quantale, then the dual of
a linear complete quantifier is a B-equivalence,
and conversely.
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Towards a fuzzy Halmos-style duality

(an outline)

Generally, an m-semilattice cannot be repre-

sented as an algebra of subsets of any space.

¦ A – an integral dioid,
¦ A ⊂ ∏

(Bi: i ∈ U) – A is a subdirect product

of subdirectly irreducible integral dioids Bi,
¦ B – a minimal (in a certain strict sense) quan-

tale in which all Bi are embedded.

(If A is a distributive lattice, then B is the two-element

lattice 2.)

U replaces the prime ideal space of A.

¦ A quantifier on A induces a strong B-equivalence

on U .
¦ Problem. Is this transformation injective?
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¦ A subset τ of BU is a fuzzy topology on U

if it is closed under · and arbitrary joins, and

contains all constant functions. Thus, τ is a

sub-quantale of BU .

¦ A is embedded in BX, and induces a subbase

of some fuzy topology τ on U .
¦ Problem. Is the B-relation induced by a quan-

tifier on A topologically well-behaved w.r.t. τ?


